
Chemical and protein structural basis for biological crosstalk
between PPARa and COX enzymes

Ann E. Cleves • Ajay N. Jain

Received: 4 September 2014 / Accepted: 15 November 2014 / Published online: 27 November 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We have previously validated a probabilistic

framework that combined computational approaches for

predicting the biological activities of small molecule drugs.

Molecule comparison methods included molecular struc-

tural similarity metrics and similarity computed from lex-

ical analysis of text in drug package inserts. Here we

present an analysis of novel drug/target predictions,

focusing on those that were not obvious based on known

pharmacological crosstalk. Considering those cases where

the predicted target was an enzyme with known 3D

structure allowed incorporation of information from

molecular docking and protein binding pocket similarity in

addition to ligand-based comparisons. Taken together, the

combination of orthogonal information sources led to

investigation of a surprising predicted relationship between

a transcription factor and an enzyme, specifically, PPARa
and the cyclooxygenase enzymes. These predictions were

confirmed by direct biochemical experiments which vali-

date the approach and show for the first time that PPARa
agonists are cyclooxygenase inhibitors.

Introduction

A number of interesting relationships between drugs and

novel targets have been uncovered by ligand-based

molecular similarity computations: methadone being

revealed as a muscarinic antagonist [1, 2], numerous

additional examples of ligand crosstalk among aminergic

GPCR receptor subtypes and between those receptors and

various transporters of amine-containing ligands [3, 4], and

examples that highlight less obvious relationships such as

the PARP inhibitor PJ34 specifically inhibiting Pim1

kinase [5]. In this work, we show how protein structural

information can be exploited to bolster predictions of

polypharmacology from ligand-based computations. The

approach combines data from molecular docking, protein

binding pocket similarity, 3D structural ligand similarity,

and ligand-similarity based on lexical analysis of drug

package inserts [6–9]. The combined computational

approach identified a clear chemical and structural linkage

between perixosome proliferator-activator receptor alpha

(PPARa) and the cyclooxygenase (COX) enzymes, which

share no sequence homology and have disparate in vivo

functions.

Given a particular query ligand (e.g. gemfibrozil, a

PPARa ligand), a prediction that it interacts with a new

target (the COX enzymes) is based on three types of

information: (1) chemical structures of ligands of the new

target, (2) textual patient package insert (PPI) information

for the query ligand and drugs that modulate the new tar-

get, and (3) multiple crystallographic structures of the

known target and of the putative new target. Figure 1

summarizes the computational approach, which combines

four methods, each of which measures molecular similarity

or molecular complementarity. Panel (a) depicts the

methods, which produce a set of scores (ligand structural

similarity and PPI similarity) or a single score (docking and

protein pocket similarity). Each score is transformed into a

p value by making use of an empirically computed back-

ground score distribution [8]. Panel (b) illustrates how the
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resulting set of p values are combined to produce a single

overall log-odds score.

Known drugs are the subject of investigation using the

framework we describe in this work. This is because drugs

have the richest annotation information available, includ-

ing both phenotypic and structural information. However,

we envision that the most important application of this

framework is in the pre-clinical evaluation of candidate

molecules. Clearly, the structure-based computations

shown in Fig. 1 can be made for many putative off-targets,

but the framework offers the ability to make use of a wide

variety of phenotypic information, such as the increasingly

common use of multi-target generalized assay panels.

Similarity computations between vectors of biological

assay data have been shown to be related to both structural

similarity and to target preference [15], and scores arising

Multi-structure docking 

3D similarity

a

b

Protein pocket similarity 

O O-

O

kx
k

x

k
kki pp

xx
nppnxxM ...
!!...

