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Abstract

Background—Pediatric rhabdomyosarcoma (RMS) is highly curable, however, cure may come 

with significant radiation related toxicity in developing tissues. Proton therapy (PT) can spare 

excess dose to normal structures, potentially reducing the incidence of adverse effects.

Methods—Between 2005 and 2012, 54 patients were enrolled on a prospective multi-

institutional phase II trial using PT in pediatric RMS. As part of the protocol, intensity modulated 

radiation therapy (IMRT) plans were generated for comparison with clinical PT plans.

Results—Target coverage was comparable between PT and IMRT plans with a mean CTV V95 

of 100% for both modalities (p=0.82). However, mean integral dose was 1.8 times higher for 

IMRT (range 1.0-4.9). By site, mean integral dose for IMRT was 1.8 times higher for H&N 

(p<0.01) and GU (p=0.02), 2.0 times higher for trunk/extremity (p<0.01), and 3.5 times higher for 

orbit (p<0.01) compared to PT. Significant sparing was seen with PT in 26 of 30 critical structures 

assessed for orbital, head and neck, pelvic, and trunk/extremity patients.

Conclusions—Proton radiation lowers integral dose and improves normal tissue sparing when 

compared to IMRT for pediatric RMS. Correlation with clinical outcomes is necessary once 

mature long-term toxicity data are available.
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INTRODUCTION

Pediatric RMS accounts for 3.8% of solid malignancies in children under the age of 19 years 

and is the most common soft tissue sarcoma in childhood1,2. Advances in systemic and local 

therapy have led to increased survival rates, with more than 70% of children becoming long 

term survivors3,4. Radiation therapy (RT) is an integral component of treatment in many of 

these patients but can be associated with both short and long-term morbidity, depending 

upon the volume treated and the dose delivered5-10. RMS may occur at almost any site in the 

body, and acute toxicity and late complications from radiation therapy depend on the 

location being treated.

Proton radiotherapy can decrease normal tissue doses by a factor of 2-3 and therefore holds 

promise in reducing the toxicity of treatment11,12. Previous dosimetric studies comparing 

proton therapy and IMRT in RMS and other cancers have demonstrated greater sparing of 

the ipsilateral and contralateral critical structures in both head and neck and genitourinary 

sites13-18. This sparing occurs through the specific physical properties of protons that both 

eliminate exit dose to normal tissues and reduce entrance dose at depth.

Since 2005, Massachusetts General Hospital (MGH) and MD Anderson Cancer Center 

(MDACC) have enrolled pediatric patients on a joint phase II trial, incorporating proton RT 

into standard RMS treatment regimens. As part of the trial, each child receives both a proton 

RT plan used for treatment as well as an IMRT plan for dosimetric comparison. In this 

study, we report the dosimetric results for those pediatric RMS patients treated on study.

MATERIALS AND METHODS

From February 2005 to October 2012, 54 pediatric RMS patients were treated with passively 

scattered proton RT on study. Patient characteristics are presented in the supplemental 

section (Table 1, supplement).

For radiation planning, patients were placed in a customized site-specific immobilization 

device in the treatment position and computed tomographic simulation provided images at 

1.25-2.5mm for head and neck and orbital patients and at 2.5-mm for tumors below the 

neck. The gross tumor volume (GTV) included the primary tumor and any pathologically 

involved or enlarged regional lymph nodes, and was contoured by a pediatric radiation 

oncologist. The clinical treatment volume (CTV) was generated manually to cover areas of 

suspected microscopic involvement. For protons, the planning target volume (PTV) was 

achieved by using a 3mm “smear” for compensator calculations and an additional margin to 

the aperture edge, range, and modulation (2-5mm depending on anatomic site) to account for 

uncertainty in the path length and patient set up. A uniform 3mm PTV was added to IMRT 

plans. When possible, an MRI scan was anatomically registered to the planning treatment 

CT scan to facilitate target delineation. Normal tissue structures were contoured and/or 

checked by the treating pediatric radiation oncologist and centrally reviewed for 

consistency. All patient plans were reviewed and approved by the treating physician prior to 

treatment. Target and normal tissue volumes were held constant for both proton and IMRT 

planning. The dose delivered by protons is expressed as GyRBE which uses a relative 
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biologic effectiveness (RBE) of 1.1 for protons to convert physical to biologic dose, based 

upon estimates of relative biologic effectiveness of protons relative to Cobalt-6019. For ease 

of presentation, proton doses in this paper are expressed as Gy.

