Cefamandole: In Vitro and Clinical Pharmacokinetics

R. S. GRIFFITH* H. R. BLACK, G. L. BRIER, AND J. D. WOLNY

Lilly Laboratory for Clinical Research, Wishard Memorial Hospital,* and Indiana University School of Medicine, Indianapolis, Indiana 46202

Received for publication 7 June 1976

Cefamandole has a broader spectrum and greater potency than the other cephalosporins. It includes *Haemophilus influenzae*, most strains of *Enterobacter*, and many strains of indole-positive *Proteus* and *Bacteroides*, with a lower minimal inhibitory concentration for *Escherichia coli*, *Klebsiella*, etc. Concentrations of drug in the serum after the parenteral injection of cefamandole exceed manyfold the minimal inhibitory concentrations of over 82% of the bacteria studied. Approximately 65 to 85% is excreted in a biologically active form in the urine. This antibiotic offers advantages of antibacterial effectiveness and at the same time retains the safety of penicillin G and cephalothin in animals.

The clinical efficacy of the cephalosporin antibiotics has been well established (10, 11). Cephalothin, because of pain with intramuscular injection of greater than 0.5- to 1-g doses, is usually administered intravenously. Cephaloridine, virtually painless with intramuscular injection, has been associated with nephrotoxicity. Cefazolin produces high and prolonged serum concentrations, but has relatively high protein binding with slow dissociation, resulting in a low volume of distribution. As a result of molecular manipulation (Fig. 1), cefamandole offers advantages of antibacterial effectiveness and at the same time retains the safety of penicillin G and cephalothin in animals.

MATERIALS AND METHODS

Antibiotic. The lithium salt of cefamandole for in vitro studies was supplied in 20-mg ampoules by Eli Lilly & Co. The cefamandole for clinical use, CT-2883-4F, was cefamandole nafate furnished as 1 g of cefamandole activity per ampoule.

Bacterial strains. A total of 1,152 strains of bacteria were isolated from clinical material at Wishard Memorial and University Hospitals, Indianapolis, Ind.

Susceptibility testing. A serial twofold broth dilution procedure with a Canalco Autotiter IV (Canalco, Inc., Rockville, Md.) was used to establish the minimal inhibitory concentration (MIC) for all strains of bacteria except the *Bacteroides*. These were tested in an anerobic atmosphere with a manually operated Canalco Autotiter.

Mueller-Hinton broth was the medium employed for all of the aerobes and facultative anaerobes. When strains of streptococci and pneumococci were tested, 5% sheep blood was added to the broth. *Hae*- mophilus influenzae was tested by adding Filtes supplement. The inoculum for these procedures was 10^5 bacteria/ml of media. The MIC was recorded after 18 h of incubation at 37° C. Susceptibility of the *Neisseria* species was evaluated by using solid chocolate agar and a Steers replicator. The inoculum for the Steers replicator was prepared as for the International Collaborative Study agar dilution method.

Protein binding. The percentage of inactivation by human serum (protein binding) was estimated by comparing serum and urine standard curves obtained during the blood and urine assays.

Subjects. Volunteers were ambulatory adult males and females between the ages of 25 and 55 years with no overt physical or laboratory abnormalities. Diet was not restricted.

Injection of antibiotic. For intramuscular injection 3 ml of distilled water was added to each 1-g ampoule of cefamandole. Proportionate amounts of the resulting solution were used to achieve the 250mg, 500-mg, or 1-g intramuscular dose. The injection was given in the gluteal muscle through a 1.5 inch (ca. 3.8-cm) 20-gauge needle.

For intravenous administration, the 1-g ampoules were placed in solution using 3 ml of distilled water. The dose to be given was then added to 50 ml of 5% glucose and infused rapidly into the antecubital vein over a 10-min period.

Serum assays. Blood samples were drawn before and at intervals after the administration of single doses of cefamandole (see Tables 3 and 5). The blood samples were centrifuged and the sera were frozen until assayed. Serum concentrations were measured using the *Bacillus subtilis* cup plate method (4).

Urine assays. Urine was collected at the intervals shown in Tables 4 and 6. These were assayed using an Elanco Autoturb (Elanco Products Co., Indianapolis, Ind.) with a *Klebsiella* strain as the indicator organism.

RESULTS

Susceptibility studies. Table 1 lists the number of bacterial strains in each species studied and their susceptibility to a given concentration of cefamandole. For ease of interpretation, the cumulative percentage of the susceptible strains is shown in Table 2.

