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Abstract

Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the 

anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, 

but multiple mechanisms can be used to drive in vitro motions, which may influence 

biomechanical outcomes. The objective of this review was to examine, summarize, and compare 

biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of 

knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, 

and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes 

from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant 

studies were articles published in English that reported on whole-ligament anterior cruciate 

ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric 

knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -
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reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences 

between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our 

inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact 

on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of 

freedom contribute to ligament loading during in vitro simulations is technique-dependent. 

Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-

manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that 

the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament 

reconstructions was dependent on loading condition and degree of freedom examined.

Keywords

anterior cruciate ligament reconstruction; knee kinetics and kinematics; knee injury prevention; 
joint motion simulation; robotic manipulation of joints; knee ligament mechanics

1. INTRODUCTION

Worldwide it is estimated that over 2 million anterior cruciate ligament (ACL) injuries occur 

annually.[1] These injuries are devastating to athletic careers and expensive to repair and 

rehabilitate, as conservative estimates place the cost of an ACL reconstruction (ACLR) 

surgery at $17,000 plus rehabilitation.[2] These surgeries are known to exhibit short-term 

promise in the restoration of knee function as up to 86% percent of ACLR patients have a 

negative pivot-shift score three years post-operative.[3] However, long-term outcomes are 

less desirable as up to 90% of ACLR patients continue to develop early onset osteoarthritis 

and knee degeneration within 20 years post-surgery.[4]

In order to optimize preventative and reparative strategies for injured ACLs, it is essential to 

establish the underlying mechanics that contribute to excessive ligament loads and lead to 

failure. Approximately 65% of ACL ruptures occur in noncontact situations, which indicate 

that the injuries are likely influenced by poor neuromuscular control and mechanics, rather 

than an external impact force delivered directly to the knee joint.[5] Therefore, prophylactic 

training protocols are effective in the enhancement of neuromuscular control and reduction 

of the incidence of ACL injuries.[6] In order to design effective training protocols, the 

biomechanical contributors to ACL forces and strain must be identified. An expanse of in 

vivo research has been directed at the mechanisms associated with ACL failure and has 

identified that factors such as excessive knee valgus, asymmetry, and poor trunk position are 

associated with increased injury risk.[7–9] Despite their contributions, in vivo studies are 

limited in that direct, invasive measurements of ACL mechanics are unethical to perform on 

living subjects and the presence of sensors would interrupt native function.

Unlike in vivo investigations, during in vitro studies investigators can apply invasive 

techniques that directly evaluate ACL mechanics relative to loads and stresses. In vitro 

studies have been used to reveal the relative contributions of anterior tibial force (ATF) 

force, [10] resistance to internal tibial torsion (ITT), [11] and muscular contributions to ACL 

strain.[12] Though valuable, many of these in vitro investigations have been used to 

examine maximal, uniaxial loading, rather than complex multi-planar scenarios that are 
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likely more physiologic. Functional tissue engineering principles indicate that the evaluation 

of ligament biomechanics within kinematic ranges that mimic in vivo activity will likely 

provide greater clinical relevance than information obtained from non-physiologic 

methodologies.[13] Over the past 20 years, investigators have focused on in vitro 

approaches with methods designed to simulate in vivo loading conditions from daily 

activities or clinical settings.[14–22] Fundamental differences exist amongst these in vitro 

methodologies as some protocols drive motion with robotic manipulators that apply constant 

force and actively control limb position, while other protocols drive motion with a singular 

impulse force and have restraints passively regulate limb position. Though all in vitro 

methods aim to correlate with in vivo physiologic conditions, variation in the mechanisms 

used to drive motion simulations could lead to disparities in biomechanical outcomes. It is 

important to synthesize in vitro data gathered from these varied methods in order to derive 

optimal ACL injury prevention and treatment recommendations for the clinical environment.

In vitro investigations are particularly conducive to ACLR evaluation as investigators can 

injure and repair a specimen to make direct biomechanical comparisons between the native 

and grafted ligaments using repeated measures. ACLR is the primary method used to treat 

athletes intending to return to sport after ACL injury.[23, 24] Functionally, the ACL is the 

primary resistor to anterior tibial translation (ATT) and patients exhibit anterior-posterior 

instability at the knee following injury.[10, 25] Surgeons focus on the restoration of this 

instability during ACLR; however, up to 25% of ACLR patients suffer secondary injuries 

within two years of returning to sport.[26] This rate far exceeds that of primary injury and 

may indicate that knee mechanics are altered following repair.[2, 5, 24] In vitro methods can 

be used to identify altered intra-articular mechanics between native and reconstructed ACLs 

in order to help explain this disparity in injury incidence.

The objective of this systematic review and meta-analysis was to synthesize the current data 

and compare robotic and mechanical methods of in vitro knee simulation. Specifically, we 

aimed to investigate the functional behavior of the ACL and ACLR and to analyze 

differences observed between methodologies. It was hypothesized that the different control 

mechanisms applied during robotically-driven and mechanical-impact knee simulations 

would elicit variation in mechanical responses during similar simulated tasks. It was further 

hypothesized that ACLRs will restore native ATT, but will fail to restore the additional 

kinetic and kinematic responses relative to the intact ligament.