At MGH, the XiO planning system™ (CMS, Inc., St. Louis, MO) was used for both proton 

and IMRT planning. At MDACC, an Eclipse treatment planning system™ (Varian Medical 

Systems, Palo Alto, CA) was utilized for proton therapy planning and Pinnacle treatment 

planning system™ (Philips Medical Systems, Fitchburg, WI) for IMRT comparison plans. 

Target volume and normal tissue constraints were derived from the Children's Oncology 

Group protocols for RMS (www.childrensoncologygroup.org). Dose–volume histograms 

were generated and compared for organs at risk (OAR). The percent of normal tissue spared 

by using protons was calculated using the following equation:

The integral dose (Dint), defined as the total energy deposited in patients, was calculated by 

summing the energy deposited in each individual voxel (Edepi) of the patient CT image. 

Edepi was computed using the voxel volume (Vi), CT Hounsfield unit data (HU) to calculate 

the voxel density (ρi), and the voxel dose (Di) using the following equation:

Event free survival (EFS), overall survival (OS), and local control (LC) rates were estimated 

by the Kaplan-Meier method. Continuous dosimetry values were compared using paired t-

tests, while Fisher's exact test was used for categorical comparisons. Two-sided tests were 

employed and p<0.05 was used to determine statistical significance. Data analysis was 

performed using SAS version 9.2.

RESULTS

Median follow up for all 54 patients was 3.9 years. The 3/5 year event free survival and 

overall survival was 69%/65% and 80%/77% respectively. Local control at 3 and 5 years 

was 78%/78%. Toxicity was favorable with only 3 patients developing late grade 3 toxicity. 

These consisted of a unilateral cataract (orbital primary), chronic otitis (PM mastoid 

primary), and retinopathy with decreased visual acuity (orbital primary). No toxicities higher 

than grade 3 were observed. To date there have been no reported secondary malignancies. A 

complete description of toxicity for this trial is given in a separate publication discussing 

clinical outcomes20.

A median of 7 beams were used in IMRT plans (range 4-9), and for proton plans the median 

was 3 beams (range 1-7) (Table 1, supplement). Coverage of target volumes was equivalent 

between PT and IMRT plans. Due to the difference in PTV generation with PT, CTV was 

used to compare coverage. The mean CTV V95 (percent volume receiving at least 95% of 

the prescription dose) was 100% for both modalities (range 97-100% for PT and 98-100% 
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for IMRT) (p=0.82). The mean CTV V100 was 98% for PT (range 95-100%) and 99% for 

IMRT (range 97-100%) (p=0.64). The mean maximum dose (DMax) was 107% (range 

101-112%) for PT and 106% (range 103-110%) for IMRT (p = 0.17). Comparative 

dosimetry for PT and IMRT plans are shown in Figure 1.

In all 54 cases, the integral dose was calculated for IMRT and PT plans. The integral dose 

represents the total energy deposited in a patient and is given in joules rather than gray 

because of the latter's dependence on patient weight (Gy = J/Kg). Integral dose was 18 J for 

PT and 32 J for IMRT (p=<0.01) with a mean integral dose 1.8 times higher for IMRT 

(range 1.0-4.9). By site, mean integral dose for IMRT was 1.8 times higher for genitourinary 

(p=0.02) and head and neck sites (p<0.01), 2.0 times higher for trunk and extremity sites 

(p<0.01), and 3.5 times higher for orbital sites (p=<0.01) when compared to PT. Individual 

results are shown in Figure 2.