A total of 90 to 100% of the methicillin-susceptible *Staphylococcus aureus*, group A and B streptococci, pneumococci, and gonococci required 2 μ g or less of cefamandole per ml for inhibition. A concentration of 64 μ g/ml (readily achieved in the urine after a 250-mg dose of

CEFAMANDOLE

FIG. 1. Structure of cefamandole.

cefamandole intramuscularly) inhibited the 19 strains of enterococci studied. Seventy percent of the *Escherichia coli* and indole-negative *Proteus* were inhibited by 4 μ g of cefamandole per ml. Eighty percent of the *Bacteroides fragilis* subsp. *fragilis* were inhibited by 32 μ g/ml, a concentration achieved by the administration of 1 g or greater doses intravenously.

All 42 strains of *H. influenzae* and the two strains of *Salmonella typhosa* were inhibited by 2 μ g of cefamandole per ml.

Sixty-five percent of the 20 strains of Serratia were inhibited by 64 μ g of cefamandole per ml. A concentration of 8 μ g/ml inhibited 82% of the 55 strains of Proteus mirabilis, whereas this same concentration inhibited 59% of the 65 indole-positive Proteus strains studied. Seventyone percent of the 24 Citrobacter strains were susceptible to 8 μ g of cefamandole per ml. Of the 98 strains of Enterobacter, 28% were susceptible to 8 μ g, 37% to 16 μ g, and 46% to 32 μ g or less of cefamandole per ml. Therapy of systemic infections due to these organisms and the enterococci obviously would require relatively high intravenous doses daily.

Protein binding. Using a cup plate method, 5 μ g of cefamandole per ml in urine produced a

TABLE	1.	Number	· of	isolate	es suscep	tit	le i	to	cefamando	le
-------	----	--------	------	---------	-----------	-----	------	----	-----------	----

Organism	No. of				No. su	scepti	ble at	an MI(C (μg/r	nl) of:		
organism	isolates	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Gram-positive cocci												
S. aureus	63	23	9	30	50	60	62	62	62	62	63	
$S. aureus^a$	38						22	36	38	38	38	
β -hemolytic streptococci												
Lancefield group A	27	25	26	26	27	27	27	27	27	27	27	
Lancefield group B	13	7	7	9	11	13	13	13	13	13	13	
Lancefield other	7	6	7	7	7	7	7	7	7	7	7	
Group D enterococcus	19									8	19	
Group D non-enterococcus	4	4	4	4	4	4	4	4	4	4	4	
Streptococcus pneumoniae	15	12	15	15	15	15	15	15	15	15	15	
Gram-negative cocci												
Neisseria gonorrhoeae	90	42	63	71	77	80	85	88	90	90	90	
Gram-negative rods												
E. coli	358		6	19	69.	168	262	312	312	346	348	10
Klebsiella sp.	114	2		10	53	88	104	106	108	108	113	1
H. influenzae	42			13	40	42	42	42	42	42	42	-
P. mirabilis	55		2	6	31	39	42	45	49	51	54	1
Proteus sp. (indole positive)	64			2	16	25	30	38	40	42	43	21
Enterobacter sp.	98				7	11	20	27	36	45	54	44
Serratia	20						1	1	3	5	13	7
Salmonella sp.	20			2	11	15	19	20	20	20	20	
S. typhosa	2		1	1	2	2	2	2	2	2	2	
Shigella sp.	3				1	1	1	2	3			
Citrobacter sp.	24				5	11	16	17	19	20	20	4
Acinetobacter	4									1	2	2
B. fragilis subsp. fragilis	72						4	19	44	58	62	10
Cumulative total	1,152	121	140	215	426	608	778	883	934	1,007	1,052	100

^a Methicillin resistant.

^b Not class A, B, C, or G.

816 GRIFFITH ET AL.

ANTIMICROB. AGENTS CHEMOTHER.

