
TRANSATLANTIC AIRWAYCONFERENCE

Helper T-Cell Type 17 Cytokines and Immunity in the Lung
Jay K. Kolls

Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC,
University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania

Abstract

The HIV epidemic has clearly demonstrated the critical
role CD41 T cells play in preventing opportunistic infections
in the lung. The types of CD41 effector T-cell populations in
the lung have significantly expanded over the last 8–10 years

with the discovery of helper T type 17 cells, and this
review summarizes the field and discusses how these effector
cells may be exploited to augment mucosal immunity in the
lung.
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Acquired immune deficiency syndrome
(AIDS) came to light in the United States in
1981 with the report of five patients with
Pneumocystis pneumonia. Within a few
years of this report it was shown that the
risk of this infection was inversely related
to the CD41 T-cell count in peripheral
blood (1) and that the virus that leads to
AIDS, human immunodeficiency virus
(HIV), infects CD41 cells, leading to
depletion of CD41 T cells (1). Moreover,
depletion of CD41 T cells in mice also
conferred susceptibility to Pneumocystis
infection (2). The first CD41 T-cell subsets
were described in 1986 and were termed
helper T type 1 (Th1) cells for cells that
secreted IFN-g, and Th2 cells for those
that secreted IL-4 (3). The Th1 and Th2
paradigm was the foundation of CD41

T-cell immunology for the next 20 years.
What emerged from this pioneering
work was that there existed a division of
labor among CD41 T cells. For example,
Th1 cells and their signature cytokine
IFN-g were critical for granuloma infection
and host immunity against intracellular
pathogens such as Mycobacteria tuberculosis
and Listeria monocytogenes (4). Th2 cells,
on the other hand, were required for

expulsion of helminthic infection (4). So
what about Pneumocystis? Pneumocystis
elicits both Th1 and Th2 responses in the
lung, with a dominant Th2 response in Th2-
biased BALB/c mice (5). However, work by
Garvy and colleagues showed that IFN-g
and IL-4 were dispensable for clearance
of Pneumocystis (6, 7). IL-17 was cloned in
1993 and was also expressed by CD41 T
cells (8, 9), and in murine CD41 T cells the
expression of IL-17 was associated with the
expression of tumor necrosis factor-a and
granulocyte-macrophage colony-stimulating
factor but independent of IFN-g (10),
suggesting unique effector mechanisms
of this T-cell effector. To investigate
whether this was the missing link of host
susceptibility to Pneumocystis infection
we experimentally infected IL-17 receptor–
deficient mice, but these mice cleared the
infection similar to wild-type mice. In
contrast to Pneumocystis, these mice were
subsequently shown to be susceptible to
Klebsiella pneumoniae pulmonary infection
(11), systemic candidiasis (12), and
oropharyngeal candidiasis (13), the latter
infection being associated with HIV
infection. Pioneering work from several
laboratories in 2005 showed that IL-17

can be made by a distinct lineage
of CD41 T cells, Th17 cells, that develop
independent of Th1 and Th2 cells under
the transcription factors STAT3 (signal
transducer and activator of transcription-3),
retinoid-related orphan receptor a (RORa),
and RORgT (14–17). In addition to these
cells, reports have identified other CD41

T-cell lineages that make IL-9 (Th9 cells)
and IL-22 (Th22 cells), and a critical subset
for B-cell helper function, follicular helper
T cells (18) that make IL-21. Here we review
the Th17 lineage and how these cells play
key roles in lung immunity.

