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Introduction
Newly synthesized secretory proteins are folded and modified 
in the ER before transport to Golgi compartments in a coat pro-
tein complex II (COPII)–dependent pathway, whereas transport 
machinery and escaped ER resident proteins are retrieved from 
Golgi compartments back to the ER through a coat protein com-
plex I (COPI)–dependent retrograde pathway (Brandizzi and 
Barlowe, 2013). Transported cargo proteins can be selectively 
incorporated into COPI- and COPII-coated carrier vesicles 
through direct and indirect binding to subunits of these coat 
complexes (Cosson and Letourneur, 1994; Kuehn et al., 1998) 
or can traffic in a passive bulk-flow manner (Thor et al., 2009). 
For selective incorporation of transmembrane proteins, cyto-
plasmically exposed sorting signals have been identified that 
bind to defined recognition sites in COPI and COPII subunits 
(Mossessova et al., 2003; Jackson et al., 2012). However, not all 
transmembrane proteins that traffic through the early secretory 
pathway display known COPI or COPII sorting signals, and a 
large number of soluble cargos cannot be directly recognized by 

coat subunits because they are luminally disposed. To efficiently 
transport these proteins, a diverse family of sorting receptors  
is required to link specific cargo to COPI and COPII coat sub-
units (Dancourt and Barlowe, 2010). For example, ERGIC53 
and Erv14 link soluble and transmembrane secretory cargo 
to COPII adaptor subunits for forward transport (Appenzeller  
et al., 1999; Powers and Barlowe, 2002), whereas the KDEL 
receptor and Rer1 bind soluble and transmembrane cargo to the 
COPI coat for retrograde transport from Golgi compartments 
(Lewis and Pelham, 1990; Semenza et al., 1990; Sato et al., 
1997). Understanding how coat complexes and cargo receptors 
manage the broad spectrum of proteins that must be sorted in 
the early secretory pathway and how cargo binding is regulated 
remain challenging questions.

Proteomic analyses of purified COPII vesicles identified  
the heteromeric Erv41–Erv46 complex as efficiently packaged  
ER vesicle proteins that localized to ER and Golgi membranes  
(Otte et al., 2001). Erv41 and Erv46 are related integral mem-
brane proteins that each contains two transmembrane segments, 
short cytosolic N- and C-terminal regions, and large luminal 
domains. Expression of Erv41 and Erv46 are interdependent  

Signal-dependent sorting of proteins in the early se-
cretory pathway is required for dynamic retention 
of endoplasmic reticulum (ER) and Golgi compo-

nents. In this study, we identify the Erv41–Erv46 complex 
as a new retrograde receptor for retrieval of non–HDEL-
bearing ER resident proteins. In cells lacking Erv41–Erv46 
function, the ER enzyme glucosidase I (Gls1) was mislo-
calized and degraded in the vacuole. Biochemical ex-
periments demonstrated that the luminal domain of Gls1 
bound to the Erv41–Erv46 complex in a pH-dependent 
manner. Moreover, in vivo disturbance of the pH gradient 

across membranes by bafilomycin A1 treatment caused 
Gls1 mislocalization. Whole cell proteomic analyses of 
deletion strains using stable isotope labeling by amino 
acids in culture identified other ER resident proteins that de-
pended on the Erv41–Erv46 complex for efficient localiza-
tion. Our results support a model in which pH-dependent 
receptor binding of specific cargo by the Erv41–Erv46 
complex in Golgi compartments identifies escaped ER resi-
dent proteins for retrieval to the ER in coat protein com-
plex I–formed transport carriers.
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ER. We purified the luminal domain of Gls1 fused to the C ter-
minus of GST (GST-Gls1) for production of polyclonal serum 
against Gls1, and specificity was confirmed by immunoblotting 
for Gls1 in WT and gls1 strains (Fig. 1 A). Using anti-Gls1 
antiserum, we found that deletion of ERV41 reduced the steady-
state cellular levels of Gls1 by 60% compared with the WT 
strain (Fig. 1, A and B). Moreover, when pep4 was combined 
with erv41, the cellular levels of Gls1 were restored to near 
WT levels (Fig. 1, A and B). Because PEP4 encodes protein-
ase A, a vacuolar aspartyl protease required for processing of 
vacuolar precursors, PEP4 deletion leads to the inhibition of 
vacuolar protease activity (Ammerer et al., 1986). Carboxypep-
tidase Y (CPY) is a well-characterized yeast vacuolar enzyme, 
which is synthesized and glycosylated at the ER as the proen-
zyme p1CPY form (67 kD), transported to the Golgi for further 
glycosylation to the p2CPY form (69 kD), and then proteolyti-
cally processed at the vacuole in a Pep4-dependent manner to 
produce the mature CPY (mCPY) form (61 kD; Hemmings  
et al., 1981; Stevens et al., 1982). We used CPY maturation as 
an indicator for pep4 and note that gls1 shifted mCPY to 
a larger size because of the presence of untrimmed glucose resi-
dues on the mCPY N-linked carbohydrate. Because Erv41 and 
Erv46 form a heteromeric complex and their expression levels 
are interdependent (Otte et al., 2001), erv41 and erv46 dis-
played similar effects on the steady-state cellular levels of Gls1 
(Fig. S1), indicating that both Erv41 and Erv46 are required to 
maintain cellular levels of Gls1.

Stabilization of Gls1 in erv41 pep4 cells suggested that 
Gls1 was transported to vacuoles in the absence of the Erv41–
Erv46 complex. To test for mislocalization of Gls1 to vacuoles 
in erv41 cells, we examined the distribution of Gls1 by subcel-
lular fractionation of membranes on sucrose density gradients 
(Fig. 2, A–C). In WT and pep4 cells, most Gls1 cosedimented 
with the ER marker Yet3 and a smaller fraction with the vacuole 
marker CPY (Fig. 2, A and B). In contrast, almost all Gls1 was 
colocalized with vacuolar membranes in pep4 erv41 cells 
(Fig. 2 C), suggesting that the absence of Erv41 caused mis-
localization of Gls1 to vacuoles. We observed that little Gls1  
co-migrated with the Golgi marker Ssp120 (Huh et al., 2003) in 
both WT and erv41 cells. In addition, we performed immuno-
fluorescence microscopy to examine the localization of Gls1 
(Fig. 2 D and Fig. S2). 3HA-tagged Gls1 (HA-Gls1) colocalized 

such that the level of Erv46 was reduced in an erv41 strain 
and Erv41 was not detected in an erv46 strain. Both proteins 
contain COPII sorting motifs on their C termini, and Erv46 con-
tains a conserved COPI binding dilysine motif on its C termi-
nus, which cycles the Erv41–Erv46 complex between the ER 
and Golgi complex (Otte and Barlowe, 2002). In mammalian 
cells, the Erv41–Erv46 complex is distributed between the ER, 
ER–Golgi intermediate compartment, and cis-Golgi compart-
ments (Orci et al., 2003; Breuza et al., 2004). Although it has 
been shown that yeast strains lacking the Erv41–Erv46 com-
plex are viable and display cold sensitivity, the precise biologi-
cal function of the Erv41–Erv46 complex is unknown. A study 
following in vitro translocation and transport of glyco-pro– 
factor in yeast revealed that ER microsomes from an erv41 
strain displayed a mild defect in glucose trimming of the at-
tached N-linked core oligosaccharide and produced a similarly 
sized product as observed in gls1 microsomes (Welsh et al., 
2006). Glucosidase I (Gls1) cleaves the terminal -1,2–linked 
glucose from the newly attached N-linked core glycan and is 
thought to function in folding and quality control of nascent 
glycoproteins (Moremen et al., 1994; Hitt and Wolf, 2004). In 
this study, we investigated the localization of the Gls1 protein in 
erv41 strains and observed reduced ER levels coincident with 
mislocalization to the vacuole. Whole cell stable isotope label-
ing by amino acids in culture (SILAC) proteomics identified 
other ER proteins that depended on the Erv41–Erv46 complex 
for wild-type (WT) expression levels. In combination with bio-
chemical experiments, our findings support a model in which 
the Erv41–Erv46 complex functions as a retrograde receptor for 
a new class of ER resident proteins.