<u> </u>	No. of			Isolate	es (%) s	uscepti	ble at a	an MIC	(μg/m]	l) of:		
Organism	isolates	0.125	0.25	0.5	1	2	4	8	16	32	64	>64
Gram-positive cocci												
S. aureus	63	5	14	46	94	95	98	98	98	98	100	
$S. aureus^a$	38						58	95	100			
β -hemolytic streptococci												
Lancefield group A	27	93	96	96	100							
Lancefield group B	13	54	54	69	85	100						
Lancefield other ^b	7	86	100									
Group D enterococcus	19									42	100	
Group D non-enterococcus	4	100										
S. pneumoniae	15	80	100									
Gram-negative cocci												
N. gonorrhoeae	90	47	70	79	86	89	94	98	100			
Gram-negative rods												
E. coli	358	1	2	5	19	47	73	87	87	97	97	3
Klebsiella sp.	114			9	46	77	91	93	95	95	99	1
H. influenzae	42			31	95	100						
P. mirabilis	55		4	11	56	71	76	82	89	93	98	2
Proteus sp. (indole positive)	65			3	25	29	47	59	63	66	67	33
Enterobacter sp.	98				7	11	20	28	37	46	55	45
Serratia	20						5	5	15	25	65	35
Salmonella sp.	20			10	55	75	95	100				
S. typhosa	2				100							
Shigella sp.	3								100			
Citrobacter sp.	24				21	46	67	71	79	83	83	17
Acinetobacter	4								-		50	50
B. fragilis subsp. fragilis	72						6	26	61	80	86	14
Total	1,152											
Cumulative Susceptible (%)		11	12	19	37	53	68	77	81	87	91	9

 TABLE 2. Percentage of isolates susceptible to cefamandole

^a Methicillin resistant.

^b Not class A, B, C, or G.

FIG. 2. Average cefamandole levels in blood and urine excretion after the intramuscular (I.M.) injection of 250, 500, and 1,000 mg.

zone size of 37.4 mm. This was reduced to 30.7 mm when the same concentration in serum was studied. Thus, serum reduced the zone size by 18%. From the standard curve, it was apparent

FIG. 3. Average cefamandole levels in blood and urine excretion after the intravenous (I.V.) injection of 1, 2, 3, and 4 g.

that an 18% reduction of zone size was the same as lowering the concentration of cefamandole from 5 to 1.0 μ g/ml, or 80% binding by serum proteins.

When an ultracentrifuge was used to deter-

mine protein binding, 70% of the cefamandole went with the protein fraction. These values are similar to those reported for cephalothin by Kirby and Regamey, using the ultrafiltration method (5).

Pharmacology. Figure 2 shows the average levels of cefamandole in the blood and urine excretion after the intramuscular injection of 250, 500, and 1,000 mg. Levels with each dose at 1 h were 2.7, 12.2, and 20.6 μ g/ml, respectively. Assayable amounts were still present at 4 h after the 250-mg dose and at 6 to 8 h after the 500-mg and 1-g doses.

The total amount of cefamandole excreted over the 8-h collection period was approximately 65 to 85% after the intramuscular injection. The average concentration in the urine for the 8-h period was 210 μ g/ml after the 250-mg dose, 254 μ g/ml after the 500-mg dose, and 1,357 μ g/ml after the 1-g dose.

Figure 3 compares the average levels of cefamandole in blood and urine excretion after the

Patient 0 0.5 1 2 4 6 8 0.50

TABLE 3. Concentration of cefamandole in serum after intramuscular administration

Concn in serum at h:

250-mg dose							
AB	0	2.8	2.6	1.9	0.8	0.3	
RD	0	3.4	2.8	1.0	< 0.3	<0.3	
ME	0	4.8	3.1	1.0	0.3	< 0.3	
AF	0	4.5	3.5	1.9	0.6	< 0.3	
HG	0	2.2	2.4	1.3	0.5	< 0.3	
JH	0	2.6	2.7	1.8	0.6	<0.3	
TH	0	1.7	2.5	1.8	0.7	< 0.3	
RM	0	1.5	1.9	1.8	0.8	0.3	
AP	0	3.8	3.0	1.6	0.4	< 0.3	
DW	0	2.7	2.2	0.9	<0.3	<0.3	
Mean	0	3.0	2.7	1.5	0.5		
SD^a	0	1.1	0.5	0.4			
500-mg dose							
AB	0	12.2	20.3	4.4	1.1	0.8	<0.3
RD	0	15.8	15.8	4.4	0.7	<0.3	< 0.3
ME	0	16.2	15.7	5.6	1.6	<0.3	<0.3
AF	0	12.2	15.8	9	2	0.4	<0.3
HG	0	12.2	5.7	5.4	1.6	0.3	<0.3
JH	0	3.4	7.5	5.7	2	0.4	<0.3
TH	0	3.4	7.7	7.3	2.3	0.3	<0.3
RM	0	1	3.9	5	3	0.8	<0.3
AP	0	8.3	15.7	8.3	1.8	0.3	<0.3
DW	0	12	13.9	7.3	0.4	<0.3	<0.3
Mean	0	9.7	12.2	6.2	1.6	0.5	
SD	0	5.4	5.5	1.6	0.8	0.2	
1-g dose							
AB	0	25	16	10.8	3.5	1.2	0.4
RD	0	47.6	26.6	14.3	2.5	0.5	<0.25
ME	0	29.3	43.5	21.4	2.5	0.4	< 0.25
HG	0	17.1	16.7	17.6	4.9	0.8	< 0.25
JH	0	9	9	9.7	6.3	2.2	0.6
TH	0	4.4	12.3	14.4	2.9	0.8	<0.25
RM	0	5.8	14	15.1	6.2	2.2	1.1
AP	0	22.4	40.2	20.4	6.2	1.6	1.2
DW	0	19.5	20.1	13.1	4.0	0.7	<0.25
RB	0	4.1	7.1	20.1	6.0	0.9	0.3
Mean	0	18.4	20.6	15.7	4.5	1.1	0.4
SD	0	13.7	12.5	4.1	1.6	0.7	