!),...,,,,...,( 1
1

1
1

),,(
),,(log * pnxM
pnxMS

(1)

(2)

0.0 0.01 0.05 0.1 0.2 0.5 1.0

1x 2x 3x 4x 5x 6x

PPI similarity

Gemfibrozil x Ketoprofen
PPI Sim: 0.308 (p = 0.019) 

Term (115 in Common) Weight

Exfoliative dermatitis 7.09

Photosensitivity 6.29

Renal failure 5.34

Abdominal pain 5.33

Colitis 5.25

Anemia 4.92

Dizziness 4.91

Rash 4.71

Bleeding 4.36

Gemfibrozil x Ketoprofen
3D Sim: 9.2 (p < 0.001) 

Pocket Similarity: PPAR vs. COX-2
Score: 0.60 (p = 0.0007) 

Gemfibrozil COX-2 docking
Score: 12.1 (p = 0.006) 

Fig. 1 Combined

computational approach for

predicting ligand/target

interactions. a Raw scores from

four methodologies (3D

chemical similarity, patient

package insert text comparison,

docking, and pocket similarity)

are converted to p values which

are then combined to yield a

single log-odds score. For 3D

and PPI similarities, the

pairwise similarities are

determined for a test molecule

against a set of ligands that

share a target. One

representative pair for each

method is shown. For docking,

the test molecule is docked into

multiple structures of the target

in question. For protein

similarity, the surfaces of 2

target protein pockets are

compared. b Computation of

log-odds score (S). We compute

the likelihood that the observed

set of p values is extreme using

the multinomial distribution.

The collective p values are

binned (top), and the bin counts

are computed. M is the

likelihood of having observed

such a set of p values, and M* is

the same computation using the

converse probabilities. The Log

Odds score S combines the two.

Positive S indicates that it is

more likely that the molecule in

question shares an activity with

the ligand set than it does not
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from such comparisons can be incorporated into the log-

odds framework. Linkages between a candidate molecule

and an undesirable target or phenotype may suggest

experimentally testable hypotheses that could avoid unde-

sirable off-target effects.

Here, we show how multiple computational methods

explain the mechanistic basis for the relationship between

PPARa and the COX enzymes. We present the first direct

experimental evidence that fibrate drugs whose anti-lipe-

mic effects are mediated through PPARa are also COX

inhibitors in vitro. This new finding suggests that the

known anti-inflammatory effects of fibrates are mediated,

at least in part, through direct inhibition of COX enzymes

in vivo. Taken together, the results demonstrate the utility

of a combined computational approach in identifying and

understanding unexpected interactions between drugs and

biological targets.

Results

We have shown that the combination of molecular struc-

tural similarity combined with similarity computed from

drug package inserts provides improved detection of true

ligand-target interactions over use of single-mode similar-

ity computations when controlling for false detection rates

[9]. The study focused on 602 drugs and 91 diverse bio-

logical targets, with the emphasis being on computational

validation of combining multiple ligand similarity methods

in a blind prediction test on the ChEMBL database. Here,

the focus is on including protein structural information and

prospective validation of predicted interactions.

Data mining putative drug/target relationships

The matrix of 602 drugs crossed against 91 biological

targets from our previous study contained only a small

fraction of cells with previously identified bona fide

interactions. For this work, the remaining potential drug/

target interactions were scored using the combination of

3D and PPI similarity (the most synergistic pair of simi-

larity computations). To avoid focusing on unsurprising

predictions such as the now well-documented target

crosstalk between the ligands of amine-type GPCRs, and to

increase the chances that protein structural information

would be available, we filtered our results to include only

those where the predicted target was an enzyme. Table 1

shows the ten top-ranked predictions, with log-odds scores

ranging from 21.1–11.6.

The top 8 results all had HIV reverse transcriptase (HIV-

RT) as the predicted target. The top 7 predictions were for

nucleotide analog drugs, most of which have viral or

human polymerases as the intended target (but the target of

gemcitabine is ribonucleotide reductase). A review of the

literature showed that four of the HIV-RT activities were

known (entecavir, ribavirin, gemcitabine, valacyclovir),

three had not been tested or published (clofarabine, gan-

ciclovir, levetiracetam), and only one (telbivudine) has

been shown not to have anti-HIV-RT activity in vitro at

clinical concentrations. The confirmatory literature on the

nucleotide analog predictions was encouraging, but the

predictions themselves were not terribly surprising and

have not been experimentally tested in this work.

However, the question of a linkage between PPARa and

the COX enzymes, for which multiple protein structures

were available, offered a surprising prediction and an

opportunity to explore the value of additional information.