Results
Deletion of ERV41 mislocalizes Gls1
A previous study indicated a deficiency in Gls1 trimming of 
the N-linked core oligosaccharide when the Erv41–Erv46 com-
plex was depleted from cells (Welsh et al., 2006). To further 
investigate Erv41–Erv46 function in these cells, we prepared 
polyclonal antibodies specific for the Gls1 protein. Gls1 is pre-
dicted to have a short cytosolic N terminus (residues 1–10), 
a hydrophobic transmembrane domain (residues 11–28), and  
a large C-terminal domain (residues 29–833) in the lumen of the 

Figure 1.  Deletion of ERV41 reduces the cel-
lular levels of Gls1 caused by vacuolar degra-
dation. (A) Cells grown to mid–log phase were 
lysed, resolved on a 10.5% polyacrylamide 
gel, and immunoblotted for Gls1, CPY, Erv41, 
and Yet3 (loading control). WT (CBY740), 
gls1 (CBY1086), erv41 (CBY1168), pep4 
(CBY2732), and erv41 pep4 (CBY3306) 
strains were compared. (B) Relative amounts 
of Gls1 with standard error bars (n = 3). Gls1 
levels were normalized with Yet3 as the load-
ing control and plotted as a percentage rela-
tive to WT.
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microsomes from WT and gls1 strains in the absence or pres-
ence of COPII components (Fig. 3). Erv41 and Erv46 were ef-
ficiently packaged into COPII vesicles as previously reported 
(Otte et al., 2001), and gls1 did not influence these packaging 
efficiencies. In WT membranes, Gls1 was not efficiently pack-
aged into COPII vesicles as observed for the ER resident protein 
Yet3 (Wilson and Barlowe, 2010). These results indicated that 
Gls1 is not actively incorporated into COPII transport vesicles, 
although low levels of Gls1 are likely to leak into ER-derived 
vesicles. Gls1 dependence on the actively cycling Erv41–Erv46 

with the ER marker Kar2 in WT and pep4 strains, whereas 
HA-Gls1 colocalized with the vacuolar marker alkaline phos-
phatase (ALP) in the pep4 erv41 strain. From these results, 
we concluded that the Erv41–Erv46 complex was required for 
Gls1 localization to the ER and that Gls1 trimming deficien-
cies observed in erv41 membranes (Welsh et al., 2006) were 
caused by sharp reductions in ER levels of Gls1.

To gain further insight into potential ER retention or re-
trieval mechanisms that could underlie Gls1 mislocalization in 
erv41 cells, we performed in vitro budding assays with ER 

Figure 2.  Absence of Erv41 mislocalizes Gls1 to vacuoles. (A–C) Lysates from WT (CBY740; A), pep4 (CBY2732; B), and erv41 pep4 (CBY3306; C) 
cells were separated on 18–60% sucrose density gradients. Fractions were collected starting with fraction 1 from the top of the gradient, resolved on 10.5% 
polyacrylamide gels, and immunoblotted for Gls1, CPY (vacuole marker), Ssp120 (Golgi marker), and Yet3 (ER marker). The relative amounts of each 
protein were determined by densitometry and plotted. The sucrose gradients shown are from a single representative experiment out of two independent re-
peats of the experiment. (D) Triple HA-tagged Gls1 was visualized by immunofluorescence microscopy using anti-HA monoclonal antibody and anti–mouse 
IgG Texas red–conjugated secondary antibody in WT (CBY3841), pep4 (CBY3864), and erv41 pep4 (CBY3867) strains. The same cells were also 
stained for Kar2 as an ER marker using polyclonal antibody against Kar2 and anti–rabbit IgG FITC-conjugated secondary antibody. Bars, 5 µm.
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regulated by compartmental pH (Wilson et al., 1993; Appenzeller-
Herzog et al., 2004), and reported pH gradients between the ER 
and Golgi range from 7.4 to 6.2 (Paroutis et al., 2004). There-
fore, we monitored binding interactions between Gls1 and the 
Erv41–Erv46 complex under different pH conditions ranging 
from 5.5 to 7.5 (Fig. 5). For these experiments, membrane pro-
teins were solubilized in buffers at the indicated pH followed 
by binding to GST-Gls1 and multiple washes at the constant 
pH. Bound proteins were eluted from the beads for immuno
blot analysis and revealed that Erv46 bound to GST-Gls1 under 
acidic pH buffer conditions (Fig. 5 B). Erv46 did not bind  
immobilized GST alone (Fig. 5 A) to support specificity of the 
interaction, and Erv41 was not detected in the eluted fractions 
under these conditions, suggesting that Gls1 interaction with 
the complex was mediated through the Erv46 subunit. These 
results are consistent with a model in which the Erv41–Erv46 
complex binds to Gls1 in the reduced pH environment of lumi-
nal Golgi compartments.

To further explore interactions between the Erv41–Erv46 
complex and Gls1, coimmunoprecipitation (IP; co-IP) experi-
ments were performed using detergent-solubilized membrane 
extracts from cells expressing different levels and tagged ver-
sions of these proteins. In cells overexpressing HA-Erv46 and 
Gls1 together, co-IP of Gls1 from Triton X-100–solubilized 
membranes across a pH range of 5.5 to 7.5 showed that HA-
Erv46 was recovered in complex with Gls1 (Fig. 6 A). How-
ever, equivalent levels of HA-Erv46 were recovered over this 
pH range, suggesting that stability of preexisting Gls1-Erv46 
complexes was independent of pH. Similarly, in cells overex-
pressing Erv41, HA-Erv46, and Gls1, co-IP of Gls1 from these 
detergent-solubilized membranes recovered both HA-Erv46  
and Erv41 across the pH range (Fig. 6 B). These results imply 
that a fraction of Gls1 is assembled into complexes with Erv41–
Erv46 under overexpression conditions and that these com-
plexes are insensitive to pH during the co-IP procedure. To 
examine why the co-IP assay did not show a pH-dependent in-
teraction, mixing IP assays were performed in which HA-Erv46 
and Gls1 were individually overexpressed in cells, membranes 
from these cells were solubilized with Triton X-100 in the indi-
cated pH buffers, and then membrane extracts were combined  

complex for ER localization is more consistent with a retrieval 
mechanism as observed for the dependence of other ER resident 
proteins on the cycling KDEL receptor and Rer1 (Lewis and 
Pelham, 1990; Sato et al., 1997). Thus, we next explored the 
hypothesis that Erv41–Erv46 functions as a retrograde cargo 
receptor to retrieve escaped Gls1 back to the ER. In this model, 
strains that lack Erv41–Erv46 complex would not retrieve Gls1 
from post-ER compartments, resulting in trafficking to the vac-
uole and degradation.

