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Abstract

Despite benefits for precision, ecologists rarely use informative priors. One rea-

son that ecologists may prefer vague priors is the perception that informative

priors reduce accuracy. To date, no ecological study has empirically evaluated

data-derived informative priors’ effects on precision and accuracy. To deter-

mine the impacts of priors, we evaluated mortality models for tree species using

data from a forest dynamics plot in Thailand. Half the models used vague

priors, and the remaining half had informative priors. We found precision was

greater when using informative priors, but effects on accuracy were more vari-

able. In some cases, prior information improved accuracy, while in others, it

was reduced. On average, models with informative priors were no more or less

accurate than models without. Our analyses provide a detailed case study on

the simultaneous effect of prior information on precision and accuracy and

demonstrate that when priors are specified appropriately, they lead to greater

precision without systematically reducing model accuracy.

Introduction

Ecological data are hard to acquire. This limits the rate at

which ecologists can develop and apply understanding of

phenomena. Some ecological parameters are more difficult

to learn about than others, particularly those that occur

sparsely in space or time. For example, for a given time and

budget, mortality rates are harder to learn about than growth
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rates because deaths are relatively rare compared to observa-

tions of incremental growth. Therefore, it is important to

find ways to accelerate learning so that more precise ecologi-

cal parameter estimates can be acquired more quickly.

Modeling using Bayesian inference can increase the

precision of model parameter estimates because it com-

bines previous knowledge (a prior) with newly collected

data (the likelihood) to produce a posterior distribution.

Bayesian methods are now commonplace in ecological

research (Clark 2005), but typically, models using Bayes-

ian inference are fit with vague, relatively uninformative

priors, negating what is seen as an important benefit of

Bayesian statistics (K�ery 2010). Sometimes, weakly infor-

mative priors are used (e.g., Gelman 2006; Gelman et al.

2008) but in such cases, the motivation derives from sta-

tistical concerns rather than an attempt to incorporate

existing ecological knowledge. The aim of using a vague

prior is to maximize the contribution of the data to the

posterior distribution. But, this stance implies that noth-

ing was known about the model parameters before the

data were collected. Assuming complete ignorance of all

model parameters is unlikely to be justified. In almost all

cases, something is known about the model parameters

before collecting new data. Despite this, informative

priors are almost never used for ecological models.

The application of Bayesian methods in ecology has

increased in frequency by almost an order of magnitude

over the past decade (McCarthy 2007). Why then, is true

Bayesian updating, using empirical data-derived priors,

still so rare in ecology? There are several potential, nonex-

clusive reasons ecologists may find it difficult to express

prior knowledge as a probability distribution. The percep-

tion that informative priors must be subjective may be

off-putting. Another reason may be a concern that more

informative priors could reduce model accuracy because

priors influence the location of the posterior estimate.

Priors affect the location of the posterior because the pos-

terior is a weighted average of the prior and likelihood.

The relative influence of the prior and likelihood are dri-

ven by the variance (i.e., the inverse of precision) of each

distribution, with the posterior being closer in location to

the one with the less variance (Gelman et al. 2004).

Accuracy and precision are two important properties

that can be used to assess the value of a model. Both con-

cepts relate to a model’s ability to make predictions, but

differ in the aspect of prediction they affect. Accuracy is

the ability of a model to make unbiased predictions. Pre-

cision is the inverse of variance and describes the confi-

dence ascribed to the predictions a model makes.

Precision increases with sample size if regularity condi-

tions hold. Accuracy, however, does not necessarily

increase concurrently with an increase in sample size. Pre-

cision is an intrinsic property of a model and can easily

be compared between models by contrasting the variance

of common parameters. Accuracy is a property external

to the model and can only be assessed with respect to

data. Those data may be the same data that were used to

train the model, but a stronger test of model accuracy is

to compare model predictions to an external data set and

perform external model validation (Rykiel 1996).

Increased precision of estimates from using informative

priors is well known, and the extent of improvement in

ecological contexts has been demonstrated (e.g., McCar-

thy and Masters 2005; McCarthy et al. 2008; Morris et al.