Statistically significant sparing was seen with PT in all disease sites with 3 or more patients 

and in 26 of 30 OARs assessed. Results are presented as mean dose and in volume percent at 

clinically significant intervals.

There were 27 patients with non-orbital head and neck (H&N) tumors and of these 24 were 

parameningeal sites. Tumors were classified as “central” in 9 cases and “lateral” in 18 cases. 

For central sites, dose to paired organs such as the parotid glands was recorded individually 

for each gland and then pooled for analysis without assigning laterality. In the lateral cases, 

paired organs were designated as “ipsilateral” or “contralateral” and results are reported as 

such. Median RT dose was 50.4 Gy (range 36-52.2 Gy). Complete dosimetric results for 

head and neck patients are presented in table 1.

For CNS structures, significant sparing for PT was seen in all OARs examined with the 

greatest sparing in the hypothalamus, temporal lobes, brainstem, and cerebellum. Moderate 

dose reductions were also noted in the optic nerves, optic chiasm, and pituitary. In non-CNS 

structures, the most significant sparing occurred in the lens, maxilla, mandible, and lacrimal 

gland. Doses to the retina, skin, parotid gland, and thyroid showed no or minimal 

differences.

There were 12 patients with orbital rhabdomyosarcoma, 9 with a left-sided primary and 3 

with a right-sided primary. Median RT dose was 45 Gy (range 45-50.4 Gy). Both ipsilateral 

and contralateral temporal lobes and lacrimal glands showed significant sparing with PT 

plans, as did the hypothalamus, pituitary, and maxilla. Contralateral lens dose and retina was 

also spared with PT. Minimal differences were seen in the ipsilateral optic nerve dose and 

skin doses were similar. Complete dosimetric results are shown in table 2.

Only one patient on study had a primary in the chest region, a left shoulder primary that 

received 50.4 Gy. All OARs showed improvement with PT, though statistical significance 

could not be calculated for a single case. (Table 2, supplement).

Two patients presented with abdominal tumors, one biliary primary and one left paraspinal 

primary, both treated to 50.4 Gy. Due to small numbers (n=2), statistical significance 

between the two groups could not be shown. Despite the limited numbers, notable 
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reductions in ipsilateral and contralateral kidney dose were seen in both cases (Table 3, 

supplement).

There were 12 patients with primaries in the pelvic region, 7 prostate or bladder primaries, 3 

extremity tumors in the groin or thigh, and 2 perianal primaries. Median dose was 50.4 Gy 

(range 36-50.4 Gy). Doses to the testes were reported together due to minimal dose variation 

between each testicle, while the doses to the left and right ovaries and growth plates are 

presented individually. Important reductions in gonadal doses (ovaries and testes) were seen 

with the use of PT. The growth plates and pelvic bones were also spared significant dose 

with PT plans. Femoral head dose was improved with PT, though doses with both modalities 

were generally low. Dose reductions with PT were also seen in the vagina, uterus, and penile 

bulb with variable in significance (Table 4, supplement).

Mean dose and mean percent volumes for OARs are useful for describing general trends in a 

large data set such as ours, but tend to wash out significant individual case differences. 

Figure 3 presents the individual dosimetric results for select critical structures. To 

demonstrate comparative risks for late effects in tissues with well-established dose 

tolerances, the number of patients with OARs exceeding clinically significant levels for PT 

vs IMRT are provided in Table 3.

