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Abstract: With the development of communication technologies, the use of wireless 

systems in biomedical implanted devices has become very useful. Bio-implantable devices 

are electronic devices which are used for treatment and monitoring brain implants, 

pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is 

used to transmit power and data between the primary and secondary sides of the 

biomedical implanted system, in which efficient power amplifier is very much needed to 

ensure the best data transmission rates and low power losses. However, the efficiency of 

the implanted devices depends on the circuit design, controller, load variation, changes of 

radio frequency coil’s mutual displacement and coupling coefficients. This paper provides 

a comprehensive survey on various power amplifier classes and their characteristics, 

efficiency and controller techniques that have been used in bio-implants. The automatic 

frequency controller used in biomedical implants such as gate drive switching control, 

closed loop power control, voltage controlled oscillator, capacitor control and 

microcontroller frequency control have been explained. Most of these techniques keep the 

resonance frequency stable in transcutaneous power transfer between the external coil and 
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the coil implanted inside the body. Detailed information including carrier frequency, power 

efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for 

the controllers techniques are investigated and summarized in the provided tables. From 

the rigorous review, it is observed that the existing automatic frequency controller 

technologies are more or less can capable of performing well in the implant devices; 

however, the systems are still not up to the mark. Accordingly, current challenges and 

problems of the typical automatic frequency controller techniques for power amplifiers are 

illustrated, with a brief suggestions and discussion section concerning the progress of 

implanted device research in the future. This review will hopefully lead to increasing 

efforts towards the development of low powered, highly efficient, high data rate and 

reliable automatic frequency controllers for implanted devices. 

Keywords: bio-implanted devices; bio-telemetry systems; power amplifiers; automatic 

controller; inductive coupling link 

 

1. Introduction 

Recently there have important technological developments in biomedical microsystems that have 

helped guide scientists to design small size, high efficiency and fading power consumption biomedical 

devices that can be implanted inside the human body using a surgical operation. Medical implanted 

devices sense directives of nerve signals from inside the human body in real-time, providing early 

diagnosis and treatment of diseases. Implanted medical devices used for diagnosis and treatment include 

retinal implants for the blind, pacemakers, cochlear implants for deafness, spinal cord stimulators for 

control of pain, deep-brain stimulators for Parkinson’s disease, and brain-machine interfaces. Generally 

they keep the sufferer safe from the hazards of infection and improve his/her mobility.  

Previously these devices were powered using wires that penetrate living tissue, and this may cause 

hazards and skin infections. In order to avoid these problems, researchers have developed implanted 

devices to be powered using batteries. The limited time-life, large size and side effects of this power 

source have led to new tactics to monitor and power the implanted devices such as thermal method, 

vibration method and coupling link method. Efficient and medically safe power sources are required to 

operate transcutaneous transfer systems. The best achievement in powering implantable devices 

involves the use of inductive coupling. Many applications have been developed for this wireless 

charging method, which differ in the chip fabrication method, operating frequency used and the 

transceiver coils. 

The transcutaneous transfer system has two parts: first is the external or primary part and the second 

part is the internal or secondary part implanted in the body tissue as shown in Figure 1. The external 

power unit produces a high frequency magnetic field in an external coil, through which the power is 

inductively conveyed to an internal coil that is associated with the implantable device. The modulated 

carrier is passed to the power amplifier to boost the signal power up to the level required for reliable 

communication [1]. The power amplifier ought to be highly efficient to minimize the power dissipation 

and lower power consumption. Implantable devices are supposed to work depending on the patient’s 
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condition so they do not use external sources of power. Therefore, a good circuitry design is required 

to satisfy biomedical implant device requirements like compact design, higher output gain, higher 

bandwidth, low cost and safety [2].  

Figure 1. The biomedical transcutaneous system.  