2. METHODS

2.1 Systematic Review

A literature search related to methods of knee simulation was performed in the PubMed/

MEDLINE, SPORTDiscus, and Scopus databases in May 2013. The systematic review 

focus was to identify research articles published within the last decade (2004–2013) that 

investigated in vitro ACL biomechanics through knee motion simulation. Search terms were 

limited to ‘anterior cruciate ligament’ OR ‘ACL’ and was further limited with ‘robot’, 

‘robotic’, ‘knee simulator’, OR ‘knee simulation.’ Additional articles were added through 

cross-referencing the identified studies. As this review focused on functional biomechanics, 

simulations were limited to physiologic (passive flexion, gait, and jump landing) or clinical 
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(Lachman’s and pivot shift test) knee motions. Non-physiologic simulations, such as 

uniaxial force or torque loading to joint failure, were excluded. Knee conditions included in 

this review were ACL-intact, ACLD, ACLR, and ACL-only. Inclusion was also limited to 

whole-ligament biomechanics; thus, any studies that investigated specimens with 

arthroplasty or individual bundle mechanics were excluded. In order to focus the review to 

ACL biomechanical contributions in a normal knee, data collected after the selective 

alteration of additional passive restraint structures within the knee (including but not limited 

to tibial osteotomy, posterior cruciate ligament resection, or meniscus resection) were 

excluded. In vivo simulations, simulations on joints other than the knee, computer models, 

computational models, papers without kinematic or kinetic dependent variables, 

methodology papers, review papers, and non-English articles were also excluded. The initial 

search compiled 621 published papers, which were then reduced to 77 papers as documented 

in Figure 1. The included papers were divided into 3 classifications of robotic simulation 

(passive flexion, weight-bearing flexion, and kinematic reproduction) and one classification 

of mechanical-impact simulation.

2.2 Meta-analysis

Following review, the passive flexion method of robotic simulation was selected for further 

meta-analysis due to its prevalence and congruity between studies. To reduce confounding 

factors, force applications were limited to 134 N ATF in the simulated Lachman’s test and 

10 N*m abduction torque combined with 4–5 N*m internal rotation torque in the simulated 

pivot-shift test. Unless otherwise noted, literature that did not adhere to the prescribed 

loading protocols was excluded from the meta-analysis. Data and standard deviations from 

the literature were digitized at predetermined intervals (0°, 15°, 30°, 45°, 60°, 90°, 120° of 

flexion) and an average, weighted relative to the number of specimens in each qualified 

study, was determined. Standard deviations were used to calculate corresponding standard 

error of the means at each data point. This was repeated for the ACL-intact, ACLD, and 

ACLR conditions and the results were plotted (Figure 2 & 3). Two-sample t-tests (α = 0.05) 

determined the presence of statistical differences between each condition at each interval. 

ATT, internal tibial rotation (ITR), and ligament forces were tracked due to their 

consistently reported outcomes in passive flexion simulations during a Lachman’s 

assessment (Figure 1) and pivot-shift assessment (Figure 2). This method of analysis was 

then adapted to assess differences in abduction loading magnitude during pivot-shift tests 

(Figure 4), simulated muscle forces during Lachman’s tests (Figure 5), and ACL condition 

under simulated quadriceps force during Lachman’s tests (Figure 6).

3. RESULTS

3.1 Methods of Robotic Simulation

In one method of robotic simulation, investigators have used a highly accurate and precise 

six-degree-of-freedom (6-DOF) robotic manipulator in conjunction with a universal force 

sensor (UFS) to articulate a specimen through passive flexion with minimal loading.[15, 16] 

Specimens were resected of soft tissue outside the knee joint, cemented into rigid fixtures, 

and affixed to the robotic end effector (tibia) and a static frame (femur). Local coordinate 

frames were identified by anatomical landmarks and were digitized relative to the robot’s 
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global position, which allowed for tibial articulation relative to the femur. Flexion was 

recreated in 1.0° increments while the robotic/UFS zeroed loads at each position. 

Simulations of clinical Lachman’s test, through ATF, and pivot-shift tests, through 

combined abduction and internal torque, were executed at predetermined intervals. The 

initial path of passive flexion was recorded by the robot, which was able to reproduce it with 

high precision. Thus, the same motion was applied to the same specimen for the ACL-intact, 

ACL-deficient (ACLD), and ACLR conditions, which allowed superposition to determine 

relative force contributions.[17] Since its inception at the University of Pittsburgh, this 

methodology has been adopted at multiple research facilities including Harvard Medical 

Center, Wilhelms University, Kogakuin University, the Hospital for Special Surgery, and 

the United States Naval Academy.[27–32]

