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Abstract

Two privileged drug scaffolds have been hybridized to create the novel heteromorphic nucleoside 

5-(2-amino-3-cyano-5-oxo-5,6,7,8-tetrahydro-4H-chromen-4-yl)-1-(2-

deoxypentofuranosyl)pyrimidine-2,4-(1H,3H)-dione (2). Compound 2 inhibited the replication of 

two orthopoxviruses, vaccinia virus (VV) (EC50 = 4.6 ± 2.0 μM), and cowpox virus (CV) (EC50 = 

2.0 ± 0.3 μM). Compound 2 exhibited reduced activity against a thymidine kinase (TK) negative 

strain of CV, implying a requirement for 5′-monophosphorylation for antiorthopoxvirus activity. 

Compound 2 was efficiently phosphorylated by VV TK, establishing that VV TK is more 

promiscuous than previously believed.

Smallpox, although declared eradicated as a natural disease in 1983 by the World Health 

Organization, now stands as the most potentially devastating of all bioterrorist threats.1,2 It 

is presently the policy of the U.S. Government to provide two FDA-approved drugs for the 

treatment of smallpox and to have two others in the pipeline, ideally with different modes of 

action.3 One drug, cidofovir (Vistide), licensed to treat cytomegalovirus (CMV) retinitis in 

HIV-infected patients, is available through a special protocol (Investigational New Drug, 

IND) for emergency treatment of smallpox or vaccine reactions (http://www.bt.cdc.gov/

agent/smallpox/vaccination/cidofovir.asp) if vaccinia immune globulin (VIG, in limited 

supply) is not effective.4,5 Progress has been made on development of oral dosage forms of 

cidofovir,6–10 but these are not yet available in the clinic. Some agents for the treatment of 

orthopoxvirus infections are in preclinical or clinical development. These include inhibitors 

of viral morphogenesis (TTP-6171)11 and viral release (ST-246)12 as well as cellular (i.e., 

Erb-1 kinase inhibitors, CI-1033)13,14 and tyrosine kinase inhibitors (Gleveec, STI-571).15 

Nonetheless, there presently is no drug approved by the FDA to treat smallpox.
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We have pursued a chemistry-driven strategy for the discovery of lead molecules with anti-

orthopoxvirus activity.16,17 Our approach to new orthopoxvirus antivirals has been guided 

by the following considerations: (a) since the “privileged”18,19 structure of nucleosides has 

led to a variety of efficacious antiviral agents,20 the nucleoside scaffold is an excellent point 

of departure in the search for new antiviral drugs; (b) other privileged18,19 molecular 

scaffolds exist that have spawned a significant number of drugs and other biologically active 

agents, and these also can be used to discover molecular “masterkeys”;21 (c) 5-formyl-2′-

deoxyuridine is a neglected but powerful synthon for the generation of novel nucleoside 

structures that can be employed in multicomponent reactions22–25 (MCR) to generate 

chemical diversity.

In this study, a modified benzofuran–nucleoside chimera was generated in a MCR 

originating with 5-formyl-2′-deoxyuridine.26–28 Benzofuran congeners form the nucleus of 

many biological active molecules.29–32 Singh et al.33 gained entry to these fused pyrans by 

reactions of 1,3-oxazinanes and oxazolidines with various carbon nucleophiles. We adapted 

this to the reaction of 5-formyl-2′-deoxyuridine with malononitrile and 1,3-

cyclohexanedione to obtain a novel nucleoside. The synthesis was carried out using 5-

formyl-2′-deoxyuridine26–28 in a multicomponent reaction with malononitrile and 1,3-

cyclohexanedione in EtOH to give 5-(2-amino-3-cyano-5-oxo-5,6,7,8-tetrahydro-4H-

chromen-4-yl)-1-(2-deoxypentofuranosyl)pyrimidine-2,4(1H,3H)-dione (2) (Scheme 1). 

Compound 2 was obtained as a 1:1 diastereomeric mixture arising from the generation of a 

chiral carbon at position 4 of the chromone ring.

The antiviral activities of 2 (Table 1) were determined in human foreskin fibroblast cells, 

and the challenge orthopoxviruses were vaccinia virus (VV) or cowpox virus (CV). An 

initial evaluation was performed using the viral cytopathogenic effect as the endpoint. A 

second confirmatory assay involved plaque reduction. The concentration of agent that 

inhibited viral CPE or plaque formation by 50% was defined as the EC50. The effect of the 

potential antiviral agent on uninfected host cell viability was ascertained by Neutral Red 

uptake as a measure of cellular cytotoxicity. The concentration that reduced Neutral Red 

uptake by 50% was defined as the CC50. Compound 2 had no significant cytopathic effect 

on uninfected cells under these conditions (CC50 > 300 μM).

Compound 2 was also evaluated against a thymidine kinase (TK) deficient strain (TK:GFP 

lacZ) of CV. CDV does not require phosphorylation to be active because it is a 

monophosphate analogue.4,5,39,40 Therefore, its activity is quite similar in TK+ and TK− 

virus strains. 5-Iodo-2′-deoxyuridine (idoxuridine) is known to be activated by the viral 

TK41 such that it is much less effective against TK− viruses.

The data of Table 1 clearly show that 2 is active only against the TK+ strain of CV, 

suggesting a specific 5′-monophosphorylation of this compound by the virus enzyme. That 2 
indeed is a substrate for VV TK was confirmed by in vitro assays with recombinant VV TK. 

Under conditions wherein thymidine itself possessed a Km of 49 ± 7.6 μM and a Vmax of 289 

± 137 μmol min−1 mg−1, 2 was found to have a Km of 43 ± 1.4 μM and a Vmax of 77 ± 5 

μmol min−1 mg−1. Thus, 2 is a good substrate and is efficiently phosphorylated by the 

enzyme.
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These results have several important consequences for orthopoxvirus antiviral discovery and 

development. First, the requirement for the poxvirus TK for antiviral activity attests that 2 
can be expected (as so far suggested by the cell culture studies of Table 1) to be of minimal 

toxicity to uninfected cells. Second, these foregoing data also imply that the orthopoxvirus 

TK (as embodied by the VV and CV genomes) may not exhibit the extremely limited 

substrate specificity characteristic of other type II highly discriminating TKs. VV TK 

originally was classified as a type II TK because of its substrate specificity, sequence 

homology to other type II kinases, and tetrameric configuration.42–46 To date, the only 

published recognized substrates for VV TK are thymidine, 2′-deoxyuridine, and 5-bromo-2′-

deoxyuridine. The data reported here with 2 signify that, as for the herpes virus TKs, 

orthopoxvirus TKs are more promiscuous kinases than the cellular homologues, thereby 

providing fertile terrain for more diverse structure interrogation for candidate 

antiorthopoxvirus agents. Third, the unique structure of 2 suggests the possibility of a novel 

mode of action. Last, the recruitment of the versatile 5-formyl-2′-deoxyuridine and the 

adoption of the multicomponent reaction strategy provide access to an uncharted domain of 

structural diversity for exploration in antiviral drug discovery.
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Scheme 1. 
Synthesis of Compound 2
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