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Hybrid samples based on ZnO colloidal nanocrystals (NCs) deposited on AlGaN/GaN quantum well (QW)
structures with different top barrier thickness d 5 3, 6 and 9 nm are studied by time-resolved
photoluminescence. Thermal behavior of the QW exciton lifetime in the hybrids and in the bare QW
structures has been compared and it has been found that the QW exciton recombination rate increases in the
hybrid having d 5 3 nm and decreases in the hybrid with d 5 6 nm, while no change has been observed for
the structure with d 5 9 nm. It is suggested that non-radiative resonance energy transfer from the QW
excitons to the ZnO NCs and a variation of the surface potential can both influence the QW exciton lifetime
in the hybrids.

I
II-nitride semiconductor/organic polymer hybrid heterostructures combine advantages of epitaxially grown
semiconductor quantum wells (QW) with inexpensive polymers having efficient luminescence in the visible
region1. Such hybrid micro-structured light emitting diodes (LED) are promising for fabrication of low-cost

and highly efficient microlight sources that can be used in full-color displays, imaging systems, miniature
chemical and biological sensors. In typical polyfluorene/GaN-based LED hybrids, UV emission from a GaN
heterostructure down converts to the organic polymer fluorescence in the visible region via a radiative energy
transfer. Overlapping between the UV luminescence and the polyfluorene absorption is required for the opera-
tion of these hybrids. Today, a novel class of hybrid structures is suggested, in which a non-radiative (Förster)
resonant energy transfer (NRET) from excitation generated in inorganic QWs to excitons in organic films can be
utilized2–3. Such LEDs might be considerably more efficient than their radiative energy transfer analogues4. In
addition to the necessity of a significant spectral overlap between the QW emission and the polymer absorption
spectrum, these devices require that the two materials are placed in a close interaction distance of a few nm. The
bottleneck is that the operation lifetime of organic/semiconductor hybrid LED structures is limited by degrada-
tion of polyfluorenes. Using colloidal semiconductor nanocrystals (NCs) instead of polymers can significantly
improve the lifetime of such devices5–7. In addition to superior luminescence properties, relatively low cost and
chemical stability, the spectral tunability can be achieved by changing the particle chemistry and size. The
efficiency of non-radiative resonance energy transfer is typically determined using transient photoluminescence
(PL) measurements from the quenching of the QW exciton lifetime in the presence of acceptor material (i.e.
colloidal NCs or polyfluorene)4–6. It might be correct in assumption that NRET is the only additional recom-
bination channel appearing in hybrids compared to the bare QW structure. However, other factors can play also a
significant role. For example, surface potential effects have to be considered when non-radiative resonant energy
transfer is measured using dynamic properties of the QW excitons.

Thus, in this work we have studied and discussed the possibility of NRET in hybrid structures fabricated using
ZnO NCs films coated on the top of the AlGaN/GaN QWs samples. ZnO NCs satisfies the requirement of
absorption overlapping with GaN emission (a room temperature band gap energy is 3.3 and 3.4 eV for ZnO and
GaN, respectively). Dynamic properties of QW excitons in the hybrids and in the bare QW samples are analyzed
in dependence on the QWs cap layer thickness.

Results
Transmission electron microscopy (TEM) measurements has been performed to confirm the quality of the ZnO
NCs. TEM image in Fig. 1(a) shows that ZnO NCs have a rather spherical shape and a single crystalline quality as
it follows from the insert illustrating one particle with a ,25 nm diameter, where a lattice fringes can be resolved.
Fig. 1(b) demonstrates an scanning electron microscopy (SEM) image of the ZnO NCs film, which covers rather
uniformly the surface of the QW sample. As shown in the insert of Fig. 1 (b), a room temperature absorption
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spectrum of the ZnO NCs overlaps with the emission from the QW
structure, thus satisfying NRET condition. In general, time-resolved
photoluminescence (TRPL) properties of ZnO NCs were similar to
those obtained previously for the ZnO nanoparticles of similar size8.

PL spectra in the UV region measured at 10 K are presented in
Fig. 2(a) for the bare QW structures (dashed lines) and for the
hybrids (solid lines) with three different cap layer thicknesses. The
main PL line corresponds to the QW exciton emission at ,3.57 eV
and ,3.54 eV for the samples with 3 nm and 6 or 9 nm top layers,
respectively. A weaker PL peak at ,3.48 eV corresponds to the GaN
buffer layer. There is no difference in the spectrum shape and in the
exciton peak energy between the bare QW sample and hybrid with
the thickest cap layer (9 nm), while for the samples with 3 and 6 nm
cap layer, the QW exciton position is shifted to higher energies (up to
20 meV) in the case of hybrid structures. The shift is present even at
elevated temperatures for the hybrids with thinner cap layers in
contrast to the hybrid with a 9 nm-thick spacer as illustrated in
Fig. 2(b) and (c). In more details, temperature dependence of the
exciton peak position is plotted in Fig. 3 for the bare QW samples
(open signs) and for hybrids (solid signs). A slightly non-monotonic
behavior with increasing temperature (so called S-shape) of the
exciton peak position caused by thermal delocalization of excitons
is observed in both bare QWs and hybrid structures. The maximal
localization energy is estimated to ,8–10 meV at 90 K when the