An upright knee simulator (UKS) was developed at the University of Tubingen to simulate 

knee motion for weight-bearing flexion conditions.[14] Similar to the passive flexion 

methodology, this device was used to simulate flexion at the knee, provide external tibial 

loads with a robotic/UFS, and calculate ACL forces through superposition. Unlike passive 

flexion, the weight-bearing flexion path was not controlled by the robotic/UFS. Rather, the 

proximal end of the potted femur was attached to a hip assembly with a vertically-oriented 

linear actuator and two rotational DOFs, while the potted tibia was attached to a vertically 

static ankle assembly that allowed for three rotational DOFs. Starting at 15°, the hip 

assembly actuator drove each specimen into knee flexion at a rate of 1° /second until 90° of 

flexion was reached. Linear actuators, attached to the quadriceps and hamstrings tendons via 

tension wires, were used to simulate up to 1000 N muscle forces to create constant weight-

bearing forces of between 0–250 N at the ankle.[14, 18, 33] Similarly, investigators at the 

University of Waterloo developed a weight-bearing flexion simulator based on the vertical 

motion of a hip assembly and in vivo muscle forces.[18] This dynamic knee simulator 

(DKS) did not incorporate a robotic/UFS and was used to simulate flexion via regulated 

descent of its hip assembly, while the remaining DOFs were dictated by applied muscle 

forces.

Unlike the previous methods of robotic knee simulation, which simulated flexion motions 

relative to the geometry of each specimen, researchers at the University of Calgary 

developed a method of reproducing in vivo recorded kinematics.[19] Rigid markers were 

directly implanted on bony structures to record in vivo kinematics from ovine treadmill gait. 

The recorded limb was sacrificed, resected of soft tissues outside the joint capsule, and 

potted into a 6-DOF parallel robot. The limb was digitized relative to the robot using global, 

tibial, and femoral coordinate frames. The in vivo gait kinematics were then used as 

positional input for the robot to articulate the tibia about the femoral coordinate system. This 

method was adapted to a serial robotic/UFS manipulator by the University of Cincinnati.[20] 

Further adaptations were made to apply the mean ovine motion, as well as in vivo recorded 

human gait kinematics, onto cadaveric specimens.[34] Superposition again allowed 

investigators to quantify the biomechanical contributions of the ACL during kinematic-

derived simulations.

Mechanical-impact simulations of knee motion have been based on driving forces equivalent 

in magnitude to in vivo ground reaction forces through in vitro specimens and allowing each 
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specimen to determine its own path of articulation. Investigators designed the jump-landing 

simulator to deliver a drop-weight impact force through the tibia of a lower extremity 

specimen resected of all soft tissues outside the knee joint capsule.[21] The proximal end of 

the femur and distal end of the tibia were potted into assemblies that simulated the hip and 

ankle joints as sagittal plane hinges. Limbs were flexed 10–40° prior to impact. Actuator 

cables were drilled into the approximate quadriceps and hamstrings insertion sites on the 

patella and tibia and simulated muscle forces that stabilized the joint during impact. Impact 

forces were designed to fit within the magnitude (2–4 * bodyweight) and rise time (~0.1 sec) 

of in vivo ground reaction forces during landing. Similarly, Withrow and colleagues 

developed the knee testing apparatus to simulate jump landings.[22] Specimens were 

resected of soft tissue down to the joint capsule and muscle tendons then potted at the 

proximal femur and distal tibia. These fixtures were adjustable in order to manipulate the 

rotational alignment of the knee in both the sagittal (15–25° flexion) and frontal planes (0–

15° abduction/adduction) prior to impact testing. The tibial assembly was locked to prevent 

translational movement during impact. Cables were connected between the quadriceps, 

hamstrings, and gastrocnemius tendons and independent tensioning mechanisms to mimic in 

vivo pre-landing muscle activations. Specimens were oriented vertically and impact was 

applied to the proximal end of the femur. Later iterations of the knee testing apparatus 

incorporated a torsional transformer that converted some of the vertical impact force into 

rotational torque, which simulated pivot landings.[35]

3.2 Passive Flexion

In response to 134 N ATF during passive flexion, ACLR knees were found to reduce mean 

ATT relative to ACLD, but fail to match the intact ACLs (Figure 2).[28, 31, 36–61] 

However, under combined torsional loading, the mean ATT for ACLRs relative to intact 

ACLs increased by 1.3 mm at 15° flexion (Figure 3).[28, 31, 36–61] During ATF, mean ITR 

was restricted in ACLRs compared to intact ACLs. However, under combined torsional 

loads, mean ITR between ACLRs and intact ACLs increased by 2.8° at full extension. No 

ITR differences (range 35°–41°) were expressed in either the intact, reconstructed or 

deficient ACL when 4 N*m of isolated ITT were simulated.[62] However, a 3 N*m increase 

in abduction torque during pivot-shift loading was responsible for increasing ensemble mean 

ATT and ensemble mean in situ ACL force in low flexion angles (Figure 4).[28, 36, 38, 42, 

44–49, 55, 57, 58, 60, 63–66] These isolated abduction/adduction torques produced greater 

loads on intact ACLs (peak 41 N) than internal/external torques (peak 34 N).[32, 67] 

However, ATF increased in situ ACL force (peak 120 N) more than isolated abduction 

moments.[32, 68, 69] When under ATF or combined torsional loads at full extension, 

ACLRs were found to match the ligament forces seen in the intact ACLs. However, as the 

knee entered flexion, ligament force for the ACLRs was in excess of that in the intact ACL 

(Figure 2 & 3).

