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Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as
hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric
anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and
derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form
analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice
and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory
not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond
the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice
so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable
realm of the effective medium theory and introduces many possibilities in the design of structures with
desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic
medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory,
and control of the electromagnetic waves in the sample is clearly demonstrated.

M
etamaterials, that is, artificial materials that possess unconventional material parameters, have been
employed to achieve unprecedented functionality in the control of electromagnetic and acoustic waves,
such as negative refraction1–3 and superlensing4,5. One prominent class of metamaterials is anisotropic

metamaterials6, the material parameters of which are not scalars but tensors, with their principle components
taking different values. This property causes the dispersion relations to display elliptic or hyperbolic shapes7. Such
anisotropic metamaterials exhibit distinctive properties, including negative refraction8,9, super-resolution in the
far-field through image magnification10, and enhanced spontaneous emission11. When one principle component
in the material parameter tensor changes sign, a topological transition occurs12–13. Earlier this year, Luo et al.
proposed a method to arbitrarily control electromagnetic flux using a type of anisotropic medium. In this method,
only one principle component is near zero and the other components take positive values14. However, a real
sample of such a medium is yet to be reported.

The unconventional material parameters of a metamaterial are based on the following two premises: (1) the
structure has a subwavelength nature and (2) the metamaterial has local resonances in its building blocks. The
subwavelength scale allows the heterogeneous material to be considered as a homogenized effective medium,
whereas local resonances lead to exotic values of the effective medium parameters that are rarely or never
observed in nature. The existence of resonances poses a considerable challenge to conventional effective medium
theories (EMTs), such as the well-known Maxwell-Garnett theory and the Bruggeman theory15. This is because
the basic principle of a conventional EMT is to minimize the scattering at the quasi-static limit, while the local
resonances usually occur in or even beyond the long-wavelength regime. In the long-wavelength regime, the
wavelength in the host medium (l0) is large compared to the size of the unit cell, but the wavelength in the
scatterer (ls) can be very small16. In contrast, both l0 and ls should be much larger than the size of the unit cell in
the quasi-static limit.

Efforts have been made to extend conventional EMTs to higher frequency (or short wavelength) regimes. For
example, a coherent potential approximation (CPA) method has been applied to both electromagnetic and elastic
waves to enlarge the applicability range of the EMTs17,18. Equivalent results were also obtained by taking full
account of the interactions among the scatterers using the multiple-scattering formalism19,20. In addition, a
rigorous approach based on the Floquet representation was proposed to homogenize metamaterials with periodic
arrays of dielectric inclusions21–23. Later, this approach was generalized to incorporate both dielectric and mag-
netic materials, and a first-principles homogenization scheme was developed from dyadic Green’s functions and
polarizability coefficients. An analytical solution was obtained for periodic systems with isotropic unit cells24,25.
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Very recently, a method based on reproducing the lowest orders of
scattering amplitudes from a finite volume of metamaterials was
proposed. This can give accurate predictions of the effective medium
parameters over almost the entire Brillouin zone26. These schemes
work well for isotropic media in which both the scatterers and the
lattice structures are isotropic. For anisotropic media, however, the
homogenization scheme is more challenging, as it involves more
degrees of freedom than in the case of isotropic media. Many con-
ventional anisotropic EMTs are extensions of the Maxwell-Garnett
theory7,27–29 and are consequently limited in application to the quasi-
static regime. A multiple-scattering-based scheme has been intro-
duced to study the effective medium properties of metamaterials
with anisotropic lattices and isotropic scatterers30,31, yielding a scalar
bulk modulus and tensorial mass density at finite frequencies in the
long-wavelength regime. There exist other schemes that are also
applicable to anisotropic scatterers, including the field-averaging32,33,
boundary-integration13,34, and parameter-retrieving methods35–38.
The field-averaging and boundary-integration methods require prior
knowledge of field distributions, while the parameter-retrieving
method requires information about the transmission and reflection
coefficients and may give non-unique solutions. More importantly,
none of these three methods offer a closed-form analytical solution
that can directly predict reliable effective medium parameters from
the material and geometric information of the system.

In this work, we consider a rectangular array of elliptic cylinders
embedded in air and study its scattering properties. We discover that
the special properties of elliptic coordinates and Mathieu functions
(solutions to Helmholtz equations in elliptic coordinates) enable us to
derive a closed-form analytical solution for the anisotropic effective
medium parameters, provided the aspect ratio of the lattice and the
eccentricity of the elliptic cylinder satisfy certain conditions. We verify
the derived EMT by comparing its predictions with full-wave band-
structure simulations, and excellent agreements are found at finite
frequencies beyond the long-wavelength limit. This new EMT suggests
promising opportunities to expand the design of anisotropic metama-
terials. We show that a recently theoretically proposed anisotropic
near-zero material, which can manipulate electromagnetic flux, can
be achieved from the predictions of the derived EMT. The metama-
terial is composed of common dielectric materials with simple struc-
tures, which makes the fabrication process feasible and would
therefore greatly benefit the practical realization of the material.