^a SD, Standard deviation.

818 GRIFFITH ET AL.

ANTIMICROB. AGENTS CHEMOTHER.

		0–2 h		:	6–8 h	
Patient —	μ g /ml	Total volume (ml)	Total mg	µg/ml	Total volume (ml)	Total mg
250-mg dose	1. A.L.	20				
AB	165	480	79	880	130	114
RD	250	474	118	235	405	95
ME	120	1,000	120	185	350	64
AF	400	450	182	625	50	31
HG	205	600	123	340	350	119
JH	95	550	52	240	450	108
TH	80	460	37	340	180	61
RM	90	800	72	290	450	130
AP	190	500	95	150	850	127
DW	270	450	121	445	180	80
Mean	186	576	100	373	339	93
SD^a	100	183	42	225	22	34
500-mg dose						
AB	300	1,030	309	820	100	82
RD	100	1,120	112	320	850	272
ME	380	890	338	265	450	119
AF	130	1,160	150	350	540	189
HG	210	700	147	500	550	275
JH	120	960	115	300	600	180
тн	160	900	144	350	550	192
RM	150	700	105	230	550	126
AP	320	560	179	390	450	175
DW	220	890	195	350	550	192
Mean	209	891	179	388	519	180
SD	95	192	81	160	184	62
1-g dose						
AB	1,365	230	324	4,875	640	312
RD	2,973	160	476	1,043	255	266
ME	4,800	80	384	1,352	170	230
HG	1,037	100	104	1,997	310	619
JH	750	190	143	1,495	380	568
TH	3,857	95	366	1,295	220	285
км	1,780	115	205	1,059	340	360
AP	797	240	191	833	420	350
DW	1,520	210	319	1,320	200	264
RB	1,185	100	119	2,178	270	588
Mean	2,006	156	262	1,745	320	384
SD	1,395	62	127	1,176	137	149

TABLE 4. Concentrations of cefamandole in urine after intramuscular administration

^a SD, Standard deviation.

intravenous injection of 1, 2, 3, and 4 g. Average peak levels at 10 min after the completion of the 10-min intravenous infusion of cefamandole were 139 μ g/ml for the 1-g dose and 240, 524, and 666 μ g/ml for the 2-, 3-, and 4-g doses, respectively. After equilibration, the corresponding 30-min levels were 54, 196, 279, and 428 μ g/ml. Each increase in the amount given prolonged the duration of measurable levels. The antibiotic level was less than 0.3 μ g/ml at 8 h after the 2-g dose and was not assayable at 12 h after the 3- and 4-g doses.

A total of 75 to 85% of the intravenous dose was recovered in the urine during the 8-h postinjection period. The average concentration for the 8-h period was 750 μ g/ml after the 1-g dose, 1,380 μ g/ml after the 2-g dose, 2,110 after the 3g dose, and 2,550 after the 4-g dose. For closer scrutiny, the actual blood levels and urine excretion for each individual receiving cefamandole are shown in Tables 3 through 6. The average values for the blood levels and urine excretion used for preparing Fig. 2 and 3 are shown in Table 7.