 

Radio frequency (RF) signals are used to operate the implanted devices inductively by coupling 

links. This makes the systems more reliable, flexible, more efficient and safer [3]. The adjustment of 

the operating frequency is very important in an inductive coupling system to prevent power and data 

loss so researchers have designed and simulated many techniques to control the resonance frequency to 

improve the efficiency in biomedical implant transmission systems. Many works related to the wireless 

low power frequency control electronics are presented such as transcutaneous power transfer systems [4], 

controlled coil drivers for transcutaneous power transmission [5], voltage controlled oscillators 

(VCOs) tuned to control an adaptive neural network [6], medical implants using hybrid coils [7] and 

wireless power regulation [8]. This paper provides a detailed review of the literature concerning the 

methods to regulate the power transferred over a wireless link by adjusting the resonant operating 

frequency of the external part of the system. These frequencies should use the Industrial Standard 

Medical (ISM) and Medical Implants Communication Systems (MICs) bands, which are employed for 

medical applications. The main reason for this review is to explain and clarify the methods used in 

frequency control of biomedical implanted devices to provide a good knowledge about the challenges 

and issues that are still exist and to find the best solutions. 

2. Power Amplifiers for Transcutaneous Applications 

The supply of wireless power to biomedical implants begins with power amplifiers, which supply 

energy at a particular frequency to an antenna or coil. As the size of implants decreases, so does the 

available space for receiving antennas. This leads to shorter wavelength antennas and lower size 

constraints for coils, which increases the frequency of power transmission. High transmission 

frequencies place a particular focus on utilizing power amplifiers, which operate efficiently at these 

levels. Switched power amplifiers have been a popular choice to drive inductive power links for 
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implantable electronics due to their ability to minimize losses at high frequencies [9]. The power 

amplifier increases the incoming signal to the desired power level that drives the transmitting circuit. 

2.1. Characteristic of Transcutaneous Power Amplifiers 

The most used methods for energizing the transmitter coil in the external part of the biomedical 

implanted system is the use of a power amplifier. The power amplifier should satisfy the following 

three characteristics: 

i. The active device drops a minimal voltage (it is supposed to be zero) while current is flowing  

through it. 

ii. The active device is switched on when the voltage through it becomes zero, and switched off 

when the current through it is zero. 

iii. The active device must switch fast enough to minimize the time when there is the simultaneous 

existence of current through the device and a significant voltage across it. 

These characteristics are strongly focused on minimizing switching losses [10]. Figure 2 shows the 

switching activities of the transcutaneous power amplifier. 

Figure 2. Transcutaneous power amplifier characteristics. 

 

2.2. Amplifier Classes Used by Implanted Devices 

In transcutaneous power amplification systems different classes of power amplifiers (PAs) such A, 

AB, B, C, D, E, and F are used for the biomedical frequency bands. Output power ranges from  

a few mW to several Watts, depending on the applications. The bias applied to a power transistor 

determines the type of amplifier class [11]. The level of performance of a PA can be evaluated by 

choosing its bias point. From the PA bias, efficiency, linearity, or other parameters can be evaluated. 

The power amplifiers are divided into two main types, according to the operating mode [12] as shown 

in Figure 3. The first type is conduction angle or linear PA, if the PA transistor works as a converter of 

the RF input signal into a current. The second type is a switching PA, if the PA operates as a switch.  
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Figure 3. Power amplifier classes. 

 

2.2.1. Linear-Mode Power Amplifiers 

The conduction angle gives the proportion of an AC cycle, which the output devices conduct [13]. 

The quiescent DC operating point (Q-point) of an amplifier defines the amplifier class. If the position 

of the Q-point at half of the load line of the amplifier’s characteristic curve, the amplifier will operate 

as a Class-A amplifier with 360° conduction angle. Moving the Q-point lower down the load line 

changes the amplifier into a Class AB, B or C amplifier. A 180° conduction angle defines Class B, 

increasing it to 360° defines Class AB and when it is less than 180° it defines a Class C one. 

Figure 4 shows the conduction angle (α) and input current signal. Because of the low efficiency 

(compared with switch mode power amplifiers), high power losses, and low frequency band of linear 

power amplifiers, these elements are no longer used for transcutaneous power transfer systems. 

Figure 4. Conduction angle and input current signal for linearly-PA. 
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The formulas below are used to calculate the conduction angle [14]: ܫௗ = 	 ൜ܫ + .௨௧ܣ ݏܿ ߠ for ߠ ≤ ߙ and ߠ ≥ 2π − 0ߙ for ߠ otherwise.  (1)cos ߙ = − ௨௧ܣ௨௧ (2)ܣܫ = ݇  (3)ܣ

where Id, is the current at the output of the transistor, Aout is the magnitude of the sinusoidal peak 

current corresponding to a sinusoidal peak voltage excitation of magnitude Ain, under a linear gain of k. 