Results
Modeling and the analytical solution. The system considered in our
study is a two-dimensional (2D) metamaterial consisting of a
periodic rectangular array of elliptic cylinders with permittivity, es,
and magnetic permeability, ms, embedded in a background material
with permittivity, e0, and magnetic permeability, m0. A unit cell of the
metamaterial is illustrated in Fig. 1(a). The elliptic cylinder’s semi-
major and semi-minor axes are as and bs, respectively, and its filling
ratio, i.e., the ratio of the area of the elliptic cylinder to the area of the
unit cell, is f. Given as, bs, and f, the length, a, and the width, b, of the
unit cell are determined by a2{b2~p a2

s {b2
s

� �
and abf 5 pasbs. For

the dispersion microstructure15, in which the scatterers are always
dispersed in the matrix, the CPA scheme considers the scattering of a
coated cylinder in an effective medium (as shown in Fig. 1(b)). The
inner elliptic cylinder represents the scatterer in the metamaterial
and the coating layer is the background medium, while the semi-
major and semi-minor axes of the outer elliptic cylinder are a0 and
b0, respectively. Such a coated elliptic cylinder represents the
microstructure of the metamaterial or the average cell16 in the CPA
scheme, as the outside environment has been averaged as an effective
medium. It is generalized from the circular (or spherical) average
cells of isotropic lattices with isotropic scatterers17,39. The cross-
sectional area of the average cell should be identical to that of a
unit cell, i.e., pa0b0 5 ab, so that the filling fraction of the scatterer

in the average cell is fixed to that of the metamaterial. The aspect ratio
of the average cell should also equal that of the rectangular unit cell,
i.e., a0/b0 5 a/b, in order to preserve the symmetry properties. With
this average cell, the anisotropic property of the metamaterial is
maintained and the scattering property in the effective medium is
correctly produced. The effective medium parameters (e

I
eff ,m

I

eff ) are
obtained when the total scattering of the average cell vanishes in the

limit
1
2

keff (a0zb0)vv1. In the Method section, we present detailed

steps to derive the EMT of the metamaterial for a transverse-electric
(TE)-polarized wave, in which the electric field is parallel to the
elliptic cylinders (~E~(0,0,Ez)). Here, we refer only to the final
solutions, which are expressed as

eeff z2e0
J ’e0(q0; j0)

k2
0a0b0Je0(q0; j0)

eeff z2e0
Ye0

’(q0; j0)

k2
0a0b0Ye0(q0; j0)

~
Ye0(q0; j0)

iJe0(q0; j0)

De0(0)

1zDe0(0)
, ð1aÞ

meff ,x{m0
a0Jo1(q0; j0)

b0J 0o1(q0; j0)

meff ,x{m0
a0Yo1(q0; j0)

b0Y 0o1(q0; j0)

~
Y 0o1(q0; j0)

iJ 0o1(q0; j0)

Do1(0)

1zDo1(0)
, ð1bÞ

and

meff ,y{m0
b0Je1(q0; j0)

a0J 0e1(q0; j0)

meff ,y{m0
b0Ye1(q0; j0)

a0Y 0e1(q0; j0)

~
Y 0e1(q0; j0)

iJ 0e1(q0; j0)

De1(0)

1zDe1(0)
, ð1cÞ

where the effective permittivity, eeff, is a scalar related to the monopolar
mode and the effective permeability is a tensor whose principle
components meff,x and meff,y are associated with the y-polarized and x-
polarized dipolar modes, respectively. The x- and y-axes are set in the
directions of the semi-major and semi-minor axes of the elliptic
cylinders, respectively. Note that all of the notations and subscripts
appearing in Eq. (1) are defined or introduced in the Method section.