The application of a simulated 400 N quadriceps load to the intact knee induced ATT, ITR, 

and force on the ACL (Figure 5).[39, 41–44] On a knee flexed under 45°, the application of 

quadriceps loads created less ATT, greater ITR, and equivalent ligament forces relative to 

ATF. An applied hamstrings co-contraction of 200 N reduced ATT and ITR relative to 

isolated quadriceps values and created a net posterior tibial shift when knee flexion 
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exceeded 60°.[39] Abduction rotation and medial translation were consistently greater under 

isolated quadriceps loading than under ATF, whereas the application of a hamstrings co-

contraction also decreased the magnitude of valgus rotations.[40] Abduction knee rotation 

and medial translation under a quadriceps load were similar for an intact ACL and ACLR, 

but ACLD.[40, 44] The application of quadriceps load did not alter the relative relationships 

of ATT between the ACL-intact, ACLD, and ACLR knees, but did exhibit a relative 

reduction in ITR for the ACLD knee and ligament loading for the ACLR knee (Figure 6).

[7,9–12]

3.3 Weight-bearing Flexion

The application of weight-bearing to passive flexion simulations altered knee kinematics 

relative to zero load flexion simulations. The application of 200 N axial compressive force 

to passively flexed knees increased ATT.[36, 70] Axial compression also generated slightly 

greater ACL forces than did isolated valgus or isolated internal torque; however, these 

forces were lower than those produced by combined torsional loading.[32, 36, 69]

In static positions of lower flexion, the addition of 1*body weight increased ACL force 

(Table 1).[71] The addition of weight-bearing in the UKS increased ITR, valgus rotation, 

and medial, anterior, and proximal tibial translation compared with passive flexion.[72] 

When compared with weight-bearing flexion, the application of ATF increased peak ACL 

force, while the application of ITT did not affect ACL force relative to weight-bearing 

alone.[14] Inclusion of ITT did increase ITR in both intact and ACLD specimens.[14, 73] 

When compared to weight-bearing alone, the addition of ATF and ITT each slightly 

increased ATT throughout flexion in both the ACL and ACLD condition.[14, 73] ATT was 

increased from the ACL-intact to ACLD condition in weight-bearing, in weight-bearing 

with ATF, and in weight-bearing with ITT. No ITR differences existed between ACL and 

ACLD specimens under any weight-bearing conditions.[73] Peak ACL strain for DKS 

weight-bearing was 4.3% with a peak rate of 120% /sec.[18] Compared to ACLDs, ACLRs 

tested in the UKS had less ATT during weight-bearing, less ATT during weight-bearing plus 

ATF, and had no ITR change during weight-bearing plus ITT.[74]

3.4 Kinematic Simulation

Knee simulations driven by in vivo kinematics were used to identify that porcine and ovine 

stifle joints are ACL-dependent structures during the stance phase of gait as they sustained 

peak ACL loads of up to 400 N.[20, 75] The ACL-dependency of the ovine and porcine 

joints has been used to suggest that they may be applied as acceptable surrogate models to 

human cadavers for the evaluation of ACLR biomechanics.[76] Application of these animal 

models has allowed investigators to study graft healing following ACLR, an impossibility in 

cadaveric models. Following hoof-strike, the mean ovine ACL load increased from 0–45° 

knee flexion and partial resection of the ACL decreased the ATF required to produce 

equivalent levels of ATT.[77] Compared to an intact specimen, investigators found that 

ACLD significantly reduced hoof-strike force in the anterior (44.3 vs. −5.9 N), medial (19.5 

vs. −0.3 N), and compressive (70.8 vs. 33.6 N) directions and peak moments in flexion (9.3 

vs. 0.6 N*m) and abduction (3.5 vs. 0.2 N*m) rotation during gait. Peak internal rotation 

moment during gait experienced no change between ACL-intact and ACLD knees.[76] The 
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addition of up to 4 mm of ATT during simulated gait in the porcine knee was found to 

increase peak anterior knee force in a linear fashion (~40 N /2 mm).[20] Force response to 

tibial displacement and rotation during cadaveric gait simulations was used to indicate that 

the ACL was a primary restraint to ATT (peak force 135 N) and a secondary restraint to 

medial tibial translation (peak force 47.8 N), knee flexion rotation (peak torque 12.4 N*m), 

and knee abduction/adduction rotation (peak torque 18.1 N*m).[34] Rotational perturbations 

of −0.5 to 0.5° applied to the initial position of cadaveric specimens had no effect on ACL-

intact or ACL-only knee kinetics during gait. Conversely, anterior and compressive 

perturbations moving from −0.5 mm to 0.5 mm increased forces in the anterior, medial, and 

compressive directions.[78] In the porcine model, a bone-patellar-tendon-bone ACLR was 

able to restore the anterior forces observed in the intact ACL, but unable to match its rate of 

force loss. Relative force contributions during stance phase of gait were not consistent 

between the intact ACL and ACLR. The intact ACL was the primary contributor to anterior 

force, medial/lateral force, and flexion/extension moments and secondary contributor to 

compressive force and abduction/adduction moments, while the bone-patellar-tendon-bone 

ACLR was the primary contributor to all forces and moments except internal/external 

rotation.[76] The ACLR force contributions relative to ACL-intact and ACLD conditions 

are summarized in Table 2.