Applying Fourier Series analysis to Equation (1), the following formulas for the current at the 

fundamental and DC are obtained: 

݅ோி = 	 නߨ1 ݅ (ߠ)ݏܿ ߠ݀ = ߨ2 ൬ݍܫ ߙ݊݅ݏ + ௨௧4ܣ ݊݅ݏ ߙ2 + .	ߙ ௨௧2ܣ	 ൰ଶగ
  (4)

ܫ = 	 නߨ12 ݅ ߠ݀ = ߨ1 ݍܫ) ߙ + ݐݑܣ ଶగ(ߙ݊݅ݏ
  (5)

The maximum efficiency achieved for any given class of operation occurs when the voltage across 

the device is in voltage saturation. Then efficiency is determined by the ratio of the currents: ߟ = 	 ݅ோிܫ = ݊݅ݏ ߙ2 − 4ߙ2 ߙ) ߙݏܿ − (6) (ߙ݊݅ݏ

2.2.2. Switch-Mode Power Amplifiers 

To operate the PA in switch-mode transistors are used to work in saturation mode. That means the 

voltage is equal to zero when the transistor is in the on state and the current equals zero when it is 

turned off, so there is no overlap time between voltage and current and for that reason they have the 

lowest power dissipation and achieve 100% theoretical efficiency. Therefore they are widely used in 

transcutaneous power amplification systems [15]. 

In practice a transistor is not a perfect switch and overlap does, in fact, limit efficiency. Switched 

power amplifiers use an output matching network (LC) that develops the waveform by isolating the 

harmonic components of the voltage and current. Only the fundamental current flows to the load and 

only the fundamental voltage is generated in the LC matching network. The two main conditions to 

produce signals with maximum efficiency in the load are as follows: 

i. Zero crossing between voltage and current over the transistor channel. 

ii. Isolate the fundamental harmonics of the current from pass to the load. 

There are many kinds of switching-mode power amplifiers typified as Class F, Class D and Class E. 

The main differences between these classes are the topologies, waveform shaping, and method of  

analysis [16]. Class E power amplifiers are used widely in transcutaneous power systems because of 

their simplicity (they consist of only one transistor), high efficiency, wide frequency bandwidth and 

simple control circuitry [17]. 
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Class F Power Amplifiers 

The Class F power amplifier is a development of the Class E power amplifier that uses a harmonic 

resonance circuit on the load side [18]. A simple Class F amplifier design consisting of a transistor, 

choke inductor and an input source is shown in Figure 5. The resonance circuit on the output of the 

transistor cancels the harmonics generated by the system.  

Figure 5. Class-F power amplifier. 

 

The voltage and current waveforms of Class F amplifiers are shown in Figure 6, where the voltage 

is like a square wave due to the odd harmonics of the fundamental frequency. Current is like a half sine 

wave that has a phase degree of π [19]. Class F amplifiers are supposed to have a theoretical efficiency 

of 100%, but the resonant circuit become difficult to design for higher than 5th harmonics [20]. 

Figure 6. Class-F PA voltage and current waveforms. 

 

Class D Power Amplifiers 

The Class D power amplifier switches two transistors on and off alternatively to generate a square 

wave. The output of the transistor is connected to the LC matching network as shown in Figure 7, 

which is resonant at the same resonance frequency of the square wave generating a sinusoidal signal of 

the same frequency [21].  
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Figure 7. Class D power amplifier. 

 

In the case that the matching network works properly the efficiency of the Class D amplifier ought 

to be 100%, but practically at high frequency the parasitic capacitance must be taken into account and 

the circuit component is not ideal so the efficiency is reduced. The size of Class D power amplifiers is 

bigger than that of Class F and E ones due to the use of two active devices [22]. Figure 8 shows the 

waveforms of voltage and current of Class D PAs. 

Figure 8. Class-D PA waveforms. 

 

Class E Power Amplifiers 

In implanted device transcutaneous systems Class E PAs are broadly used. They have a high 

efficiency near 90%, simple architecture, higher power transfer, no mixer is used if used as a 

modulator which make them better as power drivers for transmitter coils [23,24]. The simple Class E 

PA consists of a CMOS transistor as a switch, and a shunt capacitor (C) used for soft switching in  

non-ideal CMOS, so there is no overlap between voltage and current. A choke inductor (LC) used to 

keep supplied current (IDC) constant DC flows through the amplifier. The shunt capacitor CP connected 

in parallel with the series load network of the transistor is adjusted to a known frequency to fix the 

current of the supply source and convert the digital input into a sinusoidal output with zero DC [25]. 