2013). The increase in precision is uncontroversial and

unsurprising as it is an inherent feature of using most

informative priors. Possible adverse effects of informative

priors on accuracy are less clear and have not been ana-

lyzed for Bayesian models of ecological data. To fill this

gap in the literature, we present an empirical assessment

of the effect of using empirical data-derived priors on a

set of ecological models.

To explore the simultaneous effect of empirical data-

derived priors on model precision and accuracy by vali-

dating models with new data, we used a large, long-term

forest dynamics data set from western Thailand contain-

ing records of growth and mortality for >80,000 trees

over 15 years. This allowed us to develop empirical

data-derived priors for species-specific mortality models

based on species-specific growth patterns and then com-

pare them to species-specific mortality models that used

vague priors and assess model accuracy and precision. We

specifically tested the following hypotheses: (1) mortality

models developed with empirical data-derived priors

would be more precise, having greater effective sample

sizes (not to be confused with the effective sample size

used to measure dependence in the Markov chains) than

those with vague priors; and (2) mortality models with

empirical data-derived priors would have equivalent or

greater accuracy to models based on vague priors.

Materials and Methods

To test the effect of empirical data-derived priors on

model accuracy requires fitting a large number of equiva-

lent models with and without empirical data-derived

priors and validating them against independent data. Our

data come from a 50-ha permanent forest dynamics plot

at the Huai Kha Khaeng (HKK) Wildlife Sanctuary in

Uthai Thani province in western Thailand. The HKK plot

is a collaborative project of the Royal Forest Department

and National Parks Wildlife and Plant Conservation

Department of Thailand, and the Smithsonian Tropical

Research Institute’s Center for Tropical Forest Science

((Bunyavejchewin et al. 2009) and see Appendix S1 for

further details).
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We used a three-step modeling process to assess the

effect of empirical data-derived priors on predictions of

tree mortality rate (Fig. 1). Here, we briefly outline each

of the three steps (see also Appendix S1 in Supporting

Information for further details). Each of the three steps

was performed multiple times for different species and

over multiple census intervals with the data from the

HKK forest dynamics plot.

Prior specification (Step A)

Correlations among biological rates can be used as a

source of prior information. Here, we take advantage of

the well-known correlation between mortality rate and

growth rate (Condit et al. 1995). Typically, species with

fast intrinsic growth rates will also have high mortality

rates and vice versa. Therefore, knowing something about

the growth rate of a species will tell us something about

the same species’ mortality rate. With data on the growth

and mortality of many species, a general relationship

between these rates can be inferred and used to specify a

prior probability of mortality for a new species with

known growth rates.

We developed empirical data-derived priors for single-

species mortality models based on the posterior predictive

distributions of a hierarchical model that related mortality

rates to the growth rates of multiple species. The hierarchi-

cal model used mortality as the response, growth rate as a

predictor and species as the grouping factor. To construct

the empirical data-derived priors for average mortality

rate, we produced predictive distributions given the multi-

species model estimates, conditional on the relative growth

rate of the new species used in the single-species models.

Model fitting (Step B)

The priors derived from the hierarchical model were then

applied to single-species models based on a sample of 98

individual stems of each species. The species used in the

single-species mortality models were not present in the

data sets used to fit the hierarchical models. Like the hier-

archical model, the single-species models also considered

mortality rate as the response but did not include

species growth rate as a predictor. To compare empirical

data-derived priors with vague priors, each single-species

model was run twice – once using the empirical data-

Figure 1. Schematic showing the major

components of constructing an informative

prior (Step A), fitting models with and without

informative priors (Step B) and validating each

model (Step C). The schematic outlines the

components leading to a single comparison of

the effect of an empirical data-derived prior

versus a vague prior. In total, there were 90

such comparisons. Components 1 and 2 were

initially repeated 15 times. And for each of the

repetitions of component 2, there were three

informative priors produced at component 3.

This resulted in 45 (3 15) repetitions of

components 4 through 6. The whole process

was carried out twice producing a total of 90

comparisons at component 7.
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derived prior based on growth rate and again using the

same mortality data but with a vague prior that did not

include any growth rate-based information.

Model validation (Step C)

Last, we validated both versions of the single-species

models with and without empirical data-derived priors.