Gemfibrozil was present in our database as a free acid, as

depicted in Fig. 2. A scan of our database identified two

other fibrates (clofibrate and fenofibrate), but their struc-

tures were both represented by ester prodrug formulations.

In vivo, the ester prodrugs are rapidly and completely

converted by esterases to clofibric and fenofibric acid,

respectively [16, 17]. Consequently, all computations dis-

cussed hereafter were performed on the free acid forms of

all three fibrates. Figure 2 shows structures of the acids and

Table 1 Top 10 log-odds predictions for enzyme targets

Drug Known target Predicted target 3D?PPI log-odds Comment on prediction

Entecavir HBV pol/RT HIV-RT 21.1 Confirmed [10]

Telbivudine HBV pol/RT HIV-RT 20.7 No activity at clinical conc. [11]

Ribavirin HCV RNA pol HIV-RT 16.8 Confirmed [12]

Gemcitabine RNR HIV-RT 15.2 Supported [13]

Clofarabine DNA pol HIV-RT 14.4 Not tested

Valacyclovir HSV DNA pol HIV-RT 13.3 Confirmed [14]

Ganciclovir HSV DNA pol HIV-RT 13.1 Not tested

Levetiracetam SV2 HIV-RT 12.9 Not tested

Gemfibrozil PPARa COX-1 11.6 Shown in this work

Gemfibrozil PPARa COX-2 11.6 Shown in this work
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also illustrates the optimal 3D overlay between fenofibric

acid (cyan) and indomethacin (tan), corresponding to a raw

score of 8.4 (equivalent to a p value of 0.01). Clofibric acid

and fenofibric acid yielded 3D log-odds against the COX

enzymes of 7.5 and 3.9, respectively. The PPI log-odds for

fenofibric acid against the COX enzymes was 5.9 (PPI

similarity could not be computed for clofibric acid due to

the lack of a machine-readable package insert). Using all

available ligand-based information, the overall log-odds

scores for gemfibrozil, clofibric acid, and fenofibric acid

were: 11.6, 7.5, and 7.0, respectively. To put these numbers

in perspective, a systematic blind prediction test [9] sug-

gested that log-odds scores of greater than 5.0 yielded

correct ligand to target linkages 40–50 % of the time, with

an upper bound on the false positive prediction rate of

roughly 1–3 %.

Synergy between protein structural and ligand-based

information

Given the availability of multiple experimentally deter-

mined protein structures for both PPARa and the COX

enzymes, we assessed how the inclusion of protein struc-

tural information quantitatively affected the strength of the

predicted association.

Multi-structure docking

Molecular docking was performed using a standard multi-

structure protocol against both COX-1 and COX-2. The

protocol employs multiple conformations of a given bind-

ing pocket and has been shown to significantly improve

docking performance [6, 18]. The COX proteins have two

Balsalazide
Celecoxib
Diclofenac
Diflunisal
Etodolac
Fenoprofen
Indomethacin
Ketoprofen
Ketorolac
Meloxicam
Mesalamine

Nabumetone
Naproxen
Olsalazine
Oxaprozin
Piroxicam
Salsalate
Sulfasalazine
Sulindac
Tolmetin
Valdecoxib

Gemfibrozil

Clofibric Acid 

Fenofibric Acid

a b

c

3D similarity overlay of fenofibric acid and indomethacin

3D sim: 8.4
p = 0.01

Fig. 2 PPARa and COX

ligands. a 2D structures of three

PPARa agonists. b List of 21

NSAIDs annotated as COX

inhibitors, with a representative

2D structure (indomethacin).

c Optimal 3D superimposition

of fenofibric acid (cyan) and

indomethacin (tan). The thin

sticks indicate regions of

significant surface similarity,

green-steric, blue-positive

charge, red-negative charge.

The raw similarity score of 8.4

corresponded to a p value of

0.01
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spatially-distinct binding pockets, the cyclooxygenase site

and the peroxidase site, each performing a separate enzy-

matic reaction. The cyclooxygenase site converts arachi-

donic acid to prostaglandin G2 and is the relevant binding

site here. This site includes a hydrophobic channel, with a

nominal difference of one residue between the COX iso-

zymes, but the COX-2 site is 20 % larger [19].