DISCUSSION

The bacteria most frequently isolated from nonhospitalized patients with infection are streptococci, pneumococci, staphylococci, and $E. \ coli$. Infections caused by these organisms are usually treated with relatively low doses of antibiotics administered orally. Patients with serious infections are usually admitted to a hospital. At the Wishard Memorial Hospital in Indianapolis, 12% of the admissions are related to bacterial infections. An additional 7% are from nosocomial sources (Committee on Infection Control, Wishard Memorial Hospital). This incidence is similar to that reported by others (1). The distribution of the bacteria tested for antibiotic susceptibility (other than group A streptococci and pneumococci) are

TABLE 5. Concentrations of cefamandole in serum after intravenous administration

Patient	_			Con	cn in serun	n at h:			
	0	0.17	0.5	1	2	4	6	8	12
1-g dose									
RB	0	214.2	106.1	13.5	5.9	0.8	<0.3		
AF	0	128.5	68.7	24	8.6	1.3	< 0.3		
GL	0	92.3	22.2	13.3	5.2	0.7	< 0.3		
HL	0	198.5	31.4	13.3	1.6	0.3	< 0.3		
BO	0	145.1	78.9	14	3.3	0.3	< 0.3		
CK	0	85.1	40.1	14	5.5	1.1	< 0.3		
GM	0	100	33.2	14.2	4.0	1.4	0.4		
Mean	0	139.1	54.4	15.2	4.9	0.8			
SD^a	0	54.1	30.8	3.9	2.2	0.4			
2-g dose									
RB	0	313.8	278	24.5	24	17	0.5	<03	
AF	Ō	228.1	198.5	38.4	10	4 5	0.8	<0.0	
GL	Ō	137.7	88.6	22.8	4 5	1.0	0.0	<0.0	
HL	Ő	109.8	64 1	15	4 4	0.6	0.3	<0.3	
BO	õ	301.3	195	23 3	6.4	1	0.0	<0.3	
CK	0	308.5	274 7	49 1	22.5	24	0.5	<0.3	
GM	Ŏ	284	274.7	40.2	27	3.6	1.1	0.5	
Mean	0	240 5	196.2	30.5	11	9 9	0.5		
SD	Õ	85	89.5	12.2	9.7	1.4	0.3		
3-g dose									
CK	0	644 6	318	66.2	26	3 5	11	0.3	~0.3
GM	ŏ	526	249 6	54.8	30.9	43	1.1	0.5	<0.3
BO	ŏ	370	151.8	63.6	34.6	19	0.4	0.0	<0.3
RM	Õ	588	288 7	68.2	16.2	19	0.4	<0.3	<0.3
CS	Ŏ	540	389.2	86	27.9	2.7	1	0.3	<0.3 <0.3
Mean	0	533 7	279 5	67.8	27 1	29	0.9	03	
SD	Ő	102.6	87.8	11.4	6.9	1	0.5	0.0	
4-g dose									
ČK	0	747	675.2	65.2	55.4	4.8	16	0.5	<03
GM	Ō	684.4	486	92.7	38.7	6	2.6	1	< 0.3
BO	Ō	413.6	326.7	68.9	31.6	2.5	0.6	0.3	<0.3
RM	0	654.4	376.8	67.7	41.1	1.8	1	0.3	< 0.3
CS	0	833.1	777.6	100.7	39	4	0.8	0.3	<0.3
Mean	0	666.3	528.5	79	41.2	3.9	1.3	0.5	
SD	0	156.9	193.1	16.4	8.7	1.9	0.8	0.3	

^a SD, Standard deviation.

shown in Table 8 (Committee on Infection Control, Wishard Memorial Hospital).

All of the group A streptococci and pneumococci and 95% of the methicillin-susceptible S. *aureus* in this study were shown to be susceptible to concentrations of 2 μ g or less per ml, easily achieved by doses of 250 mg of cefamandole intramuscularly. Eighty-two percent of the bacterial isolates were inhibited by serum concentrations of 8 μ g or less per ml, an amount exceeded after the 500-mg and 1-g doses intramuscularly. Intravenous doses of greater than 1 g gave serum concentrations manyfold higher than the susceptibility of most of the bacterial strains studied. Relatively low therapeutic doses of cefamandole, 0.5 to 1 g intramuscularly or 1 to 2 g intravenously every 6 h, should be clinically effective in infections that would include virtually all of the commonly encountered bacterial organisms, i.e., beta-hemolytic strep-

TABLE 6. Urine concentration and excretion of cefamandole after intravenous administration