To validate the predictions of the single-species models,

we compared predictions to additional external mortality

data not used to train the single-level models.

We used the effective number of samples to compare

precision of models with and without empirical data-

derived priors. We describe the uncertainty around our

estimates using a beta distribution. Using moment match-

ing, we estimated the effective number of binomial sam-

ples (i.e., tree stems monitored), n̂, it would take to

achieve a given level of certainty with, n̂ ¼ slð1� lÞ � 1,

where l and s are the mean and precision of the esti-

mated mortality rate parameter. When comparing models

with and without informative priors, models with larger

effective sample sizes are those with greater precision.

This measure of precision was preferred over simply using

the posterior variance (or some transformation) as it can

be directly interpreted as a measure of sampling effort.

To assess the accuracy of each single-species model

with and without empirical data-derived priors, we com-

pared the observed proportion of dead stems in the vali-

dation data set, qval, to the expected proportion of dead

individuals predicted by the models given the covariate

data, �qj/. We calculated �qj/ by averaging over each indi-

vidual stem’s (in the validation set) posterior predictive

probability of death, conditional on the covariate data.

Then for each species we could compare the magnitude

of the difference between, qval and �qj/ for both models,

with and without informative priors. More accurate mod-

els would have lower absolute error, jð�qj/Þ � qvalj.
All models were fit using Markov Chain Monte Carlo

sampling (see Appendix S1 for details) with the open-

source software package JAGS version 3.1.0 (Plummer

2003) run through the statistical software environment R

version 2.14 (R Development Core Team 2010) with the

package R2jags (Su and Yajima 2011).

Results

We developed single-species models for 45 tree species

from the HKK forest dynamics plot using growth and

mortality data collected between 1994 and 2009. Incor-

porating the informative priors in the single-species

models increased precision of average mortality rate esti-

mates. On average, the precision was four times greater

when an empirical data-derived prior was included –

equivalent to increasing the sample size by 20 trees

(Fig. 2: right panel). For most models, the empirical

data-derived prior itself was a less precise estimate than

the estimate based only on single-species training data,

meaning the likelihood had greater influence on the

posterior estimates than the prior (see Appendix S1).

The average standard deviation of the empirical

data-derived priors was 0.7 (range 0.5–0.8), while the

standard deviation of the likelihood estimate was typi-

cally around 0.5, though more variable (range 0.2–4.3).
The effective number of samples (stems measured) of

an empirical data-derived prior was typically 15–20
stems. Despite always being based on a sample of 98

real stems, the effective number of samples of the mod-

els without empirical data-derived priors was highly var-

iable, but typically <98, because the trees were not

treated in the model as being independent samples of

mortality. The effective number of samples for estimates

made without empirical data-derived priors was typically

around 50 stems and less than the estimate made with

an empirical data-derived prior.

Adding prior information did not systematically sacri-

fice the accuracy of models with respect to the validation

data set. Models with or without informative priors could

usually predict the proportion of dead trees within <5%
of the observed value and nearly all within 10% (Fig. 2:

left panel). Neither group of models was more or less

likely to over- or underpredict mortality in the validation

sets (see Appendix S1). The predictions of models with

informative priors were more often (56 of 90) closer to

the validation mortality rate than models with vague

priors. There was no relationship between the accuracy

lost or gained in having an informative prior and the

Figure 2. Left panel: histograms of accuracy of single-species

models, |(�q|/) � qval|. Right panel: Histograms of effective sample

size, n̂, of single-species models. Dark grey bars in background are for

models with vague priors. Transparent white bars in foreground are

for models with empirical data-derived priors.
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increase in precision (see Appendix S1). In general, mod-

els with large increases in precision due to their informa-

tive priors were no more or less likely to be more

accurate than models that had only modest increases in

precision. One exception was the understory species Mur-

raya paniculata (Rutaceae), which we discuss in greater

detail below.