The COX protein structures for docking included those

with bound NSAIDs. For COX-1, these included PDB

codes 2OYU, 3KK6, 3N8X, and 3N8Z (complexes with,

respectively, an indomethacin analog, celecoxib, nimesu-

lide, and flurbiprofen). The COX-2 structures were 1PXX,

3LN1, 3NT1, 3RR3, and 4COX, which are co-complexes

with diclofenac, celecoxib, naproxen, flurbiprofen, and

indomethacin. Protein pocket variants were mutually

aligned using pocket similarity, as done previously [18].

The docking results were similar for COX-1 and COX-2,

so representative COX-2 results are presented in Fig. 3.

Panel (a) shows the 5 aligned COX-2 proteins (ribbons)

with the cognate flurbiprofen ligand (tan sticks) of 3RR3.

The labeled amino acids (light green, thin sticks) were

previously identified as interacting with flurbiprofen in the

co-crystal structure [20]. Specifically, the carboxylate of

the drug forms a salt bridge with Arg-120 and a hydrogen

bond with Tyr-355. The distal aryl ring forms van der

Waals contacts with Gly-526–Ala-527 and stacks against

Tyr-385. Note that the COX-2 binding pocket is relatively

rigid, with sidechains exhibiting little movement on bind-

ing small inhibitors.

Figure 3b shows the highest scoring docked pose of

gemfibrozil (cyan) relative to the native pose of flurbipro-

fen (tan) in 3RR3. Of the three PPARa ligands, gemfibrozil

yielded the most significant scores, corresponding to

p values B0.01 against both enzyme isoforms. The other

two ligands exhibited similar behavior, both in a numerical

sense and in terms of the specific interaction geometry

mimicking that seen with native COX inhibitors. Panel

(c) shows the highest scoring docked pose of clofibric acid

(cyan) relative to the native pose of flurbiprofen (tan) in

3RR3. Panel (d) shows the highest scoring docked pose of

fenofibric acid (cyan) relative to the native pose of indo-

methacin (tan) in 4COX. The relative alignments between

the fibrates and NSAIDs that were derived from the

docking computations mirrored those seen from the 3D

molecular similarity computations (see Figs. 1, 2).

As is often the case in non-native ligand docking, the

use of multiple conformational variants of the proteins was

important, despite the apparent lack of variation in the

pockets by eye. The top poses for gemfibrozil and clofibric

acid came from the flurbiprofen co-crystal structures

(3N8Z and 3RR3). In contrast, the top docking scores for

fenofibric acid resulted from the indomethacin structures

(2OYU and 4COX). Collectively, the docking experiments

strongly supported the hypothesis that PPARa agonists are

COX ligands and suggested rational poses for the fibrates

in the cyclooxygenase pocket.

Protein binding site similarity

Given the ligand similarity and docking results, one would

expect that there is some degree of binding pocket simi-

larity between PPARa and the cyclooxygenase site of

COX-1 and COX-2. These proteins share no sequence

similarity, either in a global sense, or at the level of the

binding sites in question. Sequence comparison using

BLASTp of Q07869 (PPARa) against Q05769 (COX-2)

yielded just two short matches, with overall coverage of

just 8 %, each with E-values suggesting no significant

match ([0.5). Full sequence alignment, using Needleman–

Wunsch, produced just 15 % sequence identity, a level not

considered to indicate statistically significant sequence

similarity (N–W global protein alignment computed at

blast.ncbi.nlm.nih.gov). In cases such as this, structural

similarity may still exist, and the PSIM method has been

shown to have utility in cases where sequence-based

approaches do not [7, 21]. PSIM is a local, surface-based

method to compare protein binding sites, and it is analo-

gous to the small molecule comparison method whose

results are illustrated in Figs. 1 and 2. Note, however, that

the two proteins do not share the same SCOP/CATH fold

and have a template-modeling structural alignment score of

less than 0.4 (using TM-align, a global comparison

method) [22].