DISCUSSION

This study represents the first comparison of proton vs photon dosimetry for patients 

enrolled on a prospective clinical trial, and with 54 patients it also stands as the largest 

published dosimetric series for RMS. Rather than selecting patients for comparison based on 

tumor location, as has been done in prior studies, we present the results for every RMS 

patient on study over the course of 7 years. In doing so, our data more closely resembles the 

demographics for pediatric RMS patients treated at a high volume center. Although IMRT 

plans were not used for treatment, multiple iterations were generated in the majority of cases 

to achieve optimal coverage while respecting the tissue tolerance of critical structures. In 

some cases, target volume coverage was altered to improve sparing of these critical 

structures, as would be done if the plans were used for actual treatment. Prior dosimetric 

studies for select patients with parameningeal, orbital, and genitourinary RMS showed 

similar benefits with proton RT compared to IMRT, and this study adds confirmation to 

these results on a larger scale15,16,18.

Arguments against the widespread adoption of proton therapy, as highlighted by De 

Ruysscher et al. and others, have stemmed from the contention that the main benefit of 

protons, the reduction in the medium and low dose regions, is of little clinical significance to 

patients21,22. Our data, summarized in table 4, show that these reductions lead to important 

sparing by PT in multiple structures with well-defined tolerances. Growth hormone 

deficiency from RT to the hypothalamus has been shown at an incidence of 50% at 16 Gy 

and 99% at 35 Gy23. In our study hypothalamic dose with PT was lower for 90% of all 

orbital and H&N patients and doses above 16 Gy were seen in 6 PT patients (15%) and 12 

IMRT patients (30%) and above 35 Gy in 1 PT patient (3%) and 5 (15%) IMRT patients. 

Growth hormone deficiency in children has been linked to multiple co-morbidities including 
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poor growth, altered energy metabolism and body composition, cognitive impairment, 

cardiovascular disease, and diminished quality of life 23-27. Furthermore, growth hormone 

monitoring and replacement for pediatric patients comes at an annual cost of over 

$13,00028.

Memory functions are largely localized to the temporal regions of the brain and Armstrong 

et al. found an increased risk for memory difficulties and task efficiency with increasing 

dose above ≥30 Gy to the temporal lobes29,30. Survivors who received temporal region 

irradiation also experienced significantly more difficulty in social functioning, including 

lower overall wage earning and marriage rates in these studies. In our cohort, PT spared 

significant temporal lobe dose for H&N and orbital patients with a mean temporal lobe V20 

2.0 times higher and V30 1.7 higher for IMRT plans. The most significant sparing was seen 

in lateralized H&N tumors where the ipsilateral V20 and V30 were reduced by 44% and 31% 

respectively.

Dry eye syndrome (DES) following RT has been linked to doses delivered to lacrimal 

glands. Tolerance doses for the entire gland with conventional fractionation are estimated to 

be in the range of 30 to 40 Gy and Mendenhall et al. found that DES occurred at a rate of 

6% with 35–40 Gy to the lacrimal gland and a rate of 50% at 45 Gy or higher31-33. In our 

study, lacrimal doses above 35 Gy occurred in 3 PT patients (4%) and 9 IMRT patients 

(12%) and above 45 Gy in 3 PT patients (4%) and 5 IMRT patients (6%).

Orbital and H&N patients were spared significant lens dose with PT as well. Lens dose of 

>6 Gy was seen in 16 (21%) of PT patients and 35 (45%) of IMRT patients and a lens dose 

of >12 Gy was seen in 10 (13%) of PT patients and 13 (17%) of IMRT patients. The 

majority of those > 12 Gy had orbital tumors. Data in adult patients shows a 33% risk of 

progressive cataracts after 2.5 to 6.5 Gy, and 66% after 6.5 to 11.5 Gy32. Increased 

sensitivity in younger patients is suspected and Hall et al. found a risk of opacities at lens 

doses of <0.5 Gy and calculated a 35–50% increase in the risk of opacity development per 

unit of Gray during childhood34. Cataracts in younger children can lead to astigmatism and 

visual complications if left untreated, but the decision to undertake surgical repair is not 

trivial. Pediatric patients are subject to a higher rate of complications than their adult 

counterparts and a risk of blindness and enucleation exists due to infection, hemorrhage, and 

retinal detachment following repair35,36.