QW PL line is the most shifted to the higher energy region. As
abovementioned, a change of the QW exciton energy in hybrids
compared to the bare QW samples was found only in structures with
3 and 6 nm cap layers, see Fig 3(a) and (b), while no difference in the
QW line position before and after coating has been detected for the
sample with a 9 nm-thick spacer (Fig. 3(c)).

PL recombination time has been studied depending on the cap
layer thickness in order to investigate a possibility of NRET between
the QW exciton and the ZnO NCs. Fig. 4 shows typical examples of
the PL decay curves taken at the exciton peak energy at several
temperatures between 10 and 290 K. The results are compared for
the bare QW samples (dashed lines) and after coating by the ZnO NC
film (solid lines). Fig. 5 shows the PL recombination time t of the
QW exciton extracted from the experimental data by fitting using a
single exponential decay law I5I0exp(-t/t) as exemplified by open
circles in Fig. 4(c) for one PL decay curve.

Discussion
The following observations related to the QW exciton dynamic beha-
vior can be pointed out: (i) In the case of 3 nm thick cap layer, the PL
decay is faster in the hybrid for lower temperatures of 5–90 K, how-
ever a longer component of the recombination time start to be pro-
nounced at ,100–200 K. Then again, between 200 and 290 K, the
PL decay rate is increasing (Fig. 4(a)) and consequently, the QW

Figure 1 | (a) TEM image of the ZnO NCs dispersed in ethanol. The insert shows one particle at high resolution. (b) SEM top view of the hybrid structure.

Room temperature PL and absorption spectrum for ZnO NCs together with the AlGaN/GaN QW emission are shown in the insert.

Figure 2 | (a) Low-temperature PL spectra for the bare QW structures (dashed lines) and for samples coated with ZnO NCs film (solid lines). The capl

layer thickness is indicated for each spectrum. (b) and (c) QW-related emission at several temperatures for coated (solid lines) and uncoated (dashed

lines) structures with the cap layer thickness of 3 nm and 9 nm, respectively.
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exciton lifetime becomes shorter for the coated sample, see Fig. 5(a).
(ii) For the hybrid fabricated using a structure having the cap layer of
6 nm, the QW exciton lifetime is longer compared to the bare QW
structure in the temperature range of 30–180 K as shown in Fig. 4(b)
and Fig. 5(b). (iii) There is no difference in exciton recombination
between the hybrid and uncoated structures for the sample grown
with the thickest spacer as seen in both Fig. 4(c) and Fig. 5(c).

We can conclude that there is no noticeable influence of the ZnO
NCs film on the exciton dynamic in the sample with 9 nm cap layer,
while there is a clear effect of the coating on the exciton temporal
behavior in hybrids with thinner spacer. However, the tendency is
opposite in two cases, i.e. for samples with 3 and 6 nm cap layer
thickness. Thus, we suggest that there are several possible factors
having opposite impact on the QW exciton recombination.

Let’s consider the impact of NRET on exciton dynamics in our
samples. The dependence of NRET on the distance d between donor
and acceptor components of the hybrid structure is determined by its
configuration and differs for layers, QW and NCs. The evaluation of
the energy transfer rate in the weak-coupling regime from the QW to
the overlayer material, which can be organic or inorganic semi-
conductor nanostructures was described by Agranovich et al.9 The
rate of NRET, kET, caused by dipole-dipole interaction in hybrid
structures can be expressed as kET / d2n, where n depends on the

dimensionality of the array of dipoles and can vary from 6 for NRET
between two point-like molecules (0D-0D) and 2 for two thin layers
or QWs (2D-2D)10. NRET in hybrids is an additional channel of non-
radiative recombination, thus decreasing the lifetime of the excitons
in QW. For the bare QW structures the recombination rate kQW has
contribution of radiative and non-radiative recombination compo-
nents: kQW 5 kr 1 knr. For the hybrid structures assuming only one
additional non-radiative recombination mechanism (i.e. NRET) it
can be written: kH 5 kr 1 knr 1 kET and, thus, NRET can be deter-
mined from the measured exciton recombination rates in the hybrid
and in the bare QW as kET 5 kH 2 kQW

5,11. However, there can be
other recombination mechanisms in hybrids compared to the bare
QW samples as we discuss below.