For most species, prior point estimates of average mor-

tality rate were similar to the estimates made for the models

fit without informative priors with both prior and likeli-

hood estimates at around 10–20% of stems dying for an

average 5-year census period. Prior estimates of mortality

tended to be slightly greater than estimates based only on

the likelihood, particularly when the likelihood estimate

was <10%. One of the 45 (single-species model) species,

Murraya paniculata (Rutaceae), a short tree, common in

the understory and lower midstory of the forest, had large

disagreement between prior and likelihood (Figs. 2, 3). In

both time periods, its prior estimate of average mortality

was ~10%, but the training data indicated a mortality rate

of ~80% (see Discussion for further details). Across single-

species models, the posterior estimates of average mortality

for the models with and without informative priors were

more similar to each other than the prior was to the poster-

ior of the model without an informative prior. Therefore,

for most models, the data had a greater influence on the

posterior estimates, than did the prior.

Discussion

Our analyses illustrate that the type of data-derived priors

we used increase model precision and effective sample size

without forgoing accuracy. In 56 of 90 cases, the prior

drew the posterior of the predicted mortality rate toward

the mortality rate observed in the validation data. In these

instances, the prior and training data estimates agreed and

the prior simply increased the confidence in the estimated

mortality rate. But in the remaining cases, the prior esti-

mate made the posterior estimate less accurate than the

estimate without an data-derived prior. Overall, though,

there was no evidence that a prior, constructed in the

manner we have here, would lead to systematic bias and

inaccurate models. In a model using Bayesian inference,

both the prior and the data influence the location of

parameter estimates and therefore model accuracy (Gel-

man et al. 2004). The influence on parameter location is

proportional to the precision of the prior and data. To

ensure unbiased parameter estimates, one should take as

much care in specifying the prior distribution as when col-

lecting the data (McCarthy and Masters 2005).

The use of Bayesian statistics for ecology has sometimes

been criticized (e.g., Dennis 1996; Lele and Dennis 2009).

Much of this sentiment stems from the idea that Bayesian

priors are overly subjective. Subjective priors can be used

and have been demonstrated to work effectively when

2 20 90 2 20 90 2 20 90 2 20 90 2 20 90 2 20 90 2 20 90 2 20 902 20 90

Mortality (% Trees dead)

Figure 3. Posterior predictive distributions and

observed rate for overall mortality in the

validation datasets of the 90 single-species

models. Straight black lines show the observed

proportion of dead individuals for each

validation data set. Thick gray unbroken curves

in the background are the posterior predictive

distribution produced by models with vague

priors. Thin black broken curves are posterior

predictive distributions for equivalent models

that included empirical data-derived priors. A

gray background to the panel indicates the

empirical data-derived prior improved model

accuracy with respect to the validation data,

while a white background indicates that the

model with vague priors was more accurate.

The horizontal axes are plotted on the

complementary log–log scale to aid

visualization of the probability distributions.

Panels are ordered by increasing observed

mortality in the validation set from top to

bottom then from left to right.
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data are scarce and experts are available to provide infor-

mation (e.g., Choy et al. 2009). But, a prior need not be

subjective. There are a number of examples of ecological

studies where the same level of objectivity used to collect

the model training data has been used to formulate the

prior (e.g., McCarthy and Masters 2005; Dupuis and

Joachim 2006; McCarthy et al. 2008).

The method of forming a prior we have used here is a

clear example of an non-subjective empirical data-derived

prior. The well-established relationship between species

potential growth and mortality holds across many taxo-

nomic groups and ecosystems (Condit et al. 1995; Benrey

1997; McCoy and Gillooly 2008) and the species-rich data

set used here was no exception. Collecting information

on growth rate could be of great benefit when mortality

data are scarce or costly to collect, which is typically the

case for long-lived organisms that occur at low densities

such as tree species. However, this approach could be

extended to link functional traits (e.g., wood density, leaf

mass area) and demographic rates (e.g., Poorter et al.

2008) to construct priors.

In our study, an empirical data-derived prior only

introduced bias in an extreme situation in which the

informative prior made the mortality rate prediction less

accurate. We observed this bias for the species

M. paniculata, which had a large disagreement between

prior and likelihood. The reason for the disparity high-

lights the varied impacts of different agents of mortality

and shows that care must be taken to ensure that prior

information is relevant to the data that are being mod-

eled. In this case, the prior ignored the extreme sensitivity

of M. paniculata to low-intensity ground fires. A fire that

burnt through the forest in 1998 increased mortality in

the smallest size classes for most species (Baker et al.