3.5 Mechanical Simulation

Investigators used the jump-landing simulator to create ACL ruptures through impulse 

forces with limited quadriceps tensioning (Table 3).[21] However, they could not rupture the 

ACL in any loading scenario where large quadriceps loads were applied. A positive 

correlation was identified between quadriceps pretension and static ACL strain, while a 

negative correlation was found between quadriceps pretension and the dynamic ACL strain 

that leads to rupture.[21, 79] Conversely, the knee testing apparatus was used to demonstrate 

that ACL strain directly correlated with increased quadriceps tension force.[22, 80] Further, 

the application of hamstrings tension in this apparatus was used to limit ACL strain by up to 

70%.[81] Additional investigations performed with the knee testing apparatus were used to 

illustrate that ACL strain was not dependent on impact force, but did correspond with valgus 

knee rotation.[22, 80] Once a torsional transformer was used to incorporate ITT, the peak 

relative ACL strain and strain rate were increased.[82] The application of ITT was also 

found to increase ITR and ATT in both ACL-intact and ACLD specimens.[35] The 

combined application of ITT with varus or valgus knee torque was observed to create the 

highest peak relative ACL strain output from the knee testing apparatus.[83] Overall, it was 

reported that the ACL was a secondary contributor to ITT resistance and accounted for 

approximately 13% of ITT resistance during landing simulations.[35]

4. DISCUSSION

In vitro simulations of the knee have been used to evaluate how kinematics and kinetics 

contribute to ACL loading and injuries. The purpose of this review and meta-analysis was to 

compare robotic and mechanical methods of in vitro knee simulation in order to investigate 

the functional behavior of the ACL and ACLR and to analyze differences observed between 

these methodologies.
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The ACL is the primary restraint to ATT in the tibiofemoral joint, resisting up to 87% of the 

ATF.[10] ATF was the most influential loading condition in all simulation methodologies. 

This behavior was evidenced in the ensemble mean ATT and ligament force data compiled 

from passive flexion (Figure 2). When the intact ACL was resected, the largest kinematic 

change occurred in ATT during both the Lachman’s and pivot-shift loading conditions 

(Figure 2 and 3). Also, the peak ligament forces that were generated from ATF and isolated 

quadriceps simulation were greater than the force from combined abduction and internal 

torsional loading. Throughout kinematic gait simulations, the largest force drops between 

the ACL and ACLD conditions occurred in the anterior direction and averaged above 40 N.

[76] Further, from 0–30° flexion, the application of quadriceps force, which generates ATF 

due to its tendon insertion on the proximal anterior tibia, to passive flexion simulations 

increased ATT and equivalent ligament forces to those produced by ATF (Figure 5). These 

behaviors were a confirmation that robotic simulations maintained the integrity of the ACL 

as the primary restraint to ATT and ATF throughout motion. However, within mechanical 

impact simulations there was conflict over how ACL strain correlated with quadriceps force. 

The knee testing apparatus maintained the traditional convention of a direct relationship 

between increased quadriceps force and increased ACL strain, while the jump-landing 

simulator indicated an inverse relationship between quadriceps force and dynamic ACL 

strain.[21, 22, 79, 80] The jump-landing simulator claimed that the compressive forces 

generated by simulated quadriceps contraction protected the ACL during motion more than 

the generated ATF strained the ligament.[55,58] This finding is in direct contrast with the 

passive flexion and weight-bearing flexion techniques that reported combined ATF and axial 

compressive loads increased ACL forces relative to either isolated loading condition.[14, 36, 

70] The quadriceps forces that were applied in both impact testing devices and the weight-

bearing flexion simulations were in excess of 1000 N; therefore, dissimilarities between 

methods did not arise from a disparity in muscle force magnitude.[14, 18, 21, 22, 33, 80, 81]

Findings from robotic simulations demonstrated that abduction torque and rotation at the 

knee had greater impact on ACL forces and kinematics than internal torque. A slight 

increase in abduction torque throughout passive flexion increased ATT and in situ ACL 

force (Figure 4), which exemplified its impact on ACL mechanics. Isolated abduction torque 

produced peak ACL forces that were ~20% greater than isolated internal torque.[32] The 

application of weight-bearing altered ITR angle more than any other kinematic variable with 

8 times greater change than was observed in knee abduction under the same loads.[72] 

These magnitude differences indicate that knee abduction was more influential to ACL 

mechanics than internal rotation and are congruent with kinematic simulations that depicted 

the ACL was a secondary restraint to abduction torque during gait.[76] Hence, significant 

knee abduction torque, but not ITT, differences were observed between ACL-intact and 

ACLD specimens.[76] During weight-bearing flexion, ITT did not increase ACL force 

throughout flexion.[14] A lack of mechanical resistance to ITR was echoed in passive 

flexion simulations as ACLD did not increase ITR during weight-bearing and isolated ITT 

produced no ITR differences between ACL and ACLD specimens.[62, 73] If the ACL were 

a functional restraint to ITT, then the intact ligament should have restricted the observed 

ITR relative to the ACLD condition.
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Mechanical impact testing exhibited different ACL mechanics in response to rotational 

stimuli than robotic simulation methods. Though the knee testing apparatus showed that 

additional knee valgus at the time of impact corresponds with increased ACL strain, it also 

reported that isolated ITT had a potentially greater influence on increasing ACL strain 

during landing.[22, 80] The increase in ACL strain from additional valgus rotation at impact 

collaborates both with results from robotic simulations that indicate abduction is a 

significant antagonist to ACL forces and with literature that reported an 8° increase in knee 

abduction angle at initial contact of landing is associated with increased ACL injury risk.