At temperatures of 5–40 K the QW excitons are localized on the
potential fluctuations, while the exciton movement in ZnO NCs is
limited even at elevated temperatures by the particle size of ,20–
30 nm taking into account a diffusion length of 200 nm12.
Consequently, at low temperatures the dimensionality of two dipoles
is close to 0D and, thus, the NRET effect is significantly suppressed.
With increasing T the degree of exciton localization decreases, hence
the exciton becomes a 2D-particle. Accordingly, the NRET rate is
higher at 50–100 K with a further reduction at elevated tempera-
tures, when the wave vector of free excitons is rather large for efficient

Figure 3 | Temperature dependence of the QW PL peak position measured in the bare QW structures (open signs) and in the hybrids (solid signes)
with the top layer thickness of (a) d53 nm, (b) d56 nm and (c) d59 nm.

Figure 4 | PL decay curves measured at different temperatures for the QW exciton peak position shown for coated (solid lines) and uncoated samples
(dashed lines) for the spacer thickness of (a) 3 nm, (b) 6 nm, and (c) 9 nm. Temperature is indicated for each curve. An example of fitting using single

exponential decay law is shown by open circles in (c) for the PL decay curve measured at 10 K.
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dipolar coupling as was previously reported for hybrids with organic
acceptor layer4. Thus, it is likely that NRET can be responsible for the
reduction of the recombination time at T , 100 K observed in the
hybrid with the thinnest cap layer of 3 nm (Fig 5(a)). In the hybrids
with the larger distance d (6 or 9 nm) the NRET rate is reduced by at
least one order of magnitude and can be neglected.

Besides NRET we suggest to consider the surface potential effect
on recombination times in hybrids. To explain the increase of the
QW exciton lifetime at 20–200 K in the hybrid with d56 nm layer
(see Fig. 4 (b) and Fig 5 (b)) and at 100–200 K in the hybrid with
d53 nm (can be seen in Fig. 4(a) for T5100 and 150 K), we assume
that the surface potential in the QW structures can be changed in
vicinity of the ZnO nanoparticles. We can estimate the effect of the
surface barrier on the QW exciton using a self-consistent solution of
the Schrödinger and Poisson equations13. Fig. 6 illustrates the band
profiles for two QW structures with the top barrier thickness of 6 and
9 nm, respectively. Such consideration has shown that, if the cap
layer is thin (3 or 6 nm), then the electron levels in QW are pushed
up (,18 meV) for the surface potential of 0.5 eV compared to
Q50.1 eV. On the other hand, the influence of the surface potential
is negligible for the QW structure with a 9 nm-thick cap layer.
Clearly, the potential gradient is stronger for the region close to the
surface. Thus, for the samples with 3 and 6 nm cap layers a higher
surface barrier will increase the carriers confinement in QW and at the
same time will reduce an electron–hole overlap and hence oscillator

strength due to an additional space separation of charges. We note
here that if we consider a ZnO/AlGaN heterojunction (which is not a
case in our hybrids), the potential barrier for the conduction band
will be higher at the interface. A quantum confined Stark effect is
stronger for wider wells14 and, thus, for excitons localized by the QW
width fluctuations. Though the effect is small for 2 nm thin QW, it
can explain a slower PL decay time observed at elevated tempera-
tures in the hybrids with 3 and 6 nm cap layer as the interplay
between recombination of excitons with different oscillator strength.
At T.200 K, which corresponds to the localization energy of
,17 meV, all the QW excitons will be thermalized. Thus, the recom-
bination time t in QW will be determined by the dynamics of free
excitons that are less sensitive to the potential profile. This is in
agreement with our experimental results obtained at 200–290 K
for the structure with d56 nm, when the QW exciton lifetime is
the same for the coated and uncoated sample (Fig. 5(b)). Also, the
thermal behavior of the recombination time observed for the hybrid
with d53 nm can be understood in terms of at least two different
mechanisms: (i) NRET, which results in decrease of t (the effect is
stronger between 50–100 K), and (ii) the variation of the surface
potential in hybrids, which can contribute with a slow t at tempera-
tures up to 200 K. Other factors influencing the exciton lifetime in
III-nitrides such as variation of stress, carrier density etc.15,16 can
likely be neglected, since no effect was observed for the reference
sample with a 9 nm-thick cap layer.

In summary, we have studied ZnO NCs/AlGaN/GaN hybrid
structures designed to utilize NRET. Dynamic properties of the
QW exciton in hybrids compared to the bare QW structures were
studied depending on the cap layer thickness. We have found that the
QW exciton lifetime decreases for hybrids compared to the bare QW
structures with the thinnest (3 nm) cap layer at low temperatures of
5–90 K and above 200 K, while the QW PL decay became slower up
to 200 K in the coated structure with the spacer thickness of 6 nm.
No difference in the thermal behavior of the QW exciton lifetime was
found between coated and uncoated structure with a 9 nm-thick cap
layer. An increase of surface potential barrier is suggested as an
additional mechanism, besides NRET, affecting QW exciton lifetime
in hybrids.