Figure 9 shows a simple Class E power amplifier. 
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Figure 9. Class E power amplifier. 

 

A Class E power amplifier works at high operation frequency depending on the output capacitance 

required for the output matching circuit [26]. Maximum efficiency occurs at the high frequency limit 

of capacitance (Cs). Figure 10 shows the waveforms of voltage and current for a Class E PA. 

Figure 10. Class E waveforms. 

 

Since the power amplifiers are used in biomedical implants many analyses and considerations have 

been made to develop the design of the Class E power amplifiers to make it more practical. One of 

these the Class E power amplifier designs was the infinitely loaded quality factor (Q). The Q of the 

output circuit LC must be high to ensure the output current and output voltages consist of only the 

fundamental harmonics [27]. The formulas below are used to design Class E power amplifiers [28]: 

ܲ = 21 + గమସ ∙ ܸଶܴ  (7)

ܳ ≤ ܮܴ߱
 (8)

ௌܥ 	= 	 1ܴ߱ ቂగమସ + 1ቃ ቂగଶቃ = 1߱(5.447 ܴ) (9)

ܥ = ௦ܥ 5.447ܳ ൨ 1 + 1.42ܳ − 2.08൨ (10)
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2.3. Power Amplifier Efficiency  

One of the most important performance parameters of an implantable wireless transmitter is its 

efficiency. It is a ratio of the power output of the PA over the input power of the PA represented as a 

percentage as shown in Equation (5) [29]:  Efficiency(ܲܣ) = ܲ(ܥܣ)ܲ(ܥܦ) × 100% (11)

The major parts accounting for transmitter efficiency are power amplifier and antenna. A switching 

Class PA is more efficient than its linear class counterpart. It behaves as a switch such that current and 

voltage does not achieve their maximum value simultaneously which reduces power dissipation. 

Switching Class PAs requires the use of constant envelope modulation techniques such that the signal 

does not carry any amplitude information because of the aggressive amplitude compression 

experienced in switching PAs [30]. The Antenna Matching network accounts for a great part of the 

power losses. A good design of the matching network between PA and antenna is needed so that all the 

power will be delivered to the load. There is different architecture available for constructing a power 

amplifier that converts a DC voltage to AC voltage such as in A, B, AB, C, D, E, F and other PAs [31]. 

Efficiency does not represent a physical parameter; it’s just useful for showing the requirements of the 

circuit for matching and stability. Table 1 explains the percentage efficiency, advantage and 

disadvantage for each class. 

Table 1. Power amplifier’s efficiency, advantage and disadvantage. 

Power 

Amplifier Type 

Efficiency 

Theoretical 
Applications Advantage Disadvantage 

References 

Efficiency 

A 50% RF applications - - [31] 

B 78.5% RF applications - - [31] 

AB 70%–80% RF applications - - [31] 

C 83%–90% RF applications - - [31] 

D 80% 

RF and  

bio-telemetry 

applications  

Has a better response to 

the inductively coupled 

even in the case of 

frequency shifting  

Requires two active 

devices, limited operating 

frequency and provide low 

power transmission 

efficiency 

[22] 

E 90%–95% 

RF and  

bio-telemetry 

applications 

Simple architecture and 

need only one active 

device, the frequency 

range is wide KHz-MHz 

and have high power 

transmission efficiency 

Any shift in resonance 

frequency will decrease the 

output power transmission 

appreciably  

 

[2,28] 

F 90%–100% 

RF and  

bio-telemetry 

applications 

Need only one active 

device, the frequency 

range is wide KHz-MHz 

and have higher power 

transmission efficiency 

Any shift in resonance 

frequency will decrease the 

output power transmission 

appreciably and need one 

more inductor  

[18] 
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3. Automatic Frequency Controller 

Wireless inductive coupling uses magnetic coupling as the communication environment that is 

common with radio frequency identification (RFID) techniques in the transcutaneous power system. 