Fertility preservation is an area of great interest in pediatric RMS and recent COG trials 

have attempted to decrease cyclophosphamide doses to this end. Radiation also plays a role 

and fractionated RT doses of 2 Gy to the testes and 6 Gy to the ovaries are thought to 

represent a 50% risk of sterility, while doses above 12 Gy the testes and 8 Gy to the ovaries 

likely represents a 100% risk37-39. In our pelvic cohort, testicular doses above 2 Gy were 

seen in 4 cases with PT (25%) and 10 IMRT cases (63%). No patients had a testicular dose 

over 12 Gy with PT while 6 patients (38%) exceeded this dose with IMRT. Ovarian doses 

above 6 Gy/12 Gy were seen in 25%/13% of PT patients and 63%/38% of IMRT patients.

Finally, recent clinical data from a mixed pediatric and adult population of over 1000 

patients has suggested a reduction in second tumor rates in a proton treated population40. No 
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difference was noted in “in field malignancies” and therefore it is likely the reduction of 

integral dose to normal tissues outside the target volume that leads to this improvement. In 

our cohort, integral dose was reduced by 1.8 times for all sites using PT and one could 

expect a similar reduction in second cancers for pediatric RMS.

Significant OAR sparing by PT was seen in all tumor sites and in 26 of 30 structures 

examined (excluding the sites with <3 patients each). While significant sparing was 

observed for both central and lateral primaries, the lateral tumors provided for the greatest 

dose savings to structures compared with more central tumors. Similarly, serial organs 

(chiasm, brainstem, spinal cord) showed less benefit with PT and the maximum dose was 

often lower with IMRT, highlighting IMRT's ability for conformality in the high dose 

regions. In contrast, parallel organs (temporal lobes, mandible/maxilla, pelvic bones) as well 

as organs sensitive to low doses of RT (hypothalamus, gonads) consistently showed benefit. 

Few patients had abdominal and chest tumors but kidney, lung, and heart doses were lower 

with PT. Proton studies in patients with Hodgkins disease and soft tissue sarcoma have 

shown similar benefit in these regions41-43. It should be noted that all patients in this study 

were treated with passively scattered proton RT. As scanned beam capabilities improve and 

become more widely available, the use of IMPT should augment these observed benefits to a 

greater extent.

In a large scale, multi-institutional prospective phase II study, proton radiotherapy for 

pediatric RMS demonstrates improved normal tissue sparing compared to IMRT. Further 

correlation with clinical outcomes is needed once our data matures to determine whether the 

dosimetric benefits observed translate into reduced rates of late toxicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparative proton (above) and IMRT (below) dosimetry for primaries of the (A) orbit, (B) 

parameninges, (C) trunk, and (D) pelvis
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Figure 2. 
Integral dose values in joules for proton and IMRT plans for each of the 54 patients on study
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Figure 3. 
Individual patient dose for select OARs (organs at risk). (A) Hypothalamic mean dose for all 

orbital and head and neck (H&N) patients. (B) Temporal lobe mean doses for orbital 

(ipsilateral lobe only) and H&N patients (ipsilateral and contralateral lobes). (C) Maxillary 

mean dose for all orbital and H&N patients. (D) Brainstem mean dose for H&N patients 

only. (E) Mean gonad doses for the 12 pelvic patients (paired testicles displayed as a single 

OAR, paired ovaries as separate OARs). (D) Growth plate mean doses for the 12 pelvic 

patients
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Table 1

OAR doses for all head and neck patients including parameningeal primaries

Head and Neck Central H&N Primary (n=9) Lateral H&N Primary (n=18)