Methods
Three AlGaN/GaN/AlGaN QW structures were grown on sapphire substrates with a
1 mm thick GaN buffer layer by metal organic chemical vapor deposition (MOCVD)
method using trimethyl gallium, trimethyl aluminum and ammonia as precursors.
The growth temperature was 1050uC. The thickness of the GaN QW was ,2 nm for
all three samples, while the thickness of the AlGaN cap layer (spacer) was 3, 6 and
9 nm, respectively. The Al composition in the AlGaN alloy was adjusted to ,16%.
For fabrication of the hybrid structures, we have used colloidal ZnO NCs as an energy
acceptor material. The powder of ZnO NCs was purchased from Sigma-Aldrich. An
average diameter of particles was 30 nm. The ZnO NCs were dispersed in ethanol
with a concentration of ,3.3 Vol.% and then spin-coated on the top of QW struc-
tures. TEM measurements were performed with a high resolution FEI Tecnai G2
200 keV FEG instrument, SEM has been done with a FEG cathode LEO 1550 Gemini

Figure 5 | Extracted recombination time of the QW exciton shown as a function of temperature for the hybrids (solid signes) and for the uncoated
samples (open signes) with the top layer thickness of (a) 3 nm, (b) 6 nm, and (c) 9 nm.

Figure 6 | The conduction band profile calculated for the QW structures
with different top barrier thickness of 6 nm (a, c) and 9 nm (b, d) are
shown for two surface potentials: Q50.1 eV (a, b) and 0.5 eV (c, d). The

occupied energy level of electron and its wavefunction are also shown for

each case. The insert in (c) shows schematic drawing of the conduction

band (CB), valence band (VB), the electron affinity (EA), the vacuum level

(VL) and the Fermi energy (Ef) for n-type ZnO and AlGaN.
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scanning electron microscope. For PL measurements we have used the third har-
monics (le 5 266 nm) from a Ti:sapphire femtosecond pulsed laser as an excitation
source. The laser frequency was 75 MHz. TRPL was performed with a Hamamatsu
synchroscan streak camera having a temporal resolution of , 20 ps. The samples
were placed in a liquid helium cooled cryostat providing temperatures in the range of
5–300 K.

The band profile of the QW structures have been calculated using a self-consistent
solution of the Schrödinger and Poisson equations13 with the same material para-
meters for AlGaN and GaN as used in Ref. 17. Calculations were performed for
structures having d 53, 6 and 9 nm for different surface potentials between 0.1 and
0.5 eV. Occupied levels of electron in the ground state together with an envelope
functions have also been calculated. The polarization of 0.028 and 0.069 C/m2 has
been used for the GaN QW and for AlGaN barrier, respectively.
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Agency, and Ångpanneföreningen’s Foundation for Research and Development.

Author contributions
G.P. designed the research idea. C.H. contributed to calculations and discussion of the
paper. M.F. contributed to experimental measurements. H.A. contributed to sample growth
and discussion of the paper. G.P. and M.F. contributed to writing the paper. All authors
reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Forsberg, M., Hemmingsson, C., Amano, H. & Pozina, G. Dynamic
properties of excitons in ZnO/AlGaN/GaN hybrid nanostructures. Sci. Rep. 5, 7889;
DOI:10.1038/srep07889 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need
to obtain permission from the license holder in order to reproduce the material. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7889 | DOI: 10.1038/srep07889 5

http://creativecommons.org/licenses/by/4.0/

	Title
	Figure 1 
	Figure 2 
	Figure 3 Temperature dependence of the QW PL peak position measured in the bare QW structures (open signs) and in the hybrids (solid signes) with the top layer thickness of (a) d=3&emsp14;nm, (b) d=6&emsp14;nm and (c) d=9&emsp14;nm.
	Figure 4 PL decay curves measured at different temperatures for the QW exciton peak position shown for coated (solid lines) and uncoated samples (dashed lines) for the spacer thickness of (a) 3&emsp14;nm, (b) 6&emsp14;nm, and (c) 9&emsp14;nm.
	Figure 5 Extracted recombination time of the QW exciton shown as a function of temperature for the hybrids (solid signes) and for the uncoated samples (open signes) with the top layer thickness of (a) 3&emsp14;nm, (b) 6&emsp14;nm, and (c) 9&emsp14;nm.
	Figure 6 The conduction band profile calculated for the QW structures with different top barrier thickness of 6&emsp14;nm (a, c) and 9&emsp14;nm (b, d) are shown for two surface potentials: &phiv;=0.1&emsp14;eV (a, b) and 0.5&emsp14;eV (c, d).
	References