Erv41–Erv46 complex binds to Gls1  
in a pH-dependent manner
Although GLS1 is reported to encode a type II integral mem-
brane protein (Jiang et al., 1996), additional studies show that 
a soluble form of Gls1 results from proteolytic cleavage be-
tween residues Ala24 and Thr25 near the end of the predicted 
transmembrane domain during overexpression and purification  
of Gls1 (Dhanawansa et al., 2002). Moreover, this cleavage 
site matches a predicted signal sequence cleavage site in Gls1 
(Nielsen et al., 1997; Faridmoayer and Scaman, 2004). To ex-
amine whether Gls1 is indeed an integral membrane protein or 
not, we tested its solubilization properties from ER microsomes 
under various conditions (Fig. 4). Gls1 was solubilized and 
shifted to the supernatant fraction after treatment with 0.1 M 
sodium carbonate, pH 11, or detergent (1% Triton X-100), in-
dicating that Gls1 is an ER luminal protein but does not contain 
a transmembrane anchor. In contrast, only detergent treatment 
(1% Triton X-100) solubilized the integral membrane proteins 
Erv41, Erv46, and Yet3. These results indicate that Gls1 has its 
signal sequence cleaved to produce a soluble protein and that 
potential sorting information would be contained within this 
luminal domain.

To test whether the Erv41–Erv46 complex can bind Gls1 
as a cargo, we immobilized the soluble domain of Gls1 fused to 
GST (GST-Gls1) on glutathione agarose beads and mixed with  
detergent solubilized extracts from microsomes overexpres
sing the Erv41–Erv46 complex. Binding interactions for other 
cargo receptors in the early secretory pathway are thought to be 

Figure 3.  Gls1 is not efficiently packaged into COPII vesicles. In vitro bud-
ding reactions were performed with microsomes from WT (CBY740) and 
gls1 (CBY1086) strains in the absence () or presence (+) of purified COPII 
components. Membranes from one tenth of the total reaction (T) and vesicle  
fractions were collected by centrifugation, resolved on 10.5% polyacrylamide 
gels, and immunoblotted for Gls1, Erv41, and Erv46 as well as the ER resi-
dent protein, Yet3, as a negative control.

Figure 4.  Gls1 is a soluble ER-luminal protein. Microsomes from WT 
(CBY740) cells were incubated in buffer pH 7.0 (20 mM Hepes, pH 7, 
150 mM potassium acetate, and 2 mM EDTA), in 1% TX100 (buffer pH 
7.0 with 1% Triton X-100), or in buffer pH 11.0 (0.1 M sodium carbonate, 
pH 11, and 2 mM EDTA). Total lysates (T) were separated into superna-
tant (S) and pellet (P) fractions and resolved on 10.5% polyacrylamide 
gels and immunoblotted for Gls1, Erv41, Erv46, and Yet3.
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yeast cells (Fröhlich et al., 2013). Through this approach, we 
quantified yeast proteome changes in the erv41 and erv46 
strains against a WT standard. In total, 3,905 proteins were 
identified with relative abundance measurements for 3,494 and 
3,486 proteins in the erv41 and the erv46 strain, respectively 
(Table S3). In comparing protein abundance changes expressed 
as the log2 ratio of deletion strain/WT, we focused on 20 pro-
teins that were significantly reduced (log2 < 0.4) in both the 
erv41 and erv46 strains. Importantly, Gls1 was detectably 
reduced in the erv41 strain (log2 = 1.19) and the erv46 
strain (log2 = 1.40) in accord with our initial observations. 
Moreover, Erv41 (log2 = 3.87) and Erv46 (log2 = 4.41) 
protein levels were markedly reduced in the respective deletion 
strains as expected. A plot of protein intensities against log2 ra-
tios is shown in Fig. 7, with proteins of interest highlighted in-
cluding Fpr2, Msc1, Vps62, Jem1, and Cpr4. Next, we focused our  

before adding anti-Gls1 antibodies. Under these conditions, HA-
Erv46 coprecipitated with Gls1 in a pH-dependent manner 
(Fig. 6 C) and displayed a similar pH profile as observed for 
the GST-Gls1 pull-down assay. Based on these collective find-
ings, we speculate that a reduced pH environment promotes 
binding of Gls1 to the Erv41–Erv46 complex, although rever-
sal of this interaction is not trigged by pH alone and may de-
pend on additional factors for efficient dissociation.

Proteomic analysis of erv41 and  
erv46 mutants identifies additional 
Erv41–Erv46 cargo
Because other characterized retrograde and anterograde cargo 
receptors in the early secretory pathway are known to recog-
nize multiple cargo proteins (Dancourt and Barlowe, 2010), we 
investigated whether other ER resident proteins might depend 
on the Erv41–Erv46 complex for retrograde retrieval. Based on 
the reduced steady-state protein levels of Gls1 in the erv41 
strain, we hypothesized that additional Erv41–Erv46-dependent 
cargo proteins would be mistargeted to vacuoles and present at 
reduced levels. Advances in mass spectrometry–based quantita-
tive proteomics using SILAC can provide comparative protein 
levels for most endogenously expressed proteins in dividing 

Figure 5.  Erv41–Erv46 complex binds to Gls1 in a pH-dependent manner 
in vitro. (A and B) GST (A)- or GST-Gls1 (B)–bound glutathione agarose 
beads were incubated with cell lysate from microsomes overexpressing 
Erv41–Erv46 complex (CBY978) in different pH buffers (pH 5.5, 6.0, 6.5, 
7.0, and 7.5) at 4°C. After washing, proteins bound to the beads were 
eluted and resolved on 10.5% polyacrylamide gels and immunoblotted for 
Gls1, Erv41, Erv46, Yet3, and GST. (C) Eluted samples were compared 
on a single blot for levels of GST-Gls1, Erv46, and GST. Figure panels 
were assembled from single immunoblots, and the molecular mass markers 
shown indicate relative positions across neighboring strips. Figure 6.  Erv41–Erv46 complex interacts with Gls1 in vivo. (A and B) Semi-

intact cells from strains overexpressing HA-Erv46 and Gls1 (CBY3728; 
A) or HA-Erv46, Gls1, and Erv41 (CBY3785; B) were solubilized with 1% 
Triton X-100 and immunoprecipitated with anti-Gls1 antibody at 4°C in 
different pH buffers (pH 5.5, 6.0, 6.5, 7.0, and 7.5). (C) Mixing-IP assay 
in which Triton X-100–solubilized lysates from semi-intact cells overexpres
sing HA-Erv46 (CBY770) or Gls1 (CBY3832) were mixed and immuno-
precipitated with the anti-Gls1 antibody. Immunoprecipitated proteins were 
resolved on 10.5% polyacrylamide gels and immunoblotted for Gls1, HA, 
Erv41, and Yet3.