In order to compare the PPARa and COX protein

pockets, all 14 human PPARa structures were obtained:

1I7G, 1K7L, 1KKQ, 2NPA, 2P54, 2REW, 2ZNN, 3ET1,

3FEI, 3G8I, 3KDT, 3KDU, 3SP6, 3VI8. The COX

enzymes were represented by the nine structures used for

docking (see above). An all-by-all similarity comparison of

the 23 protein pockets was computed, and the PSIM raw

similarity scores were converted to p values, as previously

described [7]. Figure 4a shows the alignment of the highest

scoring non-cognate protein pair, 2REW (PPARa in purple

ribbon) crystallized with BMS-631707 (cyan), and 3RR3

(COX-2 in green ribbon) crystallized with flurbiprofen

(tan). The PSIM score was 6.0, corresponding to a p value

of 6.7e-04. The maximal PSIM score for the COX iso-

zymes was 9.0 (3N8Z and 3RR3) with a p value �0.001.

The labeled amino acids shown in thin sticks in Fig. 4a

were identified as interacting with bound ligands and likely

contribute to the similarity of the PPARa and COX-2

pockets. Specifically, PPARa Ser-280, Tyr-314, and

His440 form hydrogen bonds with the carboxylic acid

group of ligands, and Phe-273 and Phe-351 are known to

line the hydrophobic cleft of the PPARa pocket [23–26].

For flurbiprofen in COX-2, the carboxylate of the drug
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forms a salt bridge to Arg-120 and a hydrogen bond to Tyr-

355, and the distal aryl ring of the ligand forms van der

Waals contacts with Gly-526–Ala-527 and stacks against

Tyr-385 [20]. COX-2 Ser-530 also interacts with the distal

aryl ring of flurbiprofen and is the residue that is selectively

acetylated by aspirin. Note the coincidence of ligand-

binding residue pairs between the aligned pockets. For

example, PPARa Tyr-314 overlaps with COX-2 Tyr-355

and PPARa Phe-351 overlaps with COX-2 Tyr-385. Figure

4b shows the 3D surface similarity of the pockets with thin

sticks indicating regions of similarity, steric (green), blue

(positive charge), and red (negative charge). There is a

region of prominent polar similarity near the carboxylates

of the bound ligands, and the green sticks indicate a sig-

nificant common steric shape. The common pocket volume

between PPARa and COX-2 is highlighted in Fig. 4c, d

where the protein surfaces are shown mesh (COX-2 in red

and PPARa in green). PPARa and COX-2 clearly share

quantitatively similar binding pockets, both in shape and

surface charge, despite the lack of any primary sequence

relationship between the two proteins.

Table 2 summarizes the number of p values and the log-

odds predictions from the individual methods as well as the

combination of the methods that relate gemfibrozil to the

COX enzymes. Each individual method predicts the inter-

action, and the combined log-odds of 15.8 is much stronger

than any single method alone. Beyond lending quantitative

support to the hypothesized PPARa=COX linkage, the

results of the computations offer insight into the structural

basis for ligand cross-talk, as illustrated in Figs. 3 and 4.

Gemfibrozil docked into COX-2

Clofibric acid docked into COX-2 Fenofibric acid docked into COX-2

Alignment of 5 COX-2 structures

ba

dc

Arg-120

Tyr-355

Ala-527

Ser-530 Tyr-385

Flurbiprofen

F

Fig. 3 Multi-structure docking of PPARa ligands into the cycloox-

ygenase site of COX-2. a Alignment of 5 COX-2 structures (ribbon)

with key residues in thin sticks (light green). The cognate flurbiprofen

ligand of 3RR3 is in tan sticks and the 2D structure is shown in the

lower left. b Highest scoring docked pose of gemfibrozil (cyan)

relative to native pose of flurbiprofen (tan) in 3RR3, p value = 6.0e-

03. c Highest scoring docked pose of clofibric acid (cyan) relative to

native pose of flurbiprofen (tan) in 3RR3. d Highest scoring docked

pose of fenofibric acid (cyan) relative to the native pose of

indomethacin (tan) in 4COX
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COX enzyme assays