Th17 Cells and Other
IL-17–Producing Cells

IL-17 can be rapidly induced within hours
to days in the lung in response to LPS
(19), gram-negative bacteria such as K.
pneumoniae (20), and viral agents such as
H1N1 influenza (21). This early IL-17
response is dominated by gd T cells
(21–23) and to a lesser extent by invariant
natural killer T (iNKT) cells in the LPS
model (24). It has also been shown that
ozone exposure can also rapidly induce
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IL-17 iNKT cells in the lung (25). IL-17–
producing gd T cells express IL-23 receptor
and IL-1 receptor type 1 and can respond
directly to IL-23 and IL-1b (26, 27). IL-17
can then signal to both fibroblasts and lung
epithelium that express IL-17 receptor A
and IL-17 receptor C to induce CXCR2
ligands such as CXCL1, CXCL2, and
CXCL5 as well as the granulopoietic growth
factor granulocyte colony-stimulating
factor. Both in vitro and in vivo studies
show that the presence of tumor necrosis
factor-a can greatly augment the effect of
IL-17 on these responses (28, 29). A major
effect of IL-17 is stabilization of mRNA
stability for CXCR2 ligands such as
CXCL1 (30). In the setting of experimental
K. pneumoniae infection the majority of IL-
17–producing cells are gd T cells. However,
after mucosal immunization with heat-
killed K. pneumoniae, by 14–21 days this
response is replaced by Th17 cells (23).
These Th17 cells show broad specificity
as they are capable of recognizing other
Enterobacteriaceae family members and
proliferate in a class II MHC–restricted
fashion. One potential group of antigens
that may explain this are outer membrane
proteins (23). This broad reactivity has also
been demonstrated for fungal-specific Th17
cells (31). For example, Th17 cells that
were generated in response to Blastomyces
dermatitidis also proliferate in response to
Histoplasma capsulatum and Coccidioides
immitis (31). These cells can confer
serotype-independent immunity against
these fungal pathogens (31). In addition,
IL-17–producing cells have also been
shown to mediate serotype-independent
immunity to Streptococcus pneumoniae
pulmonary infection (32).

Another source of IL-17 in the
gastrointestinal tract is innate lymphoid
cells (ILC3 cells) (33), but their frequency in
the lung is still unclear. It has been reported
that ILC3 cells are present in the lungs of

obese patients with asthma as well as in
obese mice and that these cells contribute to
exacerbation (34).

IL-22 and Mucosal Immunity

The IL-22 receptor is expressed on the
conducting airways in the healthy lung in
both club cells (Clara cells) as well as ciliated
cells (35, 36). Blocking IL-22 during
experimental K. pneumoniae infection
results in bacteremia and enhanced
mortality (35). Moreover, recombinant
IL-22 applied in the lung improves bacterial
clearance (35). IL-22 has also been shown
in a model of ventilator-induced lung
injury to have potential therapeutic benefit
(37). It has been shown that the lack of
IL-22 is associated with reduced epithelial
repair (38) and increased fibrosis (36) in
experimental influenza infection. IL-22 can
activate STAT3 in airway epithelium and
thus can augment the expression of
antimicrobial genes as well as aid in
epithelial repair (39). The cellular sources
of IL-22 in these models have yet to be
determined but likely include gd T cells,
CD41 T cells, as well as potentially NK
cells. In the gastrointestinal tract it has
been shown that a critical source of IL-22
is innate lymphoid cells (ILC3 cells),
but it remains unclear whether this
population is important in the lung.
Patients with cystic fibrosis (CF) have
large numbers of IL-22 cells, and the vast
majority of these cells at the time of lung
transplantation are CD41 cells (40). In
the setting of CF, these cells may be
important in maintaining mucosal
immunity against CF pathogens.
Although the IL-22 receptor is expressed
in the conducting airway in the healthy
lung, after influenza infection,
regenerative pods (36) express high
levels of IL-22 receptor and thus the

receptor appears to be up-regulated at
foci of airway repair. IL-22 has also
been shown to be proinflammatory
in the lung when combined with
IL-17 (41).

IL-22 can be antagonized by a
decoy receptor IL-22–binding protein.
The lack of IL-22–binding protein in
mice leads to increased epithelial STAT3
activation and enhanced carcinogenesis
in a colon cancer model (42). IL-22 is in
phase 1 clinical trials (registration number
ACTRN12612000713897), and based on
what we know of its current biology
may have therapeutic potential in lung
disease. However, the field needs to
proceed cautiously and keep in mind the
potential of IL-22 to augment epithelial
carcinogenesis. However, this concern
may be mitigated by short-term use of
this novel cytokine.

Conclusions

IL-17 can mediate both neutrophil and
macrophage recruitment in the lung (14),
and this can have beneficial effects on host
immunity to both extracellular pathogens
but also augment vaccine-induced
immunity against intracellular pathogens
such as Mycobacteria tuberculosis (43).
However, IL-17 has been associated with
certain forms of severe asthma (34), CF
(40), and chronic obstructive pulmonary
disease (44), and in these chronic lung
diseases IL-17 may contribute to
pathology. The role of IL-22 and IL-22–
binding protein in these diseases needs
to be defined. In addition, the role of
IL-17 and IL-22 in carcinogenesis in the
lung needs to be further defined in
future research. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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