Verification of the EMT. In Fig. 2(a), we plot the band structure of a
metamaterial obtained from a full-wave simulation using black dots.
The metamaterial is composed of elliptic cylinders in a rectangular
lattice embedded in air and the geometric sizes of the scatterer and
the lattice are as 5 0.26r, bs 5 0.2r, a 5 1.16r, and b 5 1.12r, where r
is a normalized length unit. The material parameters are chosen as es

5 12, ms 5 1 for the scatterer, and e0 5 1, m0 5 1 for air. Also plotted
in Fig. 2(a) (in red solid curves) are the band structures predicted by
the EMT, i.e., Eq. (1). The corresponding effective permittivity and
permeability are shown in Figs. 2(b) and 2(c), respectively. They
provide us with a clear picture and understanding of the dispersion
relations. We label three points on the band structure at the Brillouin

Figure 1 | (a) Schematic unit cell and (b) microstructure based on
coherent potential approximation. The proposed 2D periodic system is

composed of elliptic cylinders embedded in a rectangular lattice.
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zone center as ‘‘A’’, ‘‘B’’, and ‘‘C’’ (the blue dots in Fig. 2(a)). The
eigenfrequencies of these points are ~vA~0:531, ~vB~0:555, and
~vC~0:593, respectively, and the dimensionless frequency,
~v~va=2pc0, is used (c0 is the wave velocity in air). Comparing
Fig. 2(a) with Figs. 2(b) and 2(c), we find that ~vA, ~vB, and ~vC

correspond exactly to the frequencies at which meff,y, eeff, and meff,x

become zero. Because the dispersion relations of such an anisotropic
medium are determined by7

k2
eff ,x

meff ,y
z

k2
eff ,y

meff ,x
~v2eeff , ð2Þ

it is easy to obtain the dispersion relations in different directions. For
example, in the CX (CY) direction, i.e., keff,y 5 0 (keff,x 5 0), we have
keff ,x~v

ffiffiffiffiffiffi
eeff
p ffiffiffiffiffiffiffiffiffiffi

meff ,y
p

(keff ,y~v
ffiffiffiffiffiffi
eeff
p ffiffiffiffiffiffiffiffiffiffi

meff ,x
p

). If both eeff and meff,y

are positive (negative) over a frequency range, then there is a
positive (negative) band in the CX direction. If these two quantities
have different signs, then there is a gap in the CX direction rather
than a pass band. The same rules apply to the dispersion relations
along the CY direction if we replace meff,y with meff,x. With these rules,
all the dispersion relations near points ‘‘A’’, ‘‘B’’, and ‘‘C’’ can be
easily interpreted. For example, for frequencies between ~vA and
~vB, both eeff and meff,x are negative and meff,y is positive. Thus, there
is a negative band in the CY direction, but a gap in the CX direction.
When the frequency is slightly higher and located between ~vB and
~vC , both eeff and meff,y are positive and meff,x is negative, explaining the
positive band in the CX direction and the gap in the CY direction.
The flat bands near points ‘‘A’’ and ‘‘C’’ in the CY and CX directions
are in fact the longitudinal bands induced by meff,y and meff,x equal to
zero17, respectively.

Figure 2(a) illustrates the excellent agreements between the
numerical simulations and the derived EMT in the center of the
Brillouin zone. We also notice that the red curve deviates from the
black dots when the Bloch wave vector is far removed from the C
point. This is reasonable because we used the condition
1
2

keff (a0zb0)vv1 in deriving Eq. (1), which limits the range of

applicability of the EMT. When the Bloch wave vector is sufficiently
large that this condition no longer holds, the EMT is deemed to be
inaccurate. Nevertheless, the derived EMT still yields accurate pre-
dictions for the effective medium parameters near the C point. Note
that the red curves coincide with the black dots in the frequency
regimes ~v[(0, 0.11) and (0.48, 0.61) in the CX direction and (0,
0.11) and (0.53, 0.66) in the CY direction. We also computed the
transmission spectrum of a plane wave normally incident on a 9-layer
metamaterial sample embedded in air in these frequency regimes, and
the results are plotted in Figs. 2(d) (x-direction) and 2(e) (y-direction)
using black dots. For comparison, the transmission spectrum of the
same sample but with the metamaterial replaced by a slab of effective
medium is represented by the red curves, which are calculated from
the standard formula of the transmission coefficient of a layered
medium40. Good agreements between the numerical simulation and
the effective medium prediction are again observed. Since the band
structure and transmission coefficients can be used to determine the
effective velocity and the impedance of the sample, respectively,
Figs. 2(a), 2(d), and 2(e) offer us clear evidence that the EMT is valid.

A systematic study of the applicability of the EMT is presented in
the Discussion section. Here we emphasize that, for this case, Eq. (1)
is valid even when the dimensionless frequency is as high as 0.66, at
which the wavelength in the background medium is 1.52a (or 1.57b),
far beyond the quasi-static limit. Figures 2(f)22(h) illustrate the field
distributions of the eigenstates at points ‘‘A’’, ‘‘B’’, and ‘‘C’’, which
clearly show an x-polarized dipolar mode, a monopolar mode, and a
y-polarized dipolar mode, respectively. These figures again support
the results given by Eq. (1) that meff,y, eeff, and meff,x are determined by
the scattering coefficients of the x-polarized m 5 1 mode, the m 5 0
mode, and the y-polarized m 5 1 mode, respectively.