In vitro assays were performed to directly test if gemfi-

brozil, clofibric acid, or fenofibric acid were COX inhibi-

tors. The source of the enzymes for the assays were

microsomal preparations from Sf9 cells transfected with

recombinant human COX-1 or COX-2 [27], and the assay

measured the conversion of the substrate arachidonic acid

to PGE2. The steady state mean maximum plasma con-

centrations following the typical prescribed dose for the

fibrates in this study are 240 lM for gemfibrozil [28],

1,000 lM for clofibric acid [29], and 50 lM for fenofibric

acid [17]. Tests were performed at concentrations of 250

and 1,000 lM, based on the in vivo plasma concentrations.

All three drugs exhibited inhibition of COX-1 at 250 lM:

48, 18, and 14 % for, respectively, fenofibric acid, gemfi-

brozil, and clofibric acid. At the higher concentration,

inhibition increased for fenofibric acid (57 %) against

COX-1. For COX-2, fenofibric acid also showed dose-

dependent inhibition (23 and 41 % at the two

concentrations).

ba

c

Tyr-355
COX-2

Ser-530
COX-2 Tyr-385

COX-2

Tyr-314
PPAR

Ser-280
PPAR

His-440
PPAR

Phe273
PPAR

Phe-351
PPAR

Arg-120
COX-2

d

3D similarity overlay of PPAR and COX-2 pocketsLigand binding residues in aligned PPAR and COX-2 pockets

Overlapping volume of PPAR and COX-2 pockets

Fig. 4 Binding site surface similarity between PPARa and COX-2.

a Alignment of PPARa (2REW in purple ribbon) crystallized with

BMS-631707 (cyan), and COX-2 (3RR3 in green ribbon) crystallized

with flurbiprofen (tan). In thin sticks with labels are residues known to

interact with bound ligands. PSIM score = 0.6, p value = 6.7e-04.

b Thin sticks indicate regions of significant surface similarity, green-

steric, blue-positive charge, red-negative charge. c In mesh overlay

are the surfaces of the aligned proteins revealing the common volume

of the binding pockets of COX-2 (red) and PPARa (green). d 90�
horizontal rotation of (c)

Table 2 Log-odds predictions for gemfibrozil interacting with COX

enzymes

Method Number of p values Log-odds

3D Similarity 21 7.2

PPI similarity 21 8.7

Docking 2 3.4

Pocket similarity 2 3.4

Combined 46 15.8
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For clofibric acid, marginal inhibition was seen at the

higher concentration for COX-1 and at both concentrations

for COX-2 (5, 13, and 11 %, respectively). Gemfibrozil

also showed only marginal COX-1 inhibition at the higher

concentration (8 %), and it exhibited a paradoxical

behavior against COX-2, nominally increasing enzyme

activity at the 250 and 1,000 lM concentrations (by 41 and

66 %). Such mixed phenomena are common in in vitro

COX assays. In a recent study testing the COX modulatory

activity of bioflavinoids, some ligands had maximum effect

at 250 lM with a decline in activity at higher concentra-

tions [30]. In addition, several compounds stimulated COX

activity, and some compounds had opposite effects on

COX-1 versus COX-2.

Because fenofibric acid showed the greatest COX

inhibitory activity, full inhibitor titration assays were per-

formed. Nine concentrations were tested, down to a con-

centration of 3 lM, using serial threefold dilution. The

titration curves are shown in Fig. 5. The IC50 of fenofibric

acid for COX-1 was 950 lM (Hill coefficient 0.7). This is

comparable to that of NSAIDs such as acetaminophen and

salicylic acid. Those drugs were shown to have IC50 values

of � 200 and 500 lM, respectively, in a microsomal assay

for COX-1 [31]. The effect of fenofibric acid on COX-2

was weaker by at least twofold, but still clearly dose-

dependent, with a Hill coefficient of 1.2. For context in

terms of selectivity, acetaminophen exhibits similar

behavior, with recent data yielding IC50 values of 130 lM

for COX-1 and 5,900 lM for COX-2 [32].

