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A number of proflavine (PF)-resistant mutants ofEscherichia coli B were also
resistant to penicillin and cephalothin. Mutants resistant to 1.0 mM PF were 10
times more penicillin resistant than were the PF-susceptible, wild-type cells.
Single-step mutants selected for resistance to either PF or penicillin were also
resistant to the other drug. None of the resistant mutants tested possessed /8-
lactamase activity. These results suggest that resistance to PF and penicillin in
E. coli B may be due to permeability changes in the cell envelope.

The role of permeability in bacterial resist-
ance to acridine dyes is uncertain. Earlier re-
ports associated resistance of different strains
ofEscherichia coli to proflavine (PF) and acri-
flavine (AF) with decreased dye uptake (1, 5, 6,
14, 20, 21, 25). The fact, however, that resistant
cells can actively expel acridines has compli-
cated interpretations of experiments based on
uptake alone (7, 14).
Work in our laboratory previously suggested

that resistance occurred at the metabolic level,
since glucose metabolism was inhibited by PF
in susceptible but not in resistantE. coli (10). It
was since found that pyruvate kinase I may be
the site of inhibition of glycolysis by PF in
sensitive cells. However, purified pyruvate ki-
nase I from susceptible and resistant cells was
equally susceptible to PF (unpublished data).
These results suggest again that permeability
is involved in PF resistance, at least in the
sense that some PF-sensitive site(s) may be
shielded from the drug by cell structures.
Permeability changes have been implicated

as the basis of cross-resistance between unre-
lated inhibitors. AF resistance due to permea-
bility barriers has been associated with resist-
ance to methanol and thiabendazole in Dictyo-
stelium discoideum (24) as well as with resist-
ance to phenethyl alcohol and sodium dodecyl
sulfate in E. coli (12).

Acridine orange resistance was associated
with resistance to penicillin, erythromycin,
chloramphenicol, rifampin, and ethidium bro-
mide in Neisseria gonorrhoeae (8).
We report here a study of the relation be-

tween resistance to PF and penicillin in a num-
ber of strains ofE. coli.

Strains resistant to 1.0 mM PF were isolated
from E. coli B after growth in Trypticase soy
broth (TSB; Baltimore Biological Laboratory

[BBL], Cockeysville, Md.) containing succes-
sively 0.02, 0.10, 0.20, 0.50, and 1.0 mM PF as
previously described (7). Strains resistant to 0.1
mM PF were isolated from Trypticase soy agar
(TSA [TSB plus 1.5% agar]; Difco Laboratories,
Detroit, Mich.) containing 0.1 mM PF that had
been heavily inoculated with E. coli B. For
these and other experiments, inocula con-
sisted of overnight cultures grown in TSB at
370C.

Several 1.0 mM PF-resistant strains were
exposed to a. variety of antibiotics (obtained
from BBL and Difco) on TSA plates containing
4 to 5 antibiotic disks/plate. After incubation,
susceptibility or resistance was measured as
the width of the clear zone surrounding the
disk.

All PF-resistant strains exhibited increased
resistance to penicillin, cephalothin, and, to a
lesser extent, ampicillin (Table 1). PF-suscepti-
ble and -resistant strains were equally suscepti-
ble to most of the other antibiotics.
To determine the level of PF-associated peni-

cillin resistance, individual strains were inocu-
lated into tubes containing 10 ml of TSB and
different concentrations of penicillin. After in-
cubation, growth was measured as absorbance
at 660 nm in a Coleman Jr. spectrophotometer.
After 24 h, strains resistant to 1.0 mM PF dis-
played a 10-fold increase in the minimal inhibi-
tory concentration (that is, the lowest concen-
tration completely preventing growth) of peni-
cillin (from 15 to 150 U/ml), whereas those re-
sistant to 0.1 mM PF possessed intermediate
levels of penicillin resistance (Fig. 1). These
measurements do not distinguish between kill-
ing and growth inhibition by penicillin. After
44 h, further growth had taken place in some
tubes, but the same pattern still held (minimal
inhibitory concentrations, 25 U of penicillin per
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TABLE 1. Susceptibility ofPF-resistant strains ofE. coli B to antibioticsa

Width of clear zone (mm)
Antibiotic (amt/disk)