http://www.jcb.org/cgi/content/full/jcb.201408024/DC1
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which is important for packaging into retrograde-directed COPI  
vesicles (Cosson and Letourneur, 1994; Otte and Barlowe, 2002). 
It has been reported that mutation of dilysine residues in ER 
resident proteins to diarginines disrupts ER retention because 
of loss of binding to the COPI complex (Cosson and Letourneur, 
1994). To test the model that the Erv41–Erv46 complex func-
tions in retrieval of escaped Gls1, the dilysine motif in Erv46 
was mutated to diarginines (Erv46 KK/RR) to block retrograde 
transport of the Erv41–Erv46 complex and to monitor the influ-
ence on Gls1 localization. By comparing WT Erv46 and Erv46 
KK/RR mutant strains (Fig. S3), we found that mutation of the 
COPI-binding motif in the Erv46 tail reduced the steady-state 
cellular levels of Gls1 by 30% compared with the WT strain. 
Moreover, Gls1 was secreted to the extracellular medium in the  
Erv46 KK/RR mutant strain. These results indicate that retro-
grade trafficking of the Erv41–Erv46 complex is important for 
retrieval of leaked Gls1. Although mutation of the Erv46 dilysine 
motif caused Gls1 mislocalization, we noted that this phenotype 
was not as severe as the erv41-null mutation, suggesting that 
partially redundant COPI sorting information remained in the 
point mutant. Regardless, the impact of this Erv46 dilysine mu-
tation on Gls1 localization supports a retrograde receptor func-
tion for the Erv41–Erv46 complex.

Disruption of intracellular pH gradients 
causes Gls1 mislocalization
The in vitro pH-dependent interaction between Gls1 and the 
Erv41–Erv46 complex led us to investigate its physiological 
significance in vivo. The vacuolar ATPase plays an important 
role in acidification of vacuoles/lysosomes, endosomes, and 
Golgi compartments in eukaryotic cells (Forgac, 2007). The 
drug bafilomycin A1 has been shown to be a specific inhibitor 
of vacuolar ATPases (Bowman et al., 1988) and to increase the 
pH in Golgi compartments (Llopis et al., 1998). To examine the 
role of this pH gradient across Golgi membranes in Gls1 local-
ization, we tested the effect of bafilomycin A1 on Gls1 sorting  
in vivo. WT yeast cells were treated with 20 µM bafilomycin A1 
for 2 h and separated into intracellular and extracellular frac-
tions by centrifugation. We used CPY as a positive control be-
cause a previous study demonstrated that bafilomycin A1 caused 
missorting and secretion of the vacuolar hydrolase CPY (Banta 
et al., 1988). As shown in Fig. 9, Gls1 was secreted into the 
extracellular fraction, and the level of secreted p2CPY (Golgi 
form of CPY) was increased in the presence of bafilomycin A1, 

attention on potential ER resident proteins that were detected 
at reduced steady-state levels as candidate cargo for the Erv41–
Erv46 complex. We obtained strains containing C-terminally 
tandem affinity purification (TAP)–tagged Jem1, Vps62, and Fpr2 
(Ghaemmaghami et al., 2003), generated erv41::kanR dele-
tions in the TAP-tagged strain background, and monitored their 
steady-state expression levels to confirm the proteomic findings. 
In our analysis of these strains, significant decreases were de-
tected in Jem1-TAP, Vps62-TAP, and Fpr2-TAP levels in erv41 
strains of 49%, 44%, and 94%, respectively, compared with the 
WT background (Fig. 8, A and B). These decreases are in good 
agreement with the proteomic results.

The yeast FPR2 gene encodes a 15-kD membrane- 
associated peptidyl-prolyl cis–trans-isomerase that localizes to 
the ER and has a predicted N-terminal signal sequence (Nielsen 
et al., 1992; Huh et al., 2003). To further examine endogenous 
Fpr2 protein levels in WT and erv41 strains, we prepared 
polyclonal antiserum specific for Fpr2. Immunoblot analysis 
of whole cell extracts demonstrated that erv41 reduced steady-
state levels of Fpr2 by 91% compared with the WT strain 
(Fig. 8, C and D). Moreover, combining pep4 with erv41 
produced a recovery of Fpr2 cellular levels consistent with mis-
localization of Fpr2 to vacuolar compartments in the absence of  
a functional Erv41–Erv46 complex. Finally, we assessed extra-
cellular secretion of Fpr2 into the growth media because inacti-
vation of Pep4-dependent vacuolar proteases only restored Fpr2 
levels to 36% of normal WT cellular levels (Fig. 8, D and E). 
Strikingly, both Fpr2 and Gls1 were detected in the extracellular 
medium of erv41 and erv41 pep4 strains, indicating that 
failure to retain these ER resident proteins in the early secretory 
pathway resulted in missorting into both vacuolar-targeted and 
exocytic transport vesicles. Based on these results, we conclude 
that the Erv41–Erv46 complex is required for localization of 
multiple ER resident proteins and propose that the complex 
acts as a retrograde receptor to retrieve a subset of escaped 
ER proteins.

Mutation of a COPI binding motif in Erv46 
mislocalizes Gls1
A previous study has revealed COPI and COPII sorting signals 
within the cytoplasmic tail sequences of the Erv41–Erv46 com-
plex that are required to cycle the complex between ER and Golgi  
compartments (Otte and Barlowe, 2002). More specifically, 
Erv46 contains a conserved dilysine motif on its C-terminal tail, 

Figure 7.  Whole cell proteome changes in 
erv41 and erv46 strains using SILAC. Plot 
of protein intensities normalized against heavy/
light SILAC ratios of the WT strain (CBY740).  
(A and B) Proteome changes in erv41 (CBY1168)  
cells with 3,494 proteins quantified (A) and in 
erv46 (CBY3612) cells with 3,486 proteins 
quantified (B). Proteins of interest that were de-
tected at reduced levels in both deletion strains 
are indicated.

http://www.jcb.org/cgi/content/full/jcb.201408024/DC1
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a new retrieval activity in which specific ER resident proteins that 
have trafficked to Golgi compartments are recognized and re-
turned to the ER by the cycling Erv41–Erv46 retrograde recep-
tor. Our results show that ER resident proteins Gls1 and Fpr2 
are secreted or mislocalized in Erv41–Erv46-deficient cells and 
that the luminal domain of Gls1 binds directly to the Erv41–
Erv46 complex under mildly acidic conditions. The Erv41–
Erv46 complex is efficiently packaged into ER-derived COPII 
vesicles and actively recycles from Golgi compartments to the 
ER in COPI vesicles (Otte and Barlowe, 2002). In contrast, ER 
resident proteins, such as Gls1, are not efficiently packaged into 

indicating that the pH gradient across Golgi membranes plays  
a role in Gls1 localization. These results provide in vivo evidence 
that an intracellular pH gradient regulates binding between es-
caped ER resident proteins and the Erv41–Erv46 complex for 
retrieval back to the ER.