An anisotropic zero-index metamaterial. As shown in Fig. 2, when
the frequency takes values of ~vA, ~vB, and ~vC , the system can be
regarded as an anisotropic zero-index material, because one of the
effective material parameters is near zero. Zero-index materials
have unprecedented abilities to manipulate electromagnetic
waves13,14,41–45. Here, we would like to focus particularly on ~vC ,

Figure 2 | Verification of derived EMT. (a) Band structure calculations (black dots) using COMSOL, compared with EMT predictions (red curves) from

Eq. (1). (b) Corresponding effective permittivity and (c) permeability calculated from Eq. (1). (d) Transmission coefficient (in logarithmic scale) of a

plane wave incident on a 9-layer metamaterial sample in the x-direction (black dots), compared with the EMT prediction (red curves). The left panel

shows the result in the frequency regime ~v[(0, 0.11); the right panel shows the data for the (0.48, 0.61) regime. (e) The same as (d) but in the y-direction.

The left panel shows the (0, 0.11) regime results; the right panel shows the (0.53, 0.66) regime data. (f) Eigenfield patterns for points ‘‘A’’, (g) ‘‘B’’, and (h)

‘‘C’’ marked in (a). Dark red and dark blue represent the positive and negative maxima of the electric field and arrows indicate the magnetic fields. The

geometric parameters are taken as as 5 0.26r, bs 5 0.2r, a 5 1.16r, and b 5 1.12r, while es 5 12, ms 5 1, e0 5 1, and m0 5 1 are the material parameters.
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where meff,x50.002R01, meff,y50.5637?meff,x, and eeff 5 0.1175. This
indicates that the system is an anisotropic zero-index material with
only one component of the permeability tensor near zero. Very
recently, such a medium was theoretically proposed and found to
be capable of cloaking an arbitrarily shaped defect and of exciting
evanescent waves near the defect boundaries, which therefore offers a
new method of controlling the electromagnetic flux14. Below, we
provide simulated results of the wave transmission through such a
metamaterial loaded with defects. Figure 3(a) illustrates a schematic
picture of the sample, which is a waveguide filled with a metamaterial
slab (composed of 12 3 10 previously mentioned unit cells). Three
defects labeled ‘‘1’’, ‘‘2’’, and ‘‘3’’ are distributed within the slab, as
shown in Fig. 3(a), with respective sizes of 2a 3 2b, 2a 3 b, and 3a 3

2b, and permeability m 5 1.5, 0.4, and 2.1, respectively. The
permittivity of the defects is set to 1. A TE-polarized plane wave
with frequency ~vC is incident from the left.

As a comparison, we plot in Fig. 3(b) the electric field for the same
sample shown in Fig. 3(a), but without the metamaterial. Strong
scattered waves are excited by the defects, which significantly distort
the incident wave fronts. However, the results are significantly
altered in the presence of the metamaterial. Figures 3(c), 3(e), and
3(g) show, respectively, the electric field and the magnetic fields in
the x- and y-directions. The field patterns at the outlet of the wave-
guide are almost the same as those of the incident wave, indicating
the good cloaking effect of the metamaterial. From Fig. 3(c), we
clearly observe an almost uniform field distribution in the y-direction
(vertical direction) and an apparent phase change in the x-direction
(horizontal direction) in the metamaterial, implying that the meta-
material is highly anisotropic. The wavelength is nearly infinite along
the y-direction, but finite along the x-direction. The corresponding
field distribution patterns for the same case, but with the metama-
terial replaced by the effective medium, are plotted in Figs. 3(d), 3(f),
and 3(h). Similar patterns to those shown in Figs. 3(c), 3(e), and 3(g)
at the inlet and outlet of the waveguide are seen, suggesting that the
EMT indeed describes the physical properties of the metamaterial.
From Fig. 3(f), we find that evanescent waves around the defects are
induced, which are essential for high transmittance14.

Figure 3 demonstrates the functionality of the anisotropic zero-
index metamaterial. Noting that the building blocks of the metama-
terial are dielectric elliptic cylinders, which are easily attainable, and
that there are no complex structures involved, we believe that the
fabrication of such a metamaterial is feasible.