Low power RF radiates RF power signals from the reader coil antenna, which is designed to send 

modulated signals stable in amplitude and frequency that are suitable to transmit power. The stability 

of the transmitted signal makes for a high readability for DC voltage at the implant device despite the 

mutual displacement between coils [32]. The bio-device system is composed of two coils: one 

implanted inside the human body, the other located outside the body. The best power transfer 

efficiency in transcutaneous systems occurs when the transmitter and receiver coils are tuned to the 

same resonant frequency f0. Misalignment or changes in the distance between the coils will cause a 

carrier frequency shift [33], so it is necessary for a frequency controller to correct the signal. The 

negative feedback-loop technique keeps the transcutaneous power transmission system at a stable 

voltage by regulating the supplied voltage, adjusting the duty ratio and correcting the frequency shift 

of the driving signal. The automatic frequency controller is shown in Figure 11. 

Figure 11. Automatic frequency control loop. 

 

3.1. Frequency Control Techniques Used in Biomedical Implants 

In practice, there are various methods that can be implemented to monitor the RF transmitted signal 

in biotelemetry systems. The main important problem for PA efficiency is the resonant frequency 

control. The goal is to monitor and control the transmitted signal frequency of the power amplifier by 

using a frequency control technique. The advantage of this technique is offering a high transfer 

wireless power stability that maintains the stability of DC voltages at the implant device [34]. In this 

study, the methods which can be implemented for monitoring the RF transmitter power, using the 

frequency control techniques were investigated. Transcutaneous amplifiers commonly provide 

convenient power control abilities and are designed for particular applications but by controlling the 

resonant frequency between internal and external coils they will perform more efficiently, reliably and 

stably. These frequency control techniques require more circuit size, but because the issue deals with 

human systems stability is very important for human safety. 



Sensors 2014, 14 23854 

 

 

3.1.1. Gate Drive Switching Control Closed Loop Technique  

The closed-loop technique is used widely in transcutaneous systems for implantable devices to 

control the power amplifier frequency. In this method a feedback signal is applied to the gate of the 

power control transistor as shown in Figure 12. The proposed system is designed to provide the 

maximum power transfer to the implanted circuit. Circuits ought to tolerate coil misalignments and the 

changes in load current when the sensitivity to the device is minimized and accommodate process 

variation [35]. 

Figure 12. Gate drive switching control technique. 

 

Gate drive switching as used by Troyk and Schwan [36] is a closed-loop control to correct the 

frequency in case of variations between transfers. Using coil current zero-crossing control provides 

excellent stability of the operating frequency even for changes in the coil inductance and resistance. 

Djemouai et al. [37] used a system that controls the output of the power amplifier (PA) by a feedback 

control circuit. The PA output stability is achieved by varying the current Ictr between 4 μA and 6 μA. 

Baker and Sarpeshkar [38] used a feedback technique that reduced the use of algebraic manipulations. 

When transmission displacement varied from 1 to 10 mm the overall efficiencies were of 74% and 54%.  

In 2009, Chen et al. [39] made a prototype transcutaneous power regulator that produces good load 

and input voltage regulation and high efficiency for variations of the alignment or gap in 

transcutaneous systems. Dissanayake et al. [40] designed a system with output power up to 15 W using 

a feedback frequency control that tolerate variations due to changes in alignment between transfer 

system coils. Yang et al. [41,42] used the feedback signal, compare it with a reference signal so the 

error signal healed and used to adjust the duty cycle and the angular frequency of the transmitted 

signal. Results showed that Class-E amplifier can work at maximum efficiency with feedback loops. 

Tang et al. [43] designed a transcutaneous power regulator for artificial hearts using modulation to 

control switching of duty ratio, so the efficiency was increased.  

In 2010, Yang et al. [44] presented a feedback analysis of inductive links powered using a Class E 

amplifier with a variable coupling coefficient. Results showed that the inductive link tested in the best 

state with constant output voltage in the case where the duty cycle and the frequency of the driving 

signal were adjusted. A feedback controlled coil for transcutaneous applications was proposed to 
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power the bio-implantable microsystems [45]. The ASK modulation technique is used to control the 

switch according to the input data by using an adaptive voltage doubler and rectifier [46]. To reduce 

the dropout voltage, Chan and Chen [47] adjusted high speed comparators that operate as switches at 

proper times in the high frequency band. Hence, the controlled Class E efficiency is varied between 

30% and 66.2% when operating in the constant current mode. In 2013, Abu Khater et al. [48] used 

control methodology to smooth the transition between switching states based on pulse density 

modulation (PDM) feedback, as well as the output voltage slope-limiting circuit. The mechanism 

improves ripple reduction without any significant effect on efficiency, and with minimum off-chip 

components. Miura et al. [49] designed a transcutaneous energy transmission system for implantable 

internal artificial organ systems. The system was minimized and efficiency improved to 93.4% [50]. 