Discussion

Our earlier work reported a probabilistic framework for

relating ligands to putative off-targets, where the results of

multiple types of ligand-based similarity computations

were shown to have synergistic properties [8, 9]. Those

studies made use of retrospective cross-validation and

blind-testing approaches for methodological evaluation.

Here, the focus has been on the prospective testing of

predictions made using a generalization of the framework,

which combines ligand similarity from both structure and

text-based descriptions of clinical effects, docking com-

putations, and protein pocket comparisons. Conceptually,

the important contributions involve the exploitation of new

information types that can be derived from protein struc-

tural information. Docking was used in an analogous

fashion to ligand comparisons, with docking scores making

a direct linkage to a putative target based on computations

involving ligand fit into established active sites. The par-

allel ligand-based linkage makes comparisons between a

ligand of interest to established small-molecule modulators

of the putative target. Linkage of a different type, directly

from one target to another, was made through the use of

protein binding site comparisons. At present, we do not

have an estimate for how often such surprising local

structural similarities will exist between pairs of apparently

unrelated proteins, but comprehensive computations on

pairs of liganded protein binding sites are planned, in part

to address this question.
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Fig. 5 COX inhibitory activity of fenofibric acid. a Titration of COX-

2 inhibitory activity, resulting in an IC50 of 950 lM. b Same plot for

COX-2 inhibitory activity, resulting in a nominal IC50 of � 2.2 mM.

The IC50 was not determined definitively because assay detection

was hampered at the two highest concentrations tested (marked with

circles)
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The particular prospective result we describe is that

PPARa drugs such as fenofibric acid are also COX inhib-

itors at concentrations that are likely to be physiologically

relevant in clinical application. Enzyme assay results

showed that fibrates are indeed COX ligands in vitro and

that fenofibric acid in particular has inhibitory COX

activity similar to that of the less potent NSAIDs. The

PPAR receptors are clinically important in anti-lipemic

therapy, mediating one of the mechanisms by which fi-

brates lower high plasma triglycerides [33]. Fibrate use has

more than doubled in the United States over the past dec-

ade, to nearly 1 % of the population [34]. Widespread and

increasing fibrate use is driven by the heavy mortality

burden of cardiovascular disease [35], underlining the need

for understanding pharmacological crosstalk in this target

and ligand category. PPARa specifically upregulates the

expression of genes for both the transporters and enzymes

involved in the b-oxidation of fatty acids [36].

In addition to anti-lipemic benefits, PPARs and fibrates

have been shown to have anti-inflammatory properties [37–

39]. Fenofibrate was shown to reduce serum levels of

tumor necrosis factor-a (TNF-a) and interferon� c (IFN-c)

in hyperlipidemia patients [40]. Similarly, gemfibrozil was

shown to increase survival in mice with an induced sys-

temic inflammatory illness, likely through reducing

excessive cytokine production [41]. In addition to reducing

the expression of the inflammation mediators TNF-a and

IFN-c, PPARa was demonstrated to negatively regulate

COX-2 gene transcription [42]. Our results suggest that

some of the anti-inflammatory effects of the fibrates may

be due to direct interaction with the COX enzymes. That

one of the effects of PPARa activation is to downregulate

COX-2 may point to a more general phenomenon. The

binding sites of ligand-modulated transcription factors may

have evolved to be sensitive to ligands of enzymes and

receptors that are downstream of the transcription factors.

This will be explored in future work by considering the

similarity of ligand binding sites of transcription factors to

those of the proteins they regulate.

A linkage between the COX enzymes and the PPARs

had been noted by earlier investigators, stimulated by the

observation that treatment of preadipocyte cell lines with

indomethacin resulted in terminal differentiation to adi-

pocytes [43]. Because PPARc was known to be a regulator

of adipocyte differentiation, indomethacin and other COX

inhibitors were tested for PPAR modulatory activity.

Indomethacin, fenoprofen, ibuprofen, and flufenamic acid

were shown to be PPARc and PPARa agonists [44]. The

biochemical contribution here is novel in that we have

shown the converse: that established PPAR ligands have

meaningful activity against the COX enzymes. Recently,

dual-action anti-inflammatory small molecules have been

sought to simultaneously inhibit the COX enzymes and

activate the PPARs [45]. The structural relationships we

have established may provide insight into ligand design.