Discussion
Organelle composition in the secretory pathway is maintained 
under dynamic cellular conditions through protein targeting, 
retention, and retrieval mechanisms. In this study, we describe 

Figure 8.  Deletion of ERV41 reduces cellular levels of Fpr2 caused by vacuolar degradation and extracellular secretion. (A) Fpr2-TAP (CBY3793), Fpr2-
TAP erv41 (CBY3813), Vps62-TAP (CBY3897), Vps62-TAP erv41 (CBY3908), Jem1-TAP (CBY3791), and Jem1-TAP erv41 (CBY3811) cells grown to 
mid–log phase were lysed, resolved on a 10.5% polyacrylamide gel, and immunoblotted for the TAP-tag, Erv41, and Yet3. (B) Relative amounts of Fpr2-
TAP, Vps62-TAP, and Jem1-TAP with standard error bars (n = 3). TAP-tagged protein levels were normalized with Yet3 as the loading control and plotted 
as a percentage relative to WT. (C) Cells grown to mid–log phase were lysed, resolved on 15% polyacrylamide gels, and immunoblotted for Fpr2, CPY, 
Erv41, and Yet3 (loading control). WT (CBY740), fpr2 (CBY3758), erv41 (CBY1168), pep4 (CBY2732), and erv41 pep4 (CBY3306) strains 
were compared. (D) Relative amounts of Fpr2 with standard error bars (n = 3). Fpr2 levels were normalized with Yet3 as a loading control and plotted 
as a percentage relative to WT. (E) Proteins secreted to the extracellular medium were precipitated by TCA, resolved on a 15% polyacrylamide gel, and 
immunoblotted for Gls1 and Fpr2.
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The Erv41–Erv46 proteins are highly conserved across 
species and localize predominantly to the ER–Golgi inter-
mediate compartment and early Golgi compartments as reported 
for the KDEL receptors (Orci et al., 2003; Breuza et al., 2004; 
Raykhel et al., 2007). ER folding machinery components Gls1, 
or glucosidase I (Romero et al., 1997), and the Fpr2 prolyl-
isomerase, or FKBP-13 (Partaledis and Berlin, 1993), are also 
conserved, suggesting that this retrieval mechanism is likely to 
operate in many cell types. It is important to note that currently  
identified Erv41–Erv46 retrieval cargoes are soluble ER-luminal 
proteins that do not contain KDEL/HDEL signals, and with the 
bulk of the Erv41–Erv46 mass facing the ER lumen, this retrieval  
mechanism appears distinct from the seven-transmembrane–
containing KDEL receptor. Moreover, a recent structural study 
on the Erv41 luminal domain reveal an unusual -sandwich ar-
rangement and a prominent negative electrostatic surface patch 
thought to promote protein–protein interactions (Biterova et al., 
2013), suggesting that the Erv41–Erv46 complex recognizes 
a class of ER resident proteins through a novel interaction motif. 
We are currently defining this sorting motif in the 118–amino 
acid Fpr2 protein, which should permit bioinformatic searches 
for other Erv41–Erv46 retrieval cargo. Because certain microbes 
are known to express KDEL-bearing pathogenic factors to gain 
access to the ER (Sandvig and van Deurs, 2002), identification 
of analogous sorting signals for Erv41–Erv46 retrieval may help 
explain additional host–pathogen relationships.

Our whole cell SILAC proteomic analysis of deletion 
strains provides powerful insights into the consequences of 
loss-of-function Erv41–Erv46. Reduced intracellular protein 
levels of non-HDEL–bearing ER resident proteins are likely a 
result of failures in retrieval that lead to secretion of these pro-
teins from cells or mislocalization and degradation in the vacuole. 
Several other notable changes in steady-state levels of secretory 
cargo and cytosolic proteins may reflect secondary consequences 
of, or cellular responses to, loss of Erv41–Erv46 function. For 
example, decreased levels of the plasma membrane transporters 
Zrt1/2 and Pdr12 may be caused by loss of specific ER folding 
machinery needed for their biogenesis and result in precocious 
ER-associated degradation (Kota et al., 2007). Strong reductions 
in the proteasome assembly factor Poc4 (Le Tallec et al., 2007) 
were observed in both the erv41 and erv46 proteomic datasets. 
However, we detected only modest reductions through analy
sis of TAP-tagged Poc4 in the erv41 background, indicating 
that further studies will be required to understand this result.

In our initial characterization of the erv41 and erv46 
mutants, we observed a modest reduction in apparent fusion of 
COPII vesicles with Golgi membrane in cell-free transport re-
actions (Otte et al., 2001). Based on the current evidence, we 
suspect this effect is caused by indirect consequences of the 
erv41/erv46 mutations. Reduced levels of ER resident pro-
teins in the mutant cells may result in inefficient ER export of 
proteins necessary for fusion at Golgi membranes or for gly-
cosylation of glyco-pro–-factor that serves as the readout for 
fusion in cell-free assays (Baker et al., 1988). Interestingly, it was 
recently reported that the Golgi-localized mannosyltransferase 
Ktr4 accumulates in the ER of erv41 and erv46 strains (Noda  
et al., 2014), which could explain reduced levels of Golgi-modified 

COPII vesicles, and we speculate that a low level of bulk-flow 
exit of ER resident proteins must be countered by retrograde 
retrieval from early Golgi compartments. If not, escaped ER 
resident proteins traffic through the process of Golgi matura-
tion (Losev et al., 2006) followed by Golgi-to-cell surface and 
Golgi-to-vacuole transport, which results in protein mislocal-
ization. Pull-down and co-IP experiments indicated that inter
actions between the Erv41–Erv46 complex and Gls1 are regulated  
by pH. Moreover, disruption of intracellular pH gradients by 
bafilomycin A1 treatment led to secretion of Gls1. Together, 
these findings support a model in which escaped Gls1 binds 
to Erv41–Erv46 in the reduced pH environment of early Golgi 
compartments for retrograde transport and release in the neutral 
pH of the ER lumen.

Our model for Erv41–Erv46 activity in retaining ER resi-
dent proteins shares parallels with the well-characterized KDEL 
receptors that recognize conserved KDEL motifs (HDEL in 
yeast) found at the C terminus of many soluble ER resident pro-
teins (Munro and Pelham, 1987; Pelham et al., 1988). The puri-
fied human KDEL receptor displays pH-dependent affinity for 
KDEL peptides with increased binding activity at an acidic pH  
relative to neutral, which is thought to promote KDEL receptor– 
ligand interactions in the Golgi complex and release KDEL li-
gands in the neutral pH of the ER (Scheel and Pelham, 1996). 
Interestingly, the pH gradient between ER and Golgi compart-
ments appears to have an opposite effect on anterograde cargo 
receptors such as ERGIC53, which binds newly synthesized 
glycoproteins in the ER for transport and release in more acidic 
Golgi compartments (Appenzeller et al., 1999; Appenzeller-
Herzog et al., 2004). We observed a similar pH profile for Gls1 
binding to Erv41–Erv46 as reported for the interaction between 
KDEL receptor and its ligands (Scheel and Pelham, 1996) in 
support of the retrograde receptor model. However, we also ob-
served that Gls1 bound to Erv41–Erv46 in detergent-solubilized 
membranes extracts was not readily dissociated under reduced pH 
conditions, suggesting that additional factors may be required 
to facilitate Gls1 release in the ER lumen.

Figure 9.  In vivo disturbance of pH gradients by bafilomycin A1 causes 
secretion of Gls1. WT (CBY740) cells were incubated for 2 h in the pres-
ence or absence of 20 µM bafilomycin A1 (in DMSO). Cultures were sepa-
rated into intracellular and extracellular fractions. Pellets in the intracellular 
fraction were lysed, proteins secreted to the extracellular fraction were 
precipitated by TCA, and samples were resolved on a polyacrylamide gel 
then immunoblotted for Gls1, CPY, Erv41, and Yet3.
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overnight in minimal medium (YMD [0.7% yeast nitrogen base without 
amino acids, 2% glucose, and the appropriate supplement mixture (complete 
supplement mixture; MP Biomedicals)]) and back diluted into YPD medium. 
For overexpression from the GAL1 promoter, cells were grown overnight in 
YPD or YMD containing 1% galactose and 1% glucose and back diluted to 
YPD containing 1.5% galactose and 0.5% glucose. For overexpression 
from the Cu2+-inducible CUP1 promoter in plasmid pYEX4T-1-Gls1, GST-
Gls1 expression was induced by the addition of 0.5 mM copper sulfate.