Discussion
We support the validity and application of our anisotropic EMT by
illustrating a simulated example, in which a set of values of as/bs, es,
ms, and a filling ratio of f5pasbs/ab are chosen, and good agreements
between the numerical simulations and the EMT predictions are
observed. In the following, we conduct a systematic study of the
manners in which the material and geometric parameters influence
the accuracy of the EMT. In Fig. 4, we plot the frequencies at which
zero effective medium parameters are obtained as functions of vari-
ous parameters. The curves are obtained from Eq. (1) and the dots
correspond to the frequencies of the lowest monopolar and dipolar
states at the C point, which are results of the band structure calcula-
tions. In Figs. 4(a)–4(c), we fix the permeability of the scatterers to 1,
and change the aspect ratio, permittivity, and the filling ratio of the
scatterers, respectively. In the lower panel of Fig. 4, we study similar
cases to those in the upper panel but with the permittivity of the
scatterers fixed at 1. Figure 4 demonstrates that the predictions of our
EMT in general coincide with the band structure simulations. When
the aspect ratio and filling ratio increase, the predictions deviate from
the numerical results. This is reasonable as higher angular
momentum terms, i.e., m $ 2, contribute to the eigenmodes at low
frequencies when the elliptic cylinder becomes flatter or larger. This
effect leads to inaccurate predictions, because our derived effective

medium scheme does not consider higher angular momentum
terms.

In summary, we have derived an anisotropic EMT for a 2D elec-
tromagnetic metamaterial. This theory can provide closed-form ana-
lytical solutions for anisotropic effective medium parameters and
reveal the link between the effective medium parameters and the
resonant modes. It is found that the effective permittivity is related
to the monopolar mode and the effective permeability tensor is
associated with the dipolar modes. The validity of the theory is veri-
fied by band structure and transmission spectra calculations and we
find that the theory is valid even when the wavelength in the back-
ground medium is comparable to the size of the lattice, which is
beyond the long-wavelength limit. At the quasi-static limit, our
EMT recovers the Maxwell-Garnett formula. We expect that the
EMT developed here will facilitate the design of new metamaterials,
and we show that a recently proposed anisotropic zero-index mater-
ial can indeed be fabricated from a periodic structure. Additional
anisotropic metamaterials with various desired properties may also
be devised based on the predictions of our EMT. Although this
theory is derived for electromagnetic metamaterials, it can be gen-
eralized to its acoustic counterpart because of the mathematical map-
ping between these two systems in two dimensions.

Figure 3 | Demonstration of wave transmission through anisotropic
zero-index metamaterial loaded with defects. (a) Schematic of the sample,

which is an air waveguide filled with a metamaterial slab (composed of 12

3 10 unit cells). Inside the metamaterial, there are three defects marked as

‘‘1’’, ‘‘2’’, and ‘‘3’’, with respective sizes of 2a 3 2b, 2a 3 b, and 3a 3 2b,

permeabilities m 5 1.5, 0.4, and 2.1, respectively, and permittivity 1. (b)

Electric field pattern for a TE-polarized plane wave with frequency

~vC~0:593 incident from the left side of the waveguide without the

metamaterial. (c) Electric field pattern, (e) the x-component of the

magnetic field pattern, and (g) the y-component of the magnetic field

pattern under the same excitation conditions as (b), but with the

metamaterial slab in the waveguide. (d), (f), and (h) The same quantities as

those described in (c), (e), and (g), respectively, but the metamaterial slab

is replaced with an effective homogenous slab, which possesses effective

medium parameters eeff 5 0.1175, meff,x 5 0.0002, and meff,y 5 0.5637.
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Methods
Solution of the Helmholtz equation in elliptic coordinates. Considering the
microstructure shown in Fig. 1(b) for a TE-polarized wave, the electric field in the
effective medium can be expressed as46

Ecz~
X

m

acm(eff )Scm(qeff ; g)Jcm(qeff ; j)zbcm(eff )Scm(qeff ; g)H(1)
cm(qeff ; j), ð3Þ

and, similarly, the electric field in the background medium of the coating layer is

Ecz~
X

m

acm(0)Scm(q0; g)Jcm(q0; j)zbcm(0)Scm(q0; g)H(1)
cm(q0; j): ð4Þ

Here, g and j, where 0 # g , 2p and 0 # j , ‘, represent elliptic coordinates that can
be transformed into Cartesian coordinates according to x 5 c cos(g)cosh(j)and y 5 c

sin(g)sinh(j), where c~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s {b2
s

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0{b2
0

q
represents the focal length of the

elliptic coordinate system. In Eqs. (3) and (4), Sm(q; g) denote the angular Mathieu
functions of the first kind, while Jm(q; j) and H(1)

m (q; j) are the radial Mathieu
functions of the first and third kinds, respectively. The subscript m is an integer
denoting the order of the Mathieu functions. The angular and radial Mathieu
functions form solutions to the Helmholtz equation in elliptic coordinates, which split
into decoupled even (denoted by subscript e) and odd modes (denoted by subscript o)
with respect to the x-axis for non-zero m. Here, the general notation c 5 e, or o, is

used. The variable q0 (qeff) is a dimensionless quantity and is equal to
1
4

c2k2
0 (

1
4

c2k2
eff ),

where k0~v
ffiffiffiffi
e0
p ffiffiffiffiffi

m0
p

(keff ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

eff ,xzk2
eff ,y

q
) is the wave vector in the background

(effective) medium.