In this case, computations involving ligand similarity,

docking, and protein pocket comparison each indepen-

dently produced correspondences that all mutually agreed.

Each produced a correspondence of parts, whether ligand

to ligand, ligand to protein, or protein to protein. Given that

the structural information included co-crystal structures for

both targets, the cross-correspondences may be visualized

(see Figs. 2, 3, 4) and seem to agree nearly atom for atom.

For the ligand similarity and docking computations, the

correspondence, while striking, is not surprising given that

the molecules in question are relatively small organic

acids. The protein alignment that gave rise to the signifi-

cant pocket similarity score was more subtle, requiring the

correspondence of an Arg/Tyr acid recognition element for

COX-2 to a Ser/Tyr/His triad in PPARa. Further, the

hydrophobic PPARa pocket is only ‘‘open’’ in a single

structure within the PDB, one which exhibits marked

movement of a key residue in the binding site. Figure 6

shows the 14 aligned PPARa proteins in ribbons with Phe-

273 of each in thin sticks, with the ligand of the aligned

3RR3 COX-2 structure shown as well. Within the 2REW

variant of PPARa, Phe-273 is rotated out of the space that

is occupied by the aligned flurbiprofen. The structural

importance of this residue has been highlighted with

respect to ligand selectivity [23], conformational lability on

Phe-273
2REW

Phe-273
1K7L

Alignment of 14 PPAR structures

Fig. 6 Shown is the alignment of 14 PPARa structures (ribbon) with

Phe-273 in thin sticks. Of the 14 structures, only 2REW has Phe-273

(light green) in an orientation that does not occupy the space of the

distal aryl ring of the flurbiprofen ligand (tan) of the aligned 3RR3

COX-2 protein (not shown)
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ligand binding [46], and importance in direct ligand

interactions [23, 24]. Several pairs of COX and PPARa
structures produced significant protein similarity scores,

but the highest score arose from the particular case where

Phe-273 was not occupying the ligand space of the aligned

COX enzyme.

Each computational modality used here is subject to

different biases and limitations, so the ability to combine

diverse sources of information is a critical feature. Scores

from any computations that relate a compound to another, a

compound to a target, or a target to another target can be

converted into probabilities. This only requires that each

score has a monotonic interpretation (i.e. that a higher

score suggests higher likelihood of linkage than a lower

score, or vice versa).

Data associated with historical medicinal chemistry dis-

covery projects may include assay data against particular

targets, pre-clinical animal testing results (including textual

descriptions of observed effects), or the results of broad

standardized assay panels for pre-clinical evaluation. All

such data should be amenable to the framework described

here. We believe that hypotheses of off-target effects that are

made based on such computations, when investigated

experimentally, have the potential to reduce the frequency of

discovering serious side effects during human trials.

Methods

Molecular data sets

The SPDB database of annotated drugs and targets has

been described [8, 9]. Structures obtained from the PDB

were downloaded from http://www.rcsb.org/pdb as Bio-

logical Assemblies.

Computational methods

Surflex computational methods have been described in

detail: 3D similarity [1, 47], PPI similarity and the log-odds

computation including conversion of raw similarity scores

to p values [8, 9], docking including multiple structures [6,

18, 48], and protein similarity including conversion of raw

similarity scores to p values [7, 21]. All computations

involving ligand similarity, docking, and protein pocket

similarity were made according to standard protocols.

Data, software, and computational protocols are available

by request (see www.jainlab.org for details).

Enzyme assays

COX assays were performed by Cerep Corporation (Red-

mond, WA). Briefly, human recombinant COX-1 and

COX-2 were expressed in Sf9 cells and microsomes were

prepared from the transfected cells as described [27].

Reactions proceeded for 5 min at room temperature with

control or test compounds. The control inhibitor com-

pounds were diclofenac for COX-1 and NS398 for COX-2.

The assay measured the conversion of the substrate ara-

chidonic acid to PGE2, and the detection method for PGE2

concentration was homogeneous-time-resolved-fluores-

cence [49].
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