[84] However, the effect of ITT on ACL strain during mechanical simulation contrasts the 

findings of robotic simulations. Whereas ACL contributions to resist ITT could not be 

quantified in kinematic gait simulations,[76] the knee testing apparatus found the ACL to be 

a secondary resistor to ITT, much as it is to knee abduction.[35] Peak ITR with respect to 

isolated ITT in the knee testing apparatus was less than the peak ITR for passive flexion, yet 

had a more profound impact on ACL mechanics.[32]

All methods of simulation demonstrated that combined loading with coupled abduction and 

ITT had greater impact on ligament mechanics than either isolated condition. In mechanical 

testing, ACL strain was ~2% larger under combined loads than in either isolated condition.

[22, 80, 82, 83] In robotic testing, ACL forces from coupled loading were ~40 N larger than 

isolated abduction torque and ~50 N larger than isolated ITT at full extension.[32] These 

mechanical behaviors are in agreement with literature that supports valgus collapse at the 

knee, defined as “the outward angulation of the distal segment of a bone or joint” due to “a 

pure abduction motion of the distal tibia relative to the femur or from transverse plane knee 

rotation motions”, [85] to be a primary mechanism of ACL injury and injury risk prediction.

[84, 86] Therefore, though combined torsional loading had the greatest impact on ACL 

mechanics in all simulation methods, mechanical differences that were produced by isolated 

torques and quadriceps forces were in support of the primary hypothesis that the different 

control mechanisms applied during robotically-driven and mechanical-impact knee 

simulations would elicit variation in mechanical responses during similar simulated tasks.

Some of the biomechanical dissimilarities between robotic simulation and mechanical 

impact may have arisen from structural and motion-constraint limitations within each testing 

apparatus. Variability is naturally associated with human movement cycles as even passive 

flexion articulations of the knee exhibit pathway variance.[87, 88] In robotic simulations the 

natural variability associated with human movement cycles is excluded by the high-

precision of robotic manipulators, which predicates that structures are being abnormally 

loaded through constant and repetitive force application. Unlike robotic simulations, where 

limb positions were dictated by either in vivo recorded kinematics or clinical exam 

procedures, motion pathways in mechanical impact simulations were not preset.[21, 22, 35, 

79–83] Instead, specimens uniquely reacted to each force impulse while pre-tensioned 

muscles and artificial hip and ankle joints constrained movement. However, during in vivo 

motion, individual muscle force contributions are in flux throughout a landing as subjects 

adapt to changes in geometry and ground reaction forces.[89, 90] Conversely, muscle forces 

within the mechanical apparatus were constrained to either a constant level or lengthening 

determined by bone position.[21, 22, 35, 79–83] The inability to match the dynamic nature 
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of in vivo structures implies that mechanical simulation constraints may have been 

physiologically inaccurate. This concern of non-physiologic response was augmented by 

data that indicated peak knee flexion range of motion was ~6° during mechanical 

simulation, [22, 83] whereas in vivo data from comparable-force landings has indicated that 

peak flexion range of motion exceeds 60°.[91] An order of magnitude difference in knee 

flexion angle suggests that the mechanical testing apparatus enacted potentially non-

physiologic pathways of force distribution as compared to in vivo landings. The genesis of 

these knee flexion differences may be that mechanical-impact simulations deliver singular 

impulse loads to each specimen; whereas, during in vivo landings, ground reaction forces 

propagate through the leg for the duration of stance phase. The instantaneous versus 

continuous application of force could greatly influence knee biomechanics. Also, for a 

methodology dependent on tissue structures to constrain motion pathways, much of the 

natural anatomy was resected including the iliotibial band, muscle mass, skin, and the ankle 

and hip joints.[21, 22, 35, 79–83] Tissues were also resected in robotic simulations; 

however, in those models, the motion was prerecorded and constrained by the manipulator, 

not by soft-tissues within the model.[14–19] In robotic simulations, positional control 

provided by the robotic manipulator represented the muscles and other resected tissues that 

would have constrained in vivo joint motion.