Boundary Conditions. The expansion coefficients in Eqs. (3) and (4), i.e. acm(s)and
bcm(s)with s 5 0, or eff, are related through the boundary conditions, which are the
continuities of the tangential components of both the electric and magnetic fields on
the interface between the background and effective medium. The boundary
conditions can be expressed as Ez(eff) 5 Ez(0) and Hg(eff)5hjEz(0)/m0 at j 5 j0,
where j0 5 cosh21(a0/c) 5 sinh21(b0/c) is the outer boundary of the coated cylinder
and Hg(eff) is expressed in the anisotropic effective medium as

Hg(eff )~
1

iv
ffiffiffiffi
D
p ½cosh (j0) sin (g)

LyEz(eff )

meff ,x
z sinh (j0) cos (g)

LxEz(eff )

meff ,y
�,

with D5 cosh2(j0)sin2(g) 1 sinh2(j0)cos2(g). Substituting Eqs. (3) and (4) into the
boundary conditions, we obtain

acm(eff )

bcm(eff )

" #
~Fc

A11 A12

A21 A22

� �
acm(0)

bcm(0)

" #
, ð5Þ

where Fc is

Fc~
Scm(q0; g)

m0Scm(qeff ; g)
½Vc1H(1)

cm(qeff ; j0){Vc2Jcm(qeff ; j0)�{1,

and

A11~Scm(qeff ; g)H(1)
cm(qeff ; j0)J ’cm(q0; j0){m0Vc2Jcm(q0; j0), ð6aÞ

A12~Scm(qeff ; g)H(1)
cm(qeff ; j0)H(1)

cm ’(q0; j0){m0Vc2H(1)
cm(q0; j0), ð6bÞ

A21~m0Vc1Jcm(q0; j0){Scm(qeff ; g)Jcm(qeff ; j0)J ’cm(q0; j0), ð6cÞ

A22~m0Vc1H(1)
cm(q0; j0){Scm(qeff ; g)Jcm(qeff ; j0)H’(1)

cm(q0; j0), ð6dÞ

where

Vc1~
1
D

cosh2 (j0) sin2 (g)

meff ,x
z

sinh2 (j0) cos2 (g)

meff ,y

 !
Scm(qeff ; g)J ’cm(qeff ; j0)z

cosh (j0) sinh (j0) cos (g) sin (g)

D

1
meff ,x

{
1

meff ,y

 !
S’cm(qeff ; g)Jcm(qeff ; j0),

and

Vc2~
1
D

cosh2 (j0) sin2 (g)

meff ,x
z

sinh2 (j0) cos2 (g)

meff ,y

 !
Scm(qeff ; g)H(1)

cm ’(qeff ; j0)z

cosh (j0) sinh (j0) cos (g) sin (g)

D

1
meff ,x

{
1

meff ,y

 !
S’cm(qeff ; g)H(1)

cm(qeff ; j0):

Analytical solution for the effective medium. The effective medium condition
requires that the scattering of the coated cylinder vanishes. Since the scattered field of
the coated cylinder is represented by H(1)

m (qeff ; j), a vanishing scattered wave in the
effective medium implies that bcm(eff)50. According to Eq. (5), such a condition
leads to

A21

A22
~{

bcm(0)

acm(0)
~{Dcm(0), ð7Þ

where Dcm(0) represent the Mie scattering coefficients of a scatterer of the
metamaterial. These coefficients can be obtained by solving the Helmholtz equation
and matching the boundary conditions between the scatterer and the background

Figure 4 | Effects of different parameters on derived EMT predictions. The frequencies at which eeff, meff,x, or meff,y become zero according to Eq. (1), as

functions of various parameters are pictured as curves. For comparison, the frequencies of the lowest monopolar and dipolar states at the C point,

which are obtained from the band structure calculations using COMSOL, are also plotted in dots. (a) Effects of changing as/bs with fixed es 5 12, ms 5 1,

and f 5 0.126. (b) Effects of changing es, with fixed as/bs 5 1.3, ms 5 1, and f 5 0.126. (c) Effects of changing f, with fixed as/bs 5 1.3, es 5 12, and ms 5 1.