2005). However, for M. paniculata ~80% of the stems

died as a direct or indirect consequence of the fire. The

species’ thin bark meant that the fires directly killed many

individuals, but a widespread fungal infection associated

with fire-induced basal wounding led to further

widespread mortality across the population. The high

mortality rate and associated fungal infection also coin-

cided with a population-wide slowing of growth rate.

Thus, the relative growth rate for this species was far

lower than it would have been under normal circum-

stances. This low relative growth rate, according to the

generalization on which the prior was based, indicated

that future mortality would be low, so the prior shifted

the mortality lower and away from the mortality rates

observed in both the training and validation data sets.

This circumstance only arose as the decrease in relative

growth rate was so great that the relative growth rate for

this species was misleading with respect to the mortality

data.

The reluctance of ecologists to use informative priors

despite an increase in the use of Bayesian methods is sur-

prising given the increasing use of hierarchical models,

which have a similar logic to Bayesian informative priors.

The use of hierarchical/mixed modeling (utilizing Bayes-

ian or non-Bayesian inference) is becoming increasingly

common in ecology (Bolker et al. 2009). Hierarchical

models are a type of formal inductive reasoning, as they

enable us to make transparent and general inference from

many specific cases coherently. In hierarchical models,

whether Bayesian or non-Bayesian, the group-varying

parameters operate like a prior and likelihood in a single-

level model (Gelman and Hill 2007). If researchers are

comfortable with the use of hierarchical models, they

should be comfortable with using informative priors.

Using priors as we have here is an extension of the logic

of hierarchical modeling. For any given individual-group

parameter (a parameter associated with a particular group

in a hierarchical model), the data of the group form the

likelihood, and the prior is the global (across group)

mean and associated variance. Each group in a hierarchi-

cal data set contributes to the global mean estimate pro-

portionally to the group sample size. For groups with

relatively large sample sizes, the data dominates the

parameter estimate for that group and will have a value

with much the same location and precision as if the esti-

mate was made without the influence of other groups.

But for groups with very small sample sizes, the global-

average-derived prior contributes far more to the poster-

ior estimate. Small-sample-size group estimates are often

very different from the estimates made if their data were

modeled with a simpler single-level model. A group with

few data would be dominated by the global-average-

derived prior and informed by the greater precision of

the global-average-derived prior relative to the lower pre-

cision of the small-sample-size group. A hierarchical

model estimate would be closer to the global, across-

group average, and more precise than a single small-sam-

ple-size group model estimate. Groups not present in a

data set at all operate at the extreme of low sample size.

Our work empirically tests the effect of empirical data-

derived priors on model accuracy for the first time. Add-

ing prior information increased the precision of our esti-

mates without systematically biasing model estimates.

When priors are appropriately formulated, they should

not introduce bias and will increase precision. Here, we

have shown the gain in precision possible by recognizing

the general link between growth and mortality. Alhough,

on average, accuracy was neither greater nor less for the

models with empirical data-derived priors, in some cases,

we identified a bias introduced by the prior because the

information used to form the prior was atypical. Our

findings contribute to a motivation for the use of
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Bayesian methods for ecology. This work provides power-

ful incentive to use empirical data-derived priors in mod-

els for ecology by overcoming a perception that priors

could lead to systematic biases.

Acknowledgments

We thank Dr Richard Condit, Dr Andrew Robinson, Dr

Robert O’Hara, Dr Rod Fensham, and anonymous

reviewers for their helpful comments on earlier versions

of the manuscript.

Conflict of Interest

None declared.

References

Baker, P.J., S. Bunyavejchewin, C.D. Oliver, and P.S. Ashton.

2005. Disturbance history and historical stand dynamics of a

seasonal tropical forest in western Thailand. Ecol. Monogr.

75:317–343.

Benrey, B. 1997. The slow-growth-high-mortality hypothesis: a

test using the cabbage butterfly. Ecology 78:987–999.

Bolker, B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R.

Poulsen, M.H.H. Stevens, et al. 2009. Generalized linear

mixed models: a practical guide for ecology and evolution.