Plasmid construction
Plasmids and primers used in this study are listed in Tables S1 and S2. Ge-
nomic DNA from CBY740 was used as the template for PCR amplification 
and cloning. The DNA sequences of GLS1 (YGL027C), ERV46 (YAL042W), 
and FPR2 (YDR519W) were obtained from the Saccharomyces Genome 
Database. For overexpression of GST-Gls1 in yeast, the GLS1 sequence 
encoding amino acids 33–833 was amplified by PCR using primers GLS1-
EcoRI and GLS1–SalI-1. The PCR product was ligated into the EcoRI and 
SalI restriction sites of the pYEX4T-1-ERV46 plasmid (obtained from Research 
Genetics; Macreadie et al., 1991; Ward et al., 1994) to generate plasmid 
pYEX4T-1–GLS1. To construct pRS425-GLS1 and pRS317-GLS1, GLS1 and 
300 bp of its flanking upstream and downstream sequences were ampli-
fied using primers GLS1-NotI and GLS1–SalI-2 and ligated into the NotI 
and SalI restriction sites of pRS425 (Christianson et al., 1992) and pRS317 
(Eriksson et al., 2004). The correct GLS1 sequences were verified by DNA 
sequencing using primers GLS1-SalI-1, GLS1-NotI, GLS1-SalI-2, GLS1-XhoI, 
GLS1-IntF, and GLS1-IntR. The plasmid pRS317-HA-GLS1 was constructed 
as previously described (Jiang et al., 1996). The triple HA epitope tag was 
inserted into the unique EcoRI site located between codons 24 and 25 of 
GLS1 in plasmid pRS317-GLS1.

For overexpression of Fpr2 fused to the C terminus of GST (GST-Fpr2) 
in Escherichia coli, the FPR2 sequence encoding amino acids 18–135 was 
amplified by PCR using primers FPR2-BamHI and FPR2-EcoRI. The PCR 
product was ligated into the BamHI and EcoRI restriction site of the pGEX2T 
plasmid (GE Healthcare) to generate plasmid pGEX2T-FPR2.

glyco-pro–-factor in our fusion assays. It is also possible that 
some cellular changes are caused by Erv41–Erv46 function as 
an anterograde cargo receptor for specific proteins as proposed 
for Golgi localization of Ktr4 (Noda et al., 2014). However, we 
note that the erv41 and erv46 strains do not display an acti-
vated unfolded protein response as reported for other antero-
grade cargo receptor deletion strains (Jonikas et al., 2009).

Finally, observed increases in cell surface proteins (e.g., 
Tos1 and Ecm25) and transcription regulatory machinery (e.g., 
Ngg1 and Sap30) may reflect cellular responses to perturba-
tion of the ER luminal environment. Further analyses will be 
required to confirm the magnitude of these increases. Regard-
less, the global snapshot provided by whole cell proteomics 
suggests clear models that can be tested through SILAC and ex-
perimental analyses of available yeast mutant strains to more 
fully define the cellular function of Erv41–Erv46.

Materials and methods
Yeast strains and growth media
Yeast strains used in this study are listed in Table 1. Strains were grown at 
30°C in rich medium (YPD [1% Bacto yeast extract, 2% Bacto-peptone, 
and 2% glucose]). Growth of cell cultures was monitored by absorbance 
(OD) at 600 nm (OD600). Precultures were grown overnight in YPD to sta-
tionary phase, and fresh YPD was inoculated with precultures to an OD600 
of 0.1. Cells were grown at 30°C and harvested in mid–log phase be-
tween 0.8 and 1.2 OD600. Yeast strains containing plasmids were grown 

Table 1.  Yeast strains used in this study

Strain Genotype Reference

CBY80 (=FY834) MAT his3-200 ura3-52 leu2-1 lys2-202 trp1-63 Winston et al., 1995
CBY740 (=BY4742) MAT his31 leu20 lys20 ura30 Winzeler et al., 1999
CBY742 (=BY4741) MATa his31 leu20 met150 ura30 Winzeler et al., 1999
CBY770 CBY80 with ERV46::HISMX6-PGAL1-3HA Otte et al., 2001
CBY978 CBY80 containing pRS424-ERV41 and pRS426-ERV46 Otte et al., 2001
CBY1086 CBY740 with gls1::kanR Winzeler et al., 1999
CBY1168 CBY740 with erv41::kanR Winzeler et al., 1999
CBY2732 CBY740 with pep4::kanR Winzeler et al., 1999
CBY3306 CBY740 with erv41::HIS3 pep4::kanR This study
CBY3561 CBY740 containing pYEX4T-1-GLS1 This study
CBY3612 CBY740 with erv46::kanR This study
CBY3728 CBY80 with ERV46::HISMX6-PGAL1-3HA containing pRS425-GLS1 This study
CBY3758 CBY740 with fpr2::kanR Winzeler et al., 1999
CBY3785 CBY80 with ERV46::HISMX6-PGAL1-3HA containing pRS424-ERV41 and pRS425-GLS1 This study
CBY3791 CBY742 with JEM1::HIS3MX6-TAP Ghaemmaghami et al., 2003
CBY3793 CBY742 with FPR2::HIS3MX6-TAP Ghaemmaghami et al., 2003
CBY3811 CBY742 with JEM1::HIS3MX6-TAP erv41::kanR This study
CBY3813 CBY742 with FPR2::HIS3MX6-TAP erv41::kanR This study
CBY3832 CBY80 containing pRS425-GLS1 This study
CBY3841 CBY740 with gls1::kanR containing pRS317-HA-GLS1 This study
CBY3854 CBY740 with pep4::kanR gls1::natR This study
CBY3855 CBY740 with erv41::HIS3 pep4::kanR gls1::natR This study
CBY3864 CBY740 with pep4::kanR gls1::natR containing pRS317-HA-GLS1 This study
CBY3867 CBY740 with erv41::HIS3 pep4::kanR gls1::natR containing pRS317-HA-GLS1 This study
CBY3897 CBY742 with VPS62::HIS3MX6-TAP Ghaemmaghami et al., 2003
CBY3908 CBY742 with VPS62::HIS3MX6-TAP erv41::kanR This study
CBY4002 CBY740 with erv46::kanR containing pRS316 This study
CBY4003 CBY740 with erv46::kanR containing pRS316-ERV46 This study
CBY4004 CBY740 with erv46::kanR containing pRS316-ERV46(KK/RR) This study

http://www.jcb.org/cgi/content/full/jcb.201408024/DC1
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combined to obtain 50 ml of semipurified GST-Gls1. This fraction was 
mixed with 5 ml of glutathione-agarose (Sigma-Aldrich) for 1 h with rota-
tion at 4°C and then applied into a 1.5 × 10–cm column followed by 
wash with TBS and elution with TBS containing 10 mM glutathione. The 
fractions containing highly purified GST-Gls1 protein were determined by 
Coomassie blue–stained polyacrylamide gels and pooled to yield 3 ml of 
0.8 mg/ml protein.