(d)2(f) Similar conditions as those shown in (a) – (c), but the dielectric cylinders (ms 5 1) are replaced with magneto cylinders (es 5 1).
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medium. They have the form

Dcm(0)~
m0J ’cm(qs; js)Jcm(q0; js){msJcm(qs; js)J ’cm(q0; js)

msJcm(qs; js)H
(1)
cm ’(q0; js){m0J ’cm(qs; js)H

(1)
cm(q0; js)

, ð8Þ

in which the subscript ‘‘s’’ means that the quantities take the corresponding values of
the scatterer, while js indicates the boundary of the scatterer.

When the wavelength in the effective medium is much larger compared to the size

of the coated cylinder, i.e.,
1
2

keff (a0zb0)vv1, the scattering of the coated cylinder is

dominated by monopolar (m 5 0) and dipolar (m 5 1) terms. Under this condition,
we substitute Eqs. (6c) and (6d) into Eq. (7) and approximate the zero- and first-order
Mathieu functions associated with the effective medium by Se0(qeff; g) 5 1,
S’e0(qeff ; g)~0, Se1(qeff; g) 5 cos(g), S’e1(qeff ; g)~{ sin (g), So1(qeff; g) 5 sin(g),

S’o1(qeff ; g)~ cos (g), Je0(qeff; j0) 5 1, J ’e0(qeff ; j0)~
v2

1{v2
2

2
, Je1(qeff ; j0)~

v1zv2

2
,

J ’e1(qeff ; j0)~{
v1{v2

2
, Jo1(qeff ; j0)~{

v1{v2

2
and J ’o1(qeff ; j0)~

v1zv2

2
, with

v1~
ffiffiffiffiffiffiffi
qeff
p

e{j0 and v2~
ffiffiffiffiffiffiffi
qeff
p

ej0 . We obtain Eq. (1), i.e.,

eeff z2e0
J ’e0(q0; j0)

k2
0a0b0Je0(q0; j0)

eeff z2e0
Ye0

’(q0; j0)

k2
0a0b0Ye0(q0; j0)

~
Ye0(q0; j0)

iJe0(q0; j0)

De0(0)

1zDe0(0)
,

meff ,x{m0
a0Jo1(q0; j0)

b0J 0o1(q0; j0)

meff ,x{m0
a0Yo1(q0; j0)

b0Y 0o1(q0; j0)

~
Y 0o1(q0; j0)

iJ 0o1(q0; j0)

Do1(0)

1zDo1(0)
,

and

meff ,y{m0
b0Je1(q0; j0)

a0J 0e1(q0; j0)

meff ,y{m0
b0Ye1(q0; j0)

a0Y 0e1(q0; j0)

~
Y 0e1(q0; j0)

iJ 0e1(q0; j0)

De1(0)

1zDe1(0)
,

where Ycm(q0; j0) are the Mathieu Neumann functions. Similar to the results for the
isotropic media17, the effective permittivity and permeability are determined by
monopolar (m 5 0) and dipolar (m 5 1) modes, respectively. For the anisotropic case
discussed here, however, the effective permeability is no longer a scalar, but a diag-
onalized tensor. It is interesting to note that the elements of the tensor, meff,x and meff,y,
correspond exactly to the scattering coefficients of the first-order y-polarized and x-
polarized dipolar modes.

Results in the quasi-static limit. In the quasi-static limit, i.e.,
1
2

k0(a0zb0)vv1 and
1
2

ks(aszbs)vv1, the Mathieu functions in Eq. (1) can be approximated in the same

manner as that used to obtain Eq. (1) and the Mathieu Neumann functions. Ycm(qx;

jx) and its derivatives, Y ’cm(qx; jx), can be approximated as Ye0(qx; jx)~
2
p

ln (v2x),

Y ’e0(qx; jx)~
v2

1

p
ln (v2x)z

2
p

, Ye1(qx; jx)~
v1x

p
ln (v2x){

2
pv2x

,

Y ’e1(qx; jx)~
2{v2

1x

pv2x
z

2v2x{v1x

p
ln (v2x)z

v1x

p
, Yo1(qx; jx)~{

2
pv2x

{
v1x

p
ln (v2x),

and Y ’o1(qx; jx)~
2{v2

1x

pv2x
z

2v2xzv1x

p
ln (v2x){

v1x

p
, with v1x~

ffiffiffiffiffi
qx
p

e{jx and

v2x~
ffiffiffiffiffi
qx
p

ejx , where x 5 0, or s. Notice that
1
2

k0(aszbs)vv1 is also satisfied in the

quasi-static limit. We can treat the corresponding Mathieu Bessel and Neumann
functions, as well as their derivatives, Jcm(q0; js), Jcm