BI B/Pr PrA PrB PrC
Penicillin, 10 U 2.33 ± 0.11 (6) 0 (7) 0 (4) 0 (4) 0 (4)
Cephalothin, 30 ,g 6.58 ± 0.08 (3) 1.00 ± 0.14 (3) 0 (5) 1.20 ± 0.09 (5) 1.50 ± 0.35 (4)
Ampicillin 10 Ag 8.33 ± 0.17 (3) 3.63 ± 0.13 (2) 3.0 + 0.20 (4) 4.90 ± 0.19 (5) 4.75 ± 0.14 (4)
Carbenicillin, 100 ,ug 10.83 ± 0.17 (3) 4.25 ± 0.10 (4) 7.25 + 0.14 (4) 6.70 ± 0.12 (5) 6.91 ± 0.15 (6)
Chloramphenicol, 5 jug 2.95 + 0.10 (6) 0 (6) 2.25 ± 0.14 (4) 1.50 ± 0 (4) 2.63 ± 0.24 (4)
Tetracycline, 30 ig 3.19 + 0.18 (9) 2.63 ± 0.25 (9) 2.25 + 0.14 (4) 1.10 ± 0.16 (4) 1.00 ± 0 (4)
Streptomycin, 10 ,ug 1.60 + 0.10 (5) 1.75 ± 0.30 (4) 2.00 ± 0.35 (4) 0.67 ± 0.17 (3) 2.63 ± 0.13 (5)
Rifampin, 10 ,ug 2.50 ± 0 (2) 0.88 ± 0.13 (2) 1.60 ± 0.10 (5) 1.62 ± 0.13 (4) 1.38 ± 0.24 (4)
Gentamicin, 10 ,Mg 1.58 + 0.08 (3) 1.80 ± 0.17 (3) NT NT NT
Nitrofurodantin, 30 MAg 5.80 + 0.08 (3) 6.00 ± 0.22 (3) NT NT NT
Neomycin, 10 Ag 1.50 ± 0 (5) 2.20 ± 0.17 (3) NT NT NT
Septra, 10 lAg 4.83 + 0.17 (3) 3.17 ± 0.73 (3) NT NT NT
Nalidixic acid, 30 lAg 4.25 ± 0.14 (3) 4.83 ± 0.17 (3) NT NT NT
Colistin, 10 Mg 2.50 ± 0 (3) 3.30 ± 0.08 (3) NT NT NT

a Strain B is PF susceptible, and the others are resistant to 1.0 mM PF. Values are presented with standard errors.
Bracketed figures represent the number of determinations. NT, Not tested.

b Strain.
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Penicillin resistance is ofter

duction of 8-lactamase enzymes by resistant
bacteria (3, 9, 18); however, in some cases, re-
sistance may result from changes in cell enve-
lope permeability associated with modifications
of the lipopolysaccharide layer of the cell wall
(2, 11, 15, 16, 19, 22, 23). Such "intrinsic" resist-

mMl") ance (29) may occur in cells that lack f3-lacta-
mase activity (3).
Three strains resistant to 1.0 mM PF were

tested for /8-lactamase activity (17). Cells were
- grown to early log phase in 0.5% glucose min-
100 25 So eral salts media (7) at 37°C. In some experi-

ments, penicillin was added to a final concen-
concentration on tration of 25 U/ml, and growth was allowed to
esistant E. coli B. continue for a further 3 h. PF-susceptible cells
Bat 37°C for 24 h. lysed within 30 min of penicillin addition,
rbance at 660 nm. whereas the growth of PF-resistant cells was
esponded to an ab- unaffected by the antibiotic. None of the PF-

resistant strains possessed f3-lactamase activ-
ity, as measured in whole cultures, either un-

in and 300 U/ml treated or broken by ultrasonic treatment, after
mM PF). growth in the presence or absence of penicillin.
penicillin resist- It seems likely from these results that peni-
ca plating. When cillin resistance in E. coli B is intrinsic. Since
A not previously penicillin resistance seems well correlated with
transferred to a PF resistance, we suggest that both phenomena
)enicillin per ml, may be caused by permeability changes in the
r transfer to TSA cell envelope.
~ed two colonies. The study ofPF resistance inE. coli B/Pr has
olonies were ob- been complicated by the diversity of binding
mn overnight cul- sites available to PF (4) as well as by the en-
ntaining 25 U of ergy-dependent release of bound dye (7, 14).
ig a further 24 h. Gross permeability differences to PF do not
esistant colonies exist between PF-susceptible and -resistant
te experiment 64 strains of E. coli B (4, 7). It is possible, how-
were obtained in ever, that subtle permeability changes have
ere also resistant taken place that are not detectable in PF-bind-

ing studies. Nakamura has shown that AF-
a due to the pro- susceptible and -resistantE. coli K-12 bind sim-
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ilar amounts of PF (13), in spite of the fact that
AF-resistant cell membranes lack a specific
structural protein involved in AF uptake and
binding (14).

It now seems possible that E. coli mutants
selected for resistance to either PF or penicillin
have undergone changes in an envelope compo-
nent(s) that make them resistant to both
drugs.

This work was supported by a grant to D. J. Kushner
from the National Research Council of Canada.
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