Membrane preparations and subcellular fractionation
Yeast semi-intact cells were prepared as previously described (Baker et al., 
1988) with minor modification as follows. Cells were grown to the mid–log 
phase, harvested by centrifugation at 5,000 rpm for 5 min at room tem-
perature in a rotor (GS-3; Sorvall), and resuspended in Tris/DTT buffer 
(100 mM Tris-HCl, pH 9.4, and 10 mM DTT). After incubation at room 
temperature for 10 min, cells were harvested by centrifugation, resuspended 
in lyticase buffer (20 mM Tris-HCl, pH 7.5, 0.7 M sorbitol, 0.5% glucose, 
2 mM DTT, and lyticase), and incubated for 15 min at room temperature 
until the OD600 decreased to <20% of the initial value. Spheroplasted cells 
were harvested by centrifugation at 5,000 rpm for 10 min at 4°C in an SS-34 
rotor and resuspended at 75 OD280 U/ml in semi-intact cells lysis buffer 
(20 mM Hepes, pH 7.0, 0.4 M sorbitol, 150 mM KOAc, and 2 mM MgOAc) 
at 4°C. 100-µl aliquots of this spheroplast suspension were transferred to 
tubes, frozen in liquid N2, and stored at 80°C.

Yeast ER microsomes were prepared as previously described 
(Wuestehube and Schekman, 1992) with modifications as follows. Sphero-
plasted cells as prepared in the previous paragraph were resuspended 
in JR lysis buffer (20 mM Hepes, pH 7.4, 0.1 M sorbitol, 50 mM KOAc,  
2 mM EDTA, 1 mM PMSF, and 1 mM DTT) and homogenized with 10 
strokes of a chilled-glass Potter–Elvehjem homogenizer. Homogenates were 
centrifuged for 5 min at 4°C in an SS-34 rotor at 3,500 rpm. This superna-
tant fraction was then centrifuged for 10 min at 4°C in an SS-34 rotor at 
15,000 rpm. The resulting membrane pellets were resuspended in JR lysis 
buffer and loaded on top of a 1.2 M/1.5 M sucrose step gradient. Gradi-
ents were spun at 40,000 rpm for 1 h in a rotor (SW-60; Beckman Coulter) 
at 4°C. The microsome band that sedimented to the 1.2 M/1.5 M su-
crose interface was collected and washed with B88 buffer (20 mM Hepes, 
pH 6.8, 250 mM sorbitol, 150 mM KOAc, and 5 mM MgOAc) by centrif-
ugation at 15,000 rpm for 10 min at 4°C in an SS-34 rotor. The final mi-
crosome pellet was resuspended at 16 OD280 U/ml in B88 buffer at 4°C. 
100-µl aliquots were transferred to plastic tubes, frozen in liquid N2, and 
stored at 80°C.

For subcellular fraction of membranes, whole cell lysates were re-
solved on sucrose density gradients as described previously (Powers and 
Barlowe, 1998) with minor modifications as follows. Spheroplasted cells 
were resuspended in lysis buffer (10 mM Hepes, pH 7.4, 12.5% sucrose, 
1 mM EDTA, and 0.5 mM PMSF) and homogenized with 10 strokes of a 
chilled-glass Potter–Elvehjem homogenizer. The homogenates were centri-
fuged for 5 min at 4°C in an SS-34 rotor at 3,500 rpm. The supernatant 
fraction was loaded onto the top of a sucrose step gradient. For preparing 
sucrose gradients, 1 ml of 60% sucrose was placed at the bottom of an 
ultracentrifuge tube (SW-40; Beckman Coulter) and overlaid with 0.75-ml 
steps of sucrose from 54% to 18% (54, 50, 46, 42, 38, 34, 30, 26, 22, 
and 18%) in Hepes buffer (10 mM Hepes, pH 7.4, and 1 mM MgCl2). Gra-
dients were centrifuged at 4°C for 3 h in an SW-40 rotor at 36,000 rpm, 
and 0.75-ml fractions were collected from the top of the gradient. Fractions 
were diluted 1:1 in SDS-PAGE sample buffer, heated at 75°C for 5 min, 
resolved on 10.5% polyacrylamide gels, and immunoblotted for Gls1, CPY, 
Ssp120, and Yet3.

To determine whether Gls1 is an integral membrane protein, fraction-
ation and solubilization procedures were performed as previously de-
scribed (Otte et al., 2001) using microsomes from the WT strain (CBY740). 
Microsomes were suspended in buffer pH 7.0 (20 mM Hepes, pH 7,  
150 mM KOAc, and 2 mM EDTA), in buffer pH 7.0 with 1% Triton X-100,  
or in buffer pH 11.0 (0.1 M sodium carbonate, pH 11, and 2 mM EDTA) 
and incubated on ice for 10 min. After centrifugation at 60,000 rpm in a 
rotor (TLA100.3; Beckman Coulter), equivalent amounts of the total, super-
natant, and pellet fractions were resolved on 10.5% polyacrylamide gels 
and immunoblotted for Gls1, Erv41, Erv46, and Yet3.

In vitro assays
In vitro COPII budding assays were performed by incubation of ER micro-
somes in the presence or absence of purified COPII proteins (Sar1, Sec23-
24, and Sec13-31) at 25°C for 20 min as previously described (Barlowe 
et al., 1994). After centrifugation of these reactions at 14,000 rpm in a 
rotor (FA45-30-11; Eppendorf) to pellet ER membranes, budded vesicles 

To convert the Erv46 lysine residues in positions 412 and 413 to ar-
ginine residues, ERV46 and 300 bp of upstream sequence were ampli-
fied using pRS316-ERV46 as a template for primers YAL042w-NotI and 
ERV46(KK/RR)-R followed by gel purification (QIAGEN). Next, ERV46 and 
300 bp of the downstream sequence were amplified using pRS316-ERV46 
and the primers YAL042w-BamHI and ERV46(KK/RR)-F followed by gel puri-
fication. Both gel-purified PCR products were then mixed and used as the 
template to amplify ERV46 containing the point mutations using primers 
YAL042w-NotI and YAL042w-BamHI. This PCR product was ligated into the 
NotI and BamHI restriction site of pRS316 (Sikorski and Hieter, 1989) to ob-
tain plasmid pRS316-ERV46(KK/RR). The correct ERV46 sequences were 
verified by DNA sequencing using primers YAL042w-NotI, YAL042w-BamHI, 
ERV46-IntF, and ERV46-IntR.

Strain construction
To generate the erv41 pep4 double knockout strain (CBY3306), ERV41 
in the pep4 strain (CBY2732) was targeted for gene disruption with the 
HIS3 gene using plasmid pFA6a-His3MX6 and primers Erv41-KO-F and 
Erv41-KO-R (Longtine et al., 1998). To generate the erv46 strain (CBY3612), 
ERV46 in the WT strain (CBY740) was targeted for gene disruption with the 
kanamycin-resistance (kanR) gene using plasmid pFA6a-kanMX6 and prim-
ers Erv46-KO-F and Erv46-KO-R (Longtine et al., 1998). For CBY3854 and 
CBY3855, GLS1 in the pep4 strain (CBY2732) and the erv41 pep4 
strain (CBY3306) was deleted with the nourseothricin-resistance (natR) gene 
using plasmid pFA6a-natMX6 and primers Gls1-KO-F and Gls1-KO-R (Hentges 
et al., 2005). All strains with C-terminally TAP-tagged ORFs were purchased 
from Thermo Fisher Scientific, and ERV41 in these strains was deleted with 
the kanR gene using plasmid pFA6a-kanMX6 and primers Erv41-KO-F and 
Erv41-KO-R (Longtine et al., 1998). All yeast transformations were performed 
using the lithium acetate technique (Elble, 1992).