Structure Dose Proton IMRT % Spared P Value Proton IMRT % Spared P Value

Chiasm Mean (Gy) 26 28 7 0.35 15 24 38 < 0.01

V45 (%) 35 37 5 0.11 5 14 64 0.34

Pituitary Mean (Gy) 32 35 9 0.02 25 33 24 < 0.01

V30 (%) 64 67 4 0.17 49 63 22 0.03

Hypothalamus Mean (Gy) 9 15 40 < 0.01 7 15 53 < 0.01

V16 (%) 27 46 41 0.02 19 35 46 0.03

Brainstem Mean (Gy) 9 18 50 < 0.01 8 18 56 < 0.01

V30 (%) 8 21 62 0.07 9 22 59 0.02

Cerebellum Mean (Gy) 3 12 75 < 0.01 5 15 67 < 0.01

V20 (%) 1 18 94 0.05 7 26 73 < 0.01

Maxilla Mean (Gy) 22 30 27 < 0.01 15 30 50 < 0.01

V20 (%) 48 71 32 < 0.01 32 70 54 < 0.01

V30 (%) 38 55 31 < 0.01 26 44 41 < 0.01

Mandible Mean (Gy) 11 19 42 < 0.01 12 24 50 < 0.01

V20 (%) 25 47 47 < 0.01 24 50 52 < 0.01

V30 (%) 17 28 39 0.08 20 33 39 < 0.01

Thyroid Mean (Gy) 2 4 50 0.12 2 3 33 0.09

V10 (%) 6 11 45 0.22 5 8 38 0.17

Optic Nerves Mean (Gy) 30 30 0 0.60 -- -- -- --

V50 (%) 27 34 21 0.36 -- -- -- --

Optic NerveIpsi Mean (Gy) -- -- -- -- 25 31 19 0.01

V50 (%) -- -- -- -- 11 6 −45 0.45

Optic NerveContra Mean (Gy) -- -- -- -- 9 21 57 < 0.01

Temporal Lobes Mean (Gy) 6 10 40 < 0.01 -- -- -- --

V20 (%) 10 18 44 0.01 -- -- -- --

V30 (%) 8 9 11 0.01 -- -- -- --

Temp LobeIpsi Mean (Gy) -- -- -- -- 12 21 43 < 0.01

V20 (%) -- -- -- -- 23 44 48 < 0.01

V30 (%) -- -- -- -- 18 31 42 < 0.01

Temp LobeContra Mean (Gy) -- -- -- -- 2 9 78 < 0.01

V20 (%) -- -- -- -- 4 10 60 0.05

V30 (%) -- -- -- -- 1 3 67 0.04

Lens Mean (Gy) 3 5 40 0.02 -- -- -- --

V5 (%) 20 48 58 0.01 -- -- -- --

LensIpsi Mean (Gy) -- -- -- -- 2 9 78 0.01

V5 (%) -- -- -- -- 16 63 75 < 0.01

LensContra Mean (Gy) -- -- -- -- 0.2 6 97 < 0.01

V5 (%) -- -- -- -- 0 46 100 < 0.01
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Head and Neck Central H&N Primary (n=9) Lateral H&N Primary (n=18)