Inconsistent restoration of ACL-intact kinematics across a wide spectrum of simulated, 

functional loading conditions partially rejected the hypothesis that ACLRs would restore 

ATT and ATF observed in the intact ACL, but fail to restore kinetics and kinematics in the 

other degrees of freedom. Though ATT increased at 15° flexion, ACLRs were able to 

restore ensemble mean ATT values to ACL-intact levels at 0°, 30°, 60°, and 90° of passive 

flexion under combined torsional loading (Figure 3). However, under ATF, ACLRs reduced 

ATT relative to the ACLD condition, but did not restore ATT to the ACL-intact condition 

(Figure 2). Under constant quadriceps loading, ACLRs produced significantly lower 

ligament forces and greater ATT when compared to ACL-intact knees at flexion below 60° 

(Figure 5). Thus, the hypothesis was supported under combined torsional loading, but 

rejected under ATF loading. Mean ITR following ACLR was comparable to intact 

kinematics during combined torsional loading, but over constrained during ATF and 

quadriceps loading (Figures 2, 3, and 6). This again provided mixed support of the 

hypothesis based on the loading condition. Over-constrained knee kinematics were also 

present in simulated gait as ACLR grafts became primary loading restraints in two 

additional DOFs and exhibited larger medial forces compared to the intact ACL.[76] In the 

remaining 5-DOFs, ACLRs exhibited an inconsistent ability to restore ACL-intact 

mechanics throughout a gait cycle. Compared to the intact knee, bone-patellar-tendon-bone 

ACL grafts restored anterior force at heel strike and mid-stance, but expressed greater force 

at toe-off; matched the medial and compressive forces at mid-stance, but exhibited greater 

forces at heel strike and toe-off; restored the flexion and internal rotation moments of the 

intact knee at all points during gait; and only restored abduction moments at mid-stance. 

With the exception of internal rotation, forces from bone-patellar-tendon-bone ACLRs were 

significantly increased in all DOFs at all points in the gait cycle relative to the ACLD 

condition.[76] Again, the inconsistency of these graft loading patterns both supported and 

rejected the hypothesis. It has been well documented that ACL injuries leads to early onset 
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osteoarthritis, [4, 92] and ACLRs do not appear to greatly improve the long term prospectus 

for knee injuries as 75% of athletes still complain of knee degradation affecting their quality 

of life less than 15 years post surgery.[92, 93] It is possible that the inconsistent ability of 

the ACLR to restore intact kinematics across multiple loading scenarios may alter the 

normal mechanical conditions across the articulating surfaces of the knee and lead to joint 

degeneration.

Limitations to this systematic review include that it did not account for confounding 

variables that can impact the mechanical integrity of ACLRs. Variability in attributes such 

as anatomic versus non-anatomic tunnel placement, [94, 95] double versus single bundle 

grafts, [44] graft materials, [76] number of tunnels, [28] graft fixation method, [46] graft 

tension, [29] and graft length[96] has been shown to alter the mechanical response of an 

ACLR and could alter the ensemble mean. Potentially confounding factors within ACLR 

grafts were not accounted for in the exclusionary criteria because opinions on optimal 

surgical technique varies between orthopaedic surgeons, which leads to graft variability in 

ACLR populations that should not be artificially controlled in a meta-analysis. An additional 

limitation to the evaluation of ACLRs in in vitro specimens is that the grafts are being 

evaluated for integrity at the time of surgery. In vivo, grafts are provided time to heal, 

experience bony ingrowth, and potentially restructure fiber orientation relative to 

mechanical environment prior to return to sport. Due to the nature of in vitro specimens, 

natural processes cannot be reproduced, which may alter graft response to mechanical 

stimuli.[96]

For passive flexion simulations, this investigation was limited to Lachman’s tests of 134 N 

ATF, which corresponds to a 30-pound KT1000 test, and pivot-shift tests of 10 N*m valgus 

and 4–5 N*m internal torque. These loading magnitudes were restricted to constant values to 

improve comparability between results. Altered magnitudes in external loading could have 

confounded or biased the ensemble averages through increased variability. However, 

biomechanical tendencies in investigations with different loading magnitudes were often 

similar as ACLD increased ATT relative to ACL-intact knees throughout flexion under each 

Lachman’s and pivot-shift loads;[32, 62, 64, 66, 69, 96–101] ACLR restored ATT relative 

to ACLD under Lachman’s loads, but not necessarily to the level of ACL-intact knees;[62, 

96, 99, 101] ACLR restored ITR relative to ACL-intact knees under rotational loads;[31, 41, 

62] and ACLR graft forces were not consistent with ACL-intact ligament forces.[63–65, 99, 

101] Therefore, normalized mechanical response of ACL, ACLD, and ACLR specimens 

generally remains constant across varied magnitudes of external loading, though absolute 

values may differ. Another limitation that was faced by this study was the definition of 

coordinate systems at the knee. The joint coordinate system, which was the system that was 

most commonly applied in the literature, does not match the anatomical axis of the joint. 

The use of different coordinate systems to analyze in vivo joint mechanics has been shown 

to alter the magnitude and rank order of joint kinetics.[102] Accordingly, it can be 

somewhat difficult to directly compare absolute magnitude results from investigations that 

employ separate coordinate systems.