		0–2 h			2–4 h			4-6 h			6-8 h	
Patient	µg/ml	Volume (ml)	Total mg	µg/ml	Volume (ml)	Total mg	µg/ml	Volume (ml)	Total mg	µg/ml	Volume (ml)	Total mg
1-g dose											1	
RB	1,780	390	694	510	380	194	29	390	11	16	630	10
AF	1,550	420	651	400	310	124	29	80	2	12	305	4
\mathbf{GL}	3,100	150	465	600	140	84	16	190	3	14	210	3
HL	1,800	320	576	490	330	162	30	130	4	11	200	2
BO	1,000	700	700	500	320	160	45	140	6	30	230	7
CK	2,700	220	594	450	350	158	220	120	26	33	130	4
GM	1,600	590	944	1,225	70	86	329	95	31	36	64	2
Mean	1,933	399	661	596	271	138	100	164	12	22	252	5
SD^a	721	195	149	284	118	42	124	106	12	11	183	3
2-g dose												
RB	3,460	520	1,799	1,110	85	94	45	400	18	18	290	5
AF	1,900	530	1,007	1,675	190	318	50	230	12	38	380	14
GL	3,740	360	1,346	455	485	221	33	450	15	30	150	5
HL	2,800	460	1,288	770	280	216	36	220	8	20	170	3
BO	2,300	615	1,415	1,550	120	186	40	100	4	31	130	4
CK	4,170	120	500	1,375	275	378	40	250	10	35	110	4
GM	6,000	170	1,020	2,420	120	290	34	50	2	32	100	3
Mean	3,481	396	1,196	1.336	222	243	40	243	10	29	190	5
SD	1,369	189	407	643	139	94	6	145	6	8	105	4
3-g dose												
CK	6,950	275	1,911	780	290	226	110	150	17	37	125	5
GM	5,600	410	2,296	800	200	160	380	50	19	104	20	2
BO	2,200	1,040	2,288	840	420	353	112	150	17	38	105	4
RM	3,95 0	515	2,034	960	250	240	410	150	62	38	170	7
CS	3,750	520	1,950	1,235	400	494	400	190	76	47	330	16
Mean	4,490	552	2,095	923	312	295	282	138	38	53	150	7
SD	1,828	290	185	188	95	131	157	52	29	29	114	5
4-g dose												
CK	7,500	310	2,325	1,710	250	428	640	120	77	38	155	6
GM	5,000	420	2,100	7,600	50	380	780	30	23	108	75	8
BO	4,500	800	3,600	1,000	450	450	500	120	60	92	420	39
KM	9,500	250	2,375	1,740	235	409	175	450	79	120	395	47
CS	6,750	380	2,565	1,200	415	498	275	255	70	26	265	7
Mean	6,650	432	2,593	2,650	280	433	474	195	62	77	262	21
SD	2,013	216	537	2,786	160	45	250	164	23	42	149	20

^a SD, Standard deviation.

Vol. 10, 1976

				Co	ncn in se	rum at	h:			Urine exc	retion at	0-8 h
Dose	No. of sub- jects	0.17	0.5	1	2	4	6	8	12	Avg (µg/ml)	Total (mg)	%
Intramuscular												
250 mg	10		3	2.7	1.5	0.5	< 0.3			210	193	77
500 mg	10		9.7	12.2	6.2	1.6	0.5	< 0.3		254	359	72
1 g	10		18.4	20.6	15.7	4.5	1.1	0.4		1,357	646	65
Intravenous			÷									
1 g	7	139	54	15	5	0.8	<0.3			750	816	82
2 g	7	240	196	30	11	2.2	0.5	< 0.3		1,383	1,454	73
3 g	5	533	279	68	27	2.9	0.9	0.3	< 0.3	2,114	2,435	81
4 g	5	666	528	79	41	3.9	1.3	0.5	<0.3	2,660	3,109	78

 TABLE 7. Serum concentrations and urine excretion of cefamandole after intramuscular and intravenous administration

TABLE 8. Incidence of bacteria isolated for
susceptibility testing at Wishard Memorial Hospital,
Indianapolis, Ind.

		Isolat	es (%)/1	no in:	
Determination	1968 (707) ^a	1969 (1,419)	1970 (1,646)	1973 (1,712)	1974 (1,026)
S. aureus	20	16	17	17	17
S. epidermis	5	15	21	24	5
E. coli	25	22	21	19	26
Citrobacter	8	9	8	1	1
Proteus sp.	11	10	10	8	9
Klebsiella-Entero- bacter	22	14	11	13	19
Pseudomonas	7	7	7	10	9
Serratia		4	1	1	2

 a Numbers in parentheses indicate the total number of isolates.

tococci, pneumococci, staphylococci, E. coli, Klebsiella, etc. (Table 9).