Structure Dose Proton IMRT % Spared P Value Proton IMRT % Spared P Value

Retina Mean (Gy) 16 18 11 0.47 -- -- -- --

V45 (%) 8 6 −25 0.88 -- -- -- --

RetinaIpsi Mean (Gy) -- -- -- -- 13 19 32 0.01

V45 (%) -- -- -- -- 8 5 −38 0.12

RetinaContra Mean (Gy) -- -- -- -- 3 11 73 < 0.01

Cochlea Mean (Gy) 19 19 0 0.57 -- -- -- --

V36 (%) 17 4 −76 0.18 -- -- -- --

CochleaIpsi Mean (Gy) -- -- -- -- 36 39 8 0.24

V36 (%) -- -- -- -- 62 63 2 0.83

CochleaContra Mean (Gy) -- -- -- -- 5 17 71 < 0.01

V20 (%) -- -- -- -- 12 32 63 0.06

Lacrimal Gland Mean (Gy) 6 11 45 < 0.01 -- -- -- --

V20 (%) 9 25 64 0.02 -- -- -- --

LacrimalIpsi V30 (%) 4 4 0 0.25 -- -- -- --

Mean (Gy) -- -- -- -- 9 15 40 < 0.01

V20 (%) -- -- -- -- 18 29 38 0.02

V30 (%) -- -- -- -- 11 19 42 0.08

LacrimalContra Mean (Gy) -- -- -- -- 1 8 88 < 0.01

Parotid Gland Mean (Gy) 18 26 31 0.08 -- -- -- --

V36 (%) 22 21 −5 0.33 -- -- -- --

ParotidIpsi Mean (Gy) -- -- -- -- 37 39 5 0.06

V36 (%) -- -- -- -- 66 64 −3 0.66

ParotidContra Mean (Gy) -- -- -- -- 2 11 82 < 0.01

Skin DMax (Gy) 32 32 0 0.75 44 44 0 0.63

Abbreviations: ipsi, ipsilateral; contra, contralateral, temp; temporal.
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Table 2

OAR doses for all orbital primary patients

Orbit Orbital Primary (n=12)

Structure Dose Proton IMRT % Spared P Value

LensIpsi Mean (Gy) 26 32 19 0.19

V5 (%) 89 99 10 0.10

LensContra Mean (Gy) 0 3 100 < 0.01

V5 (%) 0 23 100 0.05

RetinaIpsi Mean (Gy) 33 40 18 < 0.01

V45 (%) 34 48 0.09

RetinaContra Mean (Gy) 0.1 8 99 < 0.01

V20 (%) 0 11 100 0.04

Optic NerveIpsi Mean (Gy) 31 37 16 0.03

V45 (%) 33 40 18 0.27

Lacrimal GlandIpsi Mean (Gy) 19 35 46 < 0.01

V30 (%) 31 65 52 < 0.01

Lacrimal GlandContra Mean (Gy) 0 5 100 < 0.01

Hypothalamus Mean (Gy) 1 8 88 < 0.01

V16 (%) 3 13 77 0.02

Pituitary Mean (Gy) 4 15 73 < 0.01

V20 (%) 5 19 74 0.10

Temp LobeIpsi Mean (Gy) 1 9 89 < 0.01

V20 (%) 2 10 80 < 0.01

Temp LobeContra Mean (Gy) 0 4 100 < 0.01

V10 (%) 0 7 100 0.03

Maxilla Mean (Gy) 7 12 42 0.02

V20 (%) 15 25 40 0.05

Skin DMax (Gy) 43 42 −2 0.68

Abbreviations: ipsi, ipsilateral; contra, contralateral, temp; temporal.
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Table 3

OAR dose levels for critical structures

Organ At Risk Patients Above Dose Level

Mean Dose Protons (%) IMRT (%)

Lens (n=78) > 2 Gy 25 (32) 64 (81)

> 6 Gy 16 (21) 36 (46)

> 12 Gy 10 (13) 13 (17)

Hypothalamus (n=39) > 5 Gy 13 (33) 27 (69)

> 16 Gy 6 (15) 12 (30)

> 35 Gy 1 (3) 5 (15)

Pituitary (n=39) > 20 Gy 16 (41) 21 (54)

> 30 Gy 15 (38) 18 (46)

> 40 Gy 10 (26) 15 (38)

Testes (n=16) Any Dose 12 (75) 16 (100)

> 2 Gy 4 (25) 10 (63)

> 12 Gy 0 (0) 6 (38)

Ovaries (n=8) Any Dose 3 (38) 8 (100)

> 6 Gy 2 (25) 5 (63)

> 12 Gy 1 (13) 3 (38)

Lacrimal Gland (n=78) > 20 Gy 11 (14) 21 (27)

> 35 Gy 3 (4) 9 (12)

> 45 Gy 3 (4) 5 (6)

Growth Plates (n=24) > 10 Gy 8 (33) 19 (79)

> 20 Gy 6 (25) 8 (33)

> 30 Gy 4 (17) 6 (25)
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