Future studies should be used to explore the development of more dynamic motion pathways 

through robotically simulated motions. ACL failures are most commonly associated with the 
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jump-landing and side-step cutting activities in basketball and soccer, not gait or clinical 

motions presented in robotic simulations.[103, 104] A combination of rigorous motion 

activities, such as the landing impact simulated in mechanical testing, combined with the 

precision of robotic manipulation should produce a wealth of biomechanical data that could 

be utilized to design more efficacious ACL injury prevention protocols and ACLR graft 

constructs. However, robotic systems require 6-DOF kinematic input to reproduce a motion 

and, though they are relatively accurate rotationally, 3D motion capture systems introduce 

large errors in the translational DOFs due to skin artifacts.[105, 106] In order to 

appropriately simulate dynamic, in vivo activities, investigators will either need to capture 

motion with bone-based markers, as was done in the development of gait simulations, [19, 

34] or address the kinematic errors generated by skin-based markers.

5. CONCLUSIONS

Investigators have used in vitro simulations of knee motion to attribute ATT as the primary 

mechanical antagonist to the ACL and indicate that combined torsional loading has a greater 

biomechanical influence than uniaxial moments. Abduction rotation was found to have a 

greater mechanical influence in robotic simulations, while ITR may have had a greater 

influence during the mechanical-impact simulations reviewed in this study. Limitations were 

identified in both methodologies, but greater concerns were raised with the ability of impact 

simulations to accurately recreate physiologic motions and in vivo data currently better 

supports the behaviors observed during robotically-driven simulations. Robotic simulations 

have been used to discover that ACLRs constrain ACLD knees, but their ability to restore 

ACL-intact mechanics is dependent on the DOF observed and loading conditions applied.
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Figure 1. 
Flow chart of the literature review.
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Figure 2. 
Displays the overall mean ATT, ITR, and ligament force for the ACL-intact, ACLD, and 

ACLR conditions in response to a Lachman’s test simulated with 134 N applied ATF. A 134 

N stimulus was selected for clinical relevance as this value represents the force generated by 

30-pound test on a KT1000 device. (* indicates significant difference between ACL and 

ACLD, † between ACLD and ACLR, and # between ACL and ACLR; n = 29 studies) [28, 

31, 36–61]
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Figure 3. 
Displays the overall mean ATT, ITR, and ligament force for the ACL-intact, ACLD, and 

ACLR conditions in response to a Pivot-Shift test simulated with a combined 10 N*m 

abduction and 4–5 N*m internal torque. This loading condition was selected as it 

represented the most common Pivot-Shift scenario simulated in the non-weight-bearing 

passive flexion methodology. (* indicates significant difference between ACL and ACLD, † 

between ACLD and ACLR, and # between ACL and ACLR; n = 25 studies) [28, 31, 36–61]
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Figure 4. 
Displays the mean ATT and ligament force for the ACL-intact condition at two separate 

levels of Pivot-Shift loading. The applied torques were 10 N*m abduction with 5 N*m 

internal and 7 N*m abduction with 5 N*m internal. (* indicates a significant difference was 

present; n = 18 studies) [28, 36, 38, 42, 44–49, 55, 57, 58, 60, 63–66]
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Figure 5. 
Displays the mean ATT, ITR, and ligament force for the ACL-intact conditions in response 

to a simulated 134 N ATF, 400 N quadriceps load, and a combined 400 N quadriceps with 

200 N hamstrings load. These loads were simulated in the non-weight-bearing passive 

flexion methodology. (* indicates significant difference between ATF and quadriceps 

loading, † between ATF and combined loading, and # between quadriceps and combined 

loading; n = 5 studies) [39, 41–44]
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Figure 6. 
Displays the mean ATT, ITR, and ligament force throughout non-weight-bearing, passive 

flexion for the ACL-intact, ACLD, and ACLR condition in response to simulated muscle 

loads of 400 N quadriceps. (* indicates significant difference between ACL and ACLD, † 

between ACLD and ACLR, and # between ACL and ACLR; n = 5 studies) [7,9–12]
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Table 1

Summarization of findings from the literature where the UKS was used to apply weight-bearing flexion 

methods of knee simulation.[14, 71–74]

Reference Baseline Condition Test Condition Flexion Angle Outcome Change

Hosseini, et al. 2011 non-weight- bearing static 
flexion

1*bodyweight 15° +131.4 N ACL force

30° +106.7 N ACL force

45° +34.6 N ACL force

Muller, et al. 2009 non-weight- bearing passive 
flexion

100 N weight-bearing full range +16° ITR

+2° valgus rotation

< +3 mm medial, anterior, and 
proximal translation

Lo, et al. 2008 weight-bearing alone 100 N weight-bearing

 & 50 N ATF 15–55° +33 to 55 N ACL force

full range > +2 mm ATT

 & 5 N*m ITT 15–55° negligible ACL force

>20° > +9° ITR

full range > +2mm ATT

Wunschel, et al. 2010 ACL-intact specimens ACLD, 100 N weight-bearing 20–40° > +2 mm ATT

 & 50 N ATF 15–65° > +4 mm ATT

 & 5 N*m ITT 15–30° > +2 mm ATT

All conditions full range no ITR change

Wunschel, et al. 2011 ACL-intact specimens ACLD, 50 N weight-bearing full range +2.4 mm ATT

 & 50 N ATF +3.1 mm ATT

 & 5 N*m ITT no ITR change
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