’(q0; js), Ycm(q0; js), and
Y ’cm(q0; js), in a similar manner as previously. Eq. (1) can be reduced to

eeff {e0

e0
~f

es{e0

e0
, ð9aÞ

meff ,x{m0

b0

a0zb0
meff ,xz

a0

a0zb0
m0

~f
ms{m0

bs

aszbs
msz

as

aszbs
m0

, ð9bÞ

and

meff ,y{m0

a0

a0zb0
meff ,yz

b0

a0zb0
m0

~f
ms{m0

as

aszbs
msz

bs

aszbs
m0

, ð9cÞ

where f 5 asbs/a0b0 is the filling ratio of the elliptic cylinder. It is worth mentioning
that Eq. (9) is exactly the Maxwell-Garnett (M-G) version EMT47, in which the
effective parameters are functions of the filling ratio and do not depend on the
frequency.

Results in the limit of vanishing eccentricity. In the limit of vanishing eccentricity,
i.e., as/bs R 1 (or c R 0), the scatterer becomes an isotropic cylinder and the
rectangular lattice correspondingly becomes a square lattice, according to the relation
a2{b2~p a2

s {b2
s

� �
. In this limit, the angular and radial Mathieu functions

transform into the trigonometric and Bessel functions, respectively46. As a result, Eq.
(1) is reduced to Eq. (7) in Ref. 17.

Numerical simulations. All the numerical simulations presented here are performed
using COMSOL Multiphysics, a commercial package based on the finite-element
method. Figures 2(a) and 2(f)–2(h) are computed using the eigenfrequency study in
the RF module. The Bloch boundary conditions are imposed on the boundaries of the
unit cells. The black dots in Figs. 2(d) and 2(e) are calculated using the frequency
domain study in the RF module. The same module is used in Figs. 3(b) –3(h). A
radiation boundary condition is placed at the waveguide outlet so that there is no
reflected wave, while periodic boundary conditions are set on the upper and lower
boundaries of the waveguide. The TE-polarized plane wave with frequency ~vC is
incident from the left.

1. Smith, D. R. & Kroll, N. Negative Refractive Index in Left-Handed Materials. Phys.
Rev. Lett. 85, 2933 (2000).

2. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S.
Composite Medium with Simultaneously Negative Permeability and Permittivity.
Phys. Rev. Lett. 84, 4184 (2000).

3. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental Verification of a Negative
Index of Refraction. Science 292, 77 (2001).

4. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966
(2000).

5. Zhang, X. & Liu, Z. W. Superlenses to overcome the diffraction limit. Nat. Mater.
7, 435 (2008).

6. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat.
Photon. 7, 948 (2013).

7. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical Hyperlens: Far-field imaging
beyond the diffraction limit. Opt. Express 14, 8247 (2006).

8. Fang, A., Koschny, T. & Soukoulis, C. M. Optical anisotropic metamaterials:
Negative refraction and focusing. Phys. Rev. B 79, 245127 (2009).

9. Garcı́a-Chocano, V. M., Christensen, J. & Sánchez-Dehesa, J. Negative Refraction
and Energy Funneling by Hyperbolic Materials: An Experimental Demonstration
in Acoustics. Phys. Rev. Lett. 112, 144301 (2014).

10. Liu, Z. W., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-Field Optical Hyperlens
Magnifying Sub-Diffraction-Limited Objects. Science 315, 1686 (2007).

11. Lu, D., Kan, J. J., Fullerton, E. E. & Liu, Z. W. Enhancing spontaneous emission
rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat.
Nanotech. 9, 48 (2014).

12. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon,
V. M. Topological Transitions in Metamaterials. Science 336, 205 (2012).

13. Wu, Y. A semi-Dirac point and an electromagnetic topological transition in a
dielectric photonic crystal. Opt. Express 22, 1906 (2014).

14. Luo, J. et al. Arbitrary Control of Electromagnetic Flux in Inhomogeneous
Anisotropic Media with Near-Zero Index. Phys. Rev. Lett. 112, 073903 (2014).

15. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic
Phenomena 2nd edn (Springer, 2006).

16. Lamb, W., Wood, D. M. & Ashcroft, N. W. Long-wavelength electromagnetic
propagation in heterogeneous media. Phys. Rev. B 21, 2248 (1980).

17. Wu, Y., Li, J., Zhang, Z. Q. & Chan, C. T. Effective medium theory for
magnetodielectric composites: Beyond the long-wavelength limit. Phys. Rev. B 74,
085111 (2006).

18. Wu, Y., Lai, Y. & Zhang, Z. Q. Effective medium theory for elastic metamaterials in
two dimensions. Phys. Rev. B 76, 205313 (2007).
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