Young and Hewitt have used an inhibitory index to illustrate the relative potency of an antibiotic (12). This method has been used to compare the effect of increasing doses of cefamandole (Table 10). Presumably, protein binding would not appreciably affect the antibacterial activity of cefamandole and, therefore, has not been included in the calculations in Table 10. Like penicillin G and cephalothin, cefamandole is rapidly dissociated from the serum proteins, as evidenced by the relatively short halflife and rapid appearance in the urine.

It is obvious that as the dose is increased the number of bacterial species that can be included in the spectrum of cefamandole is also increased. If one utilizes somewhat less stringent criteria (corresponding to an MIC of 32 μ g or less per ml, levels that can readily be achieved with parenteral therapy), 80% of the *Bacteroides* strains tested would be susceptible

Table	9.	Mean MIC of isolates susceptible to 64 μ	g
		or less of cefamandole per ml	

Organism	Mean MIC	%
Gram-positive cocci		
S. aureus	1.83	100
S. aureus (methicillin resistant)	6.11	100
β -hemolytic streptococci		
Group A	0.16	100
Group B	1.6	100
Other	0.14	100
Group D enterococcus	50.5	100
Group D non-enterococcus	0.1	100
S. pneumoniae	0.14	100
Gram-negative cocci		
N. gonorrhoeae	1.14	100
Gram-negative rods		
E. coli	4.7	97
Klebsiella	4.6	99
P. mirabilis	1	98
Indole-positive Proteus sp.	6.5	67
Enterobacter sp.	20.4	55
Salmonella sp.	2.1	100
H. influenzae	0.9	100
Citrobacter sp.	5.5	83
B. fragilis subsp. fragilis	21.9	86

to cefamandole therapy. These results are similar to the median of $32 \mu g/ml$ reported by Ernst et al. (2). A similar observation has been made by Moellering et al. for cefoxitin (6).

Although most of the *P. mirabilis* indolenegative strains are susceptible to the cephalosporins, including cefamandole, Eykyn and coworkers called attention to the promising results observed with cefamandole against other enterobacteriaceae (3). However, they found *P. vulgaris* strains were consistently resistant to cefamandole. These findings are in accord with our data. *P. mirabilis* strains required only 8

822 GRIFFITH ET AL.

ANTIMICROB. AGENTS CHEMOTHER.

Organism	Mean MIC	Inhibitory index after dose (g) of:						
		Intramuscular			Intravenous			
		0.25 (3.0) ^b	0.5 (12.2)	1 (20.6)	1 (54)	2 (196)	3 (270)	4 (528)
Gram-positive cocci								
S. aureus	1.83	2	7	11	30	107	152	288
S. aureus (methicillin resistant) B-hemolytic streptococci	6.11		2	3	9	32	46	86
Group A	0.16	19	76	128	338	1,225	1,744	3,300
Group B	1.6	2	8	13	34	122	174	330
Other	0.14	21	87	147	385	1,400	1,993	3,771
Group D enterococcus	50.4				1	4	6	10
Group D non-enterococcus	0.1	30	122	206	540	1,960	2,790	5,280
S. pneumoniae	0.14	21	87	147	385	1,400	1,993	3,771
Gram-negative cocci								
N. gonorrhoeae	1.14	3	11	18	47	172	245	463
Gram-negative rods								
E. coli	4.7		3	4	11	42	59	112
Klebsiella	4.6		3	4	12	43	61	115
P. mirabilis	1	3	12	20	54	196	279	528
Indole-positive <i>Proteus</i> sp.	6.5		2	3	8	30	43	81
Enterobacter sp.	20.4			1	3	10	14	26
Salmonella sp.	2.1	1	6	10	26	93	133	251
H. influenzae	0.9	3	14	23	60	217	310	587
Citrobacter sp.	5.5		2	4	10	36	51	96
B. fragilis subsp. fragilis	21.9			1	2	9	13	24

TABLE 10. Inhibitory index^a for cefamandole

^a Ratio between the mean peak serum levels and the mean MIC of the isolates susceptible to 64 μ g or less per ml.

^b Numbers in parentheses indicate mean peak blood level in micrograms per milliliter.

 μ g/ml to inhibit 82%, whereas 59% of the indole-producing strains of *Proteus* were inhibited by this concentration.