Antibodies and immunoblotting
Rabbit polyclonal antiserum against Erv41 and Erv46 (Otte et al., 2001), 
CPY (Rothblatt et al., 1989), Kar2 (Brodsky and Schekman, 1993), ALP 
(Haas et al., 1995), Erv26 (Bue et al., 2006), and Yet3 (Wilson and Barlowe, 
2010) have been described previously. Anti-Erv26p and anti-Yet3 rabbit 
antibodies were raised against GST fusion proteins and used for detection  
of GST where indicated. Polyclonal antiserum against Fpr2 was raised in 
rabbits using purified GST-Fpr2 as the antigen (Thermo Fisher Scientific). 
GST-Fpr2 was expressed in DH5 cells, lysed, and purified by glutathione-
agarose chromatography as described by the manufacturer (GE Health-
care). Polyclonal antiserum for Ssp120 was raised in rabbits using purified 
6×His-tagged Ssp120 expressed from the pET15b plasmid (EMD Milli-
pore) as an antigen. Sheep anti–mouse and donkey anti–rabbit secondary 
horseradish peroxidase–linked antibodies were purchased from GE Health-
care, and mouse monoclonal antibodies against HA (HA.11) were obtained 
from Covance. All primary antibodies were used at a 1:1,000 dilution 
except for CPY (1:1,500 dilution), and secondary antibodies were at a 
1:20,000 dilution. Chemiluminescence from immunoblots was enhanced 
with SuperSignal West Pico Chemiluminescent substrate (Thermo Fisher Sci-
entific) or Luminata Crescendo Western HRP substrate (EMD Millipore) and 
detected using a G:BOX Chemi XR5 (Syngene). For densitometric analysis, 
captured images of immunoblots were quantified with GeneTools image 
analysis software (Syngene).

Polyclonal antiserum against Gls1 was raised in rabbits using puri-
fied GST-Gls1 as an antigen (Covance). To prepare GST-Gls1, yeast cells 
containing pYEX4T-1–GLS1 (CBY3561) were precultured in YMD contain-
ing complete supplement mixture–URA and back diluted into 7.5 liters of 
YPD. Cells were grown to 0.5 OD600, and copper sulfate was added 
to a final concentration of 0.5 mM. After induction for 3 h, cells were 
harvested and washed with TBS (50 mM Tris/Cl, pH 7.4, and 150 mM  
NaCl). Cell pellets were resuspended to 1.8 g/ml in TBS and frozen into 
cell beads by dripping into liquid nitrogen. Cells were lysed in liquid ni-
trogen using a Waring blender to mix the beads for 2 min to obtain a fine 
cell powder. The cell powder was resuspended in 175 ml of TBS contain-
ing 1 mM PMSF and 1 mM DTT and centrifuged for 5 min at 4°C in rotor 
(SS-34; Sorvall) at 3,500 rpm. The resulting supernatant fraction was then 
centrifuged for 30 min at 4°C in SS-34 rotor at 15,000 rpm. This super-
natant was then applied to a Q Sepharose (GE Healthcare) column (2.5 × 
10 cm; Bio-Rad Laboratories) that contained a 70-ml packed bed volume 
using a fast protein liquid chromatography system (AKTA; GE Healthcare). 
After washing with TBS, the GST-Gls1 protein was eluted with a 250-ml 
continuous buffer gradient from 150 mM to 0.5 M NaCl. The fractions 
containing GST-Gls1 were monitored by Western blotting using GST-Erv26 
antiserum for detection of GST-tagged proteins, and peak fractions were 



207Erv41–Erv46 complex serves as a retrograde receptor • Shibuya et al.

digested with the endoproteinase LysC by filter-aided sample preparation. 
Peptides were recovered in 0.5 M NaCl, acidified by the addition of trifluor
oacetic acid, and cleared of precipitates via centrifugation at 17,000 g for  
5 min. Peptides (5 µg) were desalted and injected into the high-performance 
liquid chromatography. Reversed-phase chromatography was performed 
on a liquid chromatograph system (EASY-nLC 1000; Thermo Fisher Scientific) 
connected to a mass spectrometer (Q Exactive; Thermo Fisher Scientific) 
through a nano-electrospray ion source. Eluted peptides from the column 
were directly electrosprayed into the mass spectrometer. Mass spectra 
were acquired on the Q Exactive in a data-dependent mode to automati-
cally switch between full scan mass spectrometry and ≤10 data-dependent 
tandem mass spectrometry scans. The resulting mass spectrometry and  
tandem mass spectrometry spectra were analyzed using MaxQuant (ver-
sion 1.3.0.5), using its integrated Andromeda search algorithms. Triplicate 
liquid chromatography runs coupled to mass spectrometry were performed 
for independent biological duplicates. Data analysis was performed, and 
significance values were determined as previously described (Fröhlich  
et al., 2013).

Fpr2 and Gls1 secretion
Extracellular secretion of proteins was analyzed as previously described 
(Belden and Barlowe, 2001). In brief, cells were precultured in YPD or 
complete synthetic media and back diluted in YPD to an OD600 of 0.15, 
and cultures were grown to an OD600 of 0.8. Cultures were then centri-
fuged at 14,000 rpm, and proteins contained in the supernatant fraction 
(1.3 ml) were precipitated by addition of TCA to a final concentration of 
10%. TCA-precipitated proteins were collected by centrifugation, washed 
with 96% ethanol, resolved on 15% polyacrylamide gels, and immunoblotted 
for Gls1, Erv41, Yet3, and Fpr2.

Bafilomycin A1 treatment
WT (CBY740) cells were grown in YPD to 0.5 OD600, and 2 mM bafilo-
mycin A1 in DMSO was added to a final concentration of 20 µM. After 
treatment for 2 h, cells were harvested and separated into intracellular and 
extracellular fractions. Pellets in the intracellular fraction were lysed, and 
proteins secreted to the extracellular fraction were precipitated by TCA as 
described in the previous section.

Online supplemental material
Fig. S1 shows that the erv46 mutation reduces cellular levels of Gls1 
similarly to erv41 and is consistent with a functional requirement for both 
subunits of the Erv41–Erv46 complex. Fig. S2 indicates that the absence 
of Erv41 causes mislocalization of Gls1 to vacuoles by visualizing HA-
Gls1 colocalized with the vacuolar marker ALP in an immunofluorescence 
microscopy experiment. Fig. S3 shows that mutation of a C-terminal COPI 
binding motif in Erv46 causes Gls1 mislocalization. Table S1 lists the plas-
mids used in this study. Table S2 lists primers used in this study. Table S3 
provides the mass spectrometry peptide data for the erv41 and erv46 
strains from SILAC experiments and proteome changes sorted from small-
est to largest log2 (erv41/control) scores and is provided online in an 
Excel (Microsoft) spreadsheet. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.201408024/DC1.
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