Trends Ecol. Evol. 24:127–135.

Bunyavejchewin, S., J. Lafrankie, P. Baker, S. Davies, and P.

Ashton. 2009. Forest trees of Huai Kha Kaeng Wildlife

Sanctury, Thailand: data from the 50-hectare forest

dynamics plot. National Parks, Wildlife and Plant

Conservartion Department, Thailand, Bangkok.

Choy, S., R. O’Leary, and K. Mengersen. 2009. Elicitation by

design in ecology: using expert opinion to inform priors for

Bayesian statistical models. Ecology 90:265–277.

Clark, J.S. 2005. Why environmental scientists are becoming

Bayesians. Ecol. Lett. 8:2–14.

Condit, R., S.P. Hubbell, and R.B. Foster. 1995. Mortality rates

of 205 neotropical tree and shrub species and the impact of

a severe drought. Ecol. Monogr. 65:419–439.

Dennis, B. 1996. Discussion: should ecologists become

Bayesians? Ecol. Appl. 6:1095–1103.

Dupuis, J., and J. Joachim. 2006. Bayesian estimation of

species richness from quadrat sampling data in the presence

of prior information. Biometrics 62:706–712.

Gelman, A. 2006. Prior distributions for variance parameters

in hierarchical models. Bayesian Anal. 1:515–533.

Gelman, A., and J. Hill. 2007. Data analysis using regression

and multilevel/hierarchical models, Analytical methods for

social research. Cambridge University Press, New York.

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin. 2004.

Bayesian data analysis, Texts in stastical science. Chapman;

Hall/CRC, Boca Raton, FL.

Gelman, A., A. Jakulin, and M. Grazia. 2008. A weakly

informative default prior distribution for logistic and other

regression models. Ann. Appl. Stat. 2:1360–1383.

K�ery, M. 2010. Introduction to WinBUGS for ecologists.

Academic Press, Amsterdam.

Lele, S., and B. Dennis. 2009. Bayesian methods for

hierarchical models: are ecologists making a Faustian

bargain? Ecol. Appl. 19:581–584.

McCarthy, M.A. 2007. Bayesian methods for ecology.

Cambridge University Press, Cambridge.

McCarthy, M.A., and P. Masters. 2005. Profiting from prior

information in Bayesian analyses of ecological data. J. Appl.

Ecol. 42:1012–1019.

McCarthy, M.A., R. Citroen, and S.C. McCall. 2008.

Allometric scaling and Bayesian priors for annual survival of

birds and mammals. Am. Nat. 172:216–222.

McCoy, M., and J.F. Gillooly. 2008. Predicting natural

mortality rates of plants and animals. Ecol. Lett. 11:1–7.

Morris, W.K., A. Peter, and M.A.M. Vesk. 2013. Profiting

from pilot studies: analysing mortality using bayesian

models with informative priors. Basic Appl. Ecol. 14:81–89.

Plummer, M. 2003. JAGS: A program for analysis of Bayesian

graphical models using Gibbs sampling, pages 20–22. In

Proceedings of the 3rd International Workshop on

Distributed Statistical Computing, March, International

Workshop on Distributed Statistical Computing.

Poorter, L., S.J. Wright, H. Paz, D. Ackerly, R. Condit, G.

Ibarra-Manr�ıquez, et al. 2008. Are functional traits good

predictors of demographic rates? Evidence from five

neotropical forests. Ecology 89:1908–1920.

R Development Core Team 2010. R: a language and

environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

Rykiel, E. 1996. Testing ecological models: the meaning of

validation. Ecol. Model. 90:229–244.

Schmidt, J.H., J.A. Walker, M.S. Lindberg, D.S. Johnson, and

S.E. Stephens. 2010. A general Bayesian hierarchical model

for estimating survival of nests and young. Auk 127:379–

386.

Su, Y.-S., and M. Yajima. 2011. R2jags: a package for running

JAGS from R. http://CRAN.R-project.org/package=R2jags

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1. Extended methods and results.

Appendix S2. JAGS code for multi-species and single-spe-

cies models.

108 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Testing informative priors’ effect W. K. Morris et al.

http://CRAN.R-project.org/package=R2jags