We found that 46% of the 98 strains of *Enter*obacter were susceptible to 32 μ g of cefamandole per ml, whereas Washington reported 73% of 30 strains of *E. aerogenes* and 67% of 51 strains of *E. cloacae* were inhibited by 8 μ g/ml (9). Eykyn emphasized that there is often a striking inoculum effect among organisms with moderate to high MIC values, with only partial inhibition of large inocula by concentrations of cefamandole (3). Inoculum effect has been observed with other cephalosporins and penicillins (8).

In addition to the inoculum effect, the discrepancies in the cefamandole MICs of *Enterobacter* reported by other workers are apparently associated with whether the susceptibility tests were performed in broth or agar (3, 7, 9).

The higher cefamandole MICs in broth (as used in our study) may reflect an emergence of resistant variants from the heterogenous composition of the culture, not detected by lower inocula or by the end-point criteria usually used in agar dilution methods (C. M. Findell and J. C. Sherris, Abstr. Annu. Meet. Am. Soc. Microbiol. 1976, A14, p. 3).

Since the strains of Enterobacter, indole-positive *Proteus*, and enterococci vary in susceptibility, laboratory tests should be used as a guide to selection of antibiotic therapy. *Pseudomonas* strains are universally resistant to cefamandole.

In conclusion the majority (82%) of the bacterial strains isolated from hospitalized patients with infection were susceptible to the peak serum concentrations (8 to 16 μ g/ml) obtained after 500-mg to 1-g doses of cefamandole administered intramuscularly.

A total of 65 to 85% of the parenterally injected cefamandole appeared as the biologically active form in urine over an 8-h collection period.

Very high serum concentrations of 270 and 528 μ g/ml were obtained 0.5 h after a 10-min infusion of 3 and 4 g of cefamandole intravenously. As has been shown with other antibiotics, higher doses would be needed only for the Vol. 10, 1976

treatment of infections due to less susceptible organisms or in those patients with severe or overwhelming infections.

LITERATURE CITED

- Bennett, J. V., W. E. Scheckler, D. G. Maki, and P. S. Brachman. 1970. Current national patterns-United States. In Proceedings of the International Conference on Nosocomial Infections, 3-6 August, p. 42-49. American Hospital Association, Chicago.
- Ernst, E. C., S. Berger, M. Barza, N. V. Jacobus, and F. P. Tally. 1976. Activity of cefamandole and other cephalosporins against aerobic and anaerobic bacteria. Antimicrob. Agents Chemother. 9:852-855.
- Eykyn, S., C. Jenkins, A. King, and I. Phillips. 1973. Antibacterial activity of cefamandole, a new cephalosporin antibiotic, compared with that of cephaloridine, cephalothin, and cephalexin. Antimicrob. Agents Chemother. 3:657-661.
- Grove, D., and W. A. Randall. 1955. Assay methods for antibiotics. *In* Antibiotic monogr. no. 2. Medical Encyclopedia, Inc., New York.
- Kirby, W. M. M., and C. Regamey. 1973. Pharmacokinetics of cefazolin compared with four other cephalosporins. J. Infect. Dis. 128(Suppl.):S341-S347.

- Moellering, R. C., Jr., M. Dray, and L. J. Kung. 1974. Susceptibility of clinical isolates of bacteria to cefoxitin and cephalothin. Antimicrob. Agents Chemother. 6:320-323.
- Neu, H. C. 1974. Cefamandole, a cephalosporin antibiotic with an unusually wide spectrum of activity. Antimicrob. Agents Chemother. 6:177-182.
- Sabath, L. D., C. Garner, C. Wilcox, and M. Finland. 1975. Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob. Agents Chemother. 8:344-349.
- Washington, J. A., II. 1976. The in vitro spectrum of the cephalosporins. Mayo Clin. Proc. 51:237-250.
- Weinstein, L. 1975. Chemotherapy of microbial diseases, p. 1158-1166. *In L. S. Goodman and A. Gilman (ed.)*, Pharmacological basis of therapeutics, 5th ed. Macmillan Co., New York.
 Weinstein, L., and K. Kaplan. 1970. The cephalospo-
- Weinstein, L., and K. Kaplan. 1970. The cephalosporins. Microbiological, chemical, and pharmacological properties and use in chemotherapy of infection. Ann. Intern. Med. 72:729-739.
- Young, L. S., and S. L. Hewitt. 1973. Activity of five aminoglycoside antibiotics in vitro against gram-negative bacilli and *Staphylococcus aureus*. Antimicrob. Agents Chemother. 4:617-625.