Valente et al. [50] designed Class D and Class Pas with a 0.18 μm CMOS.A closed-loop transmitter 

system to optimize the power delivery to medical implants so the efficiency was 80%. Summaries of 

frequency, power consumption, coils displacement and efficiency of gate drive switching frequency 

control are shown in Table 2. 

Table 2. Gate drive switching control method used in transcutaneous amplifier control. 

Technique 
Carrier 

(MHz) 

CMOS 

(μm) 

Power 

Consumption
Efficiency 

Power 

Supply (V) 

Displacement 

(mm) 

Year 

[Reference]

Gate control 0.760 - - - 9 - 1992 [36] 

Gate control 20 0.35 - - 10 - 1999 [37] 

Gate control 4.5 - 1–10 mW 74%–54% 3 1–10 2007 [38] 

Gate control 0.25–0.32 - - - 30–60 10–20 2009 [39] 

Gate control 1 - - 44.3%–83.4% 6 - 2009 [40] 

Gate control 0.155–0.168 - - 82.1% - 16 2009 [41] 

Gate control 1 - - - 6 - 2010 [42] 

Gate control 0.3–0.4 - - - 30–45 10–20 2010 [43] 

Gate control 1 - - 67.6% 6 40–69 2010 [44] 

Gate control 0.120 0.8 - - 5 - 2012 [45] 

Gate control 13.56 0.5 - 77% - - 2012 [46] 

Gate control 0.083–0.175 - - 66.2%–30% 5 2–8 2012 [47] 

Gate control 8 130 nm - - 4–6 - 2013 [48] 

Gate control 0.160 - - 93.4% - 0–15 2013 [49] 

Gate control 14 0.18 - 80% 5–30 - 2014 [50] 

3.1.2. Power Control Closed Loop Technique  

Power control techniques can be used to improve the efficiency of the PA. In a switch mode PA, the 

input power should be stable so a supplied power control is required. In this technique the feedback 

signal back to the power control unit that controls the supplied power to the transcutaneous power 

amplifier to overcome the variation in frequency shift due to misalignment. This technique architecture 

is shown in Figure 13. 
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Figure 13. Power control technique. 

 

A power control unit was developed by Guoxing et al. [51] to ensure maximum power transfer to 

the implanted unit. MATLAB and Spice simulations were used in the tests. Simulations showed the 

validity of the system model. Guoxing et al. [52] designed a transfer system with a control technique 

that fixed the variations due to the load or coupling coefficient changes. The power supplied to implant 

circuits was 250 mW with a coil displacement of 0.7 to 1.5 cm. Si et al. [53] designed a wireless power 

supply system for implantable biomedical devices. The design reduced the losses and showed 

tolerance against load variation.  

Chaimanonart et al. [54] developed a wireless implantable system implanted inside the skin of small 

laboratory mice. The power source adjusted its RF power, strength and achieves a stable and reliable 

voltage supply for the bio-implant system. Hyung et al. [55] presented a Class E PA with an automatic 

power control loop and load compensation circuit. The system provided an output power of 10–30.2 dBm 

with efficiency of 71.5%. Silay et al. [56] made a closed-loop control for power transfer circuit by 

controlling the supply voltage. The efficiency of the inductive link was 55%. 

Table 3. Power supply control method used in transcutaneous amplifier control. 

Technique 
Carrier 

(MHz) 

CMOS 

(μm) 

Power 

Consumption 
Efficiency 

Power 

Supply (V)

Displacement 

(mm) 

Year 

[Reference]

Power control 1 0.16 - - 15 4–15 2004 [51] 

Power control 1 1.5 - 65.8%–36.3% - 7–15 2005 [52] 

Power control 0.155 - - - 10 - 2007 [53] 

Power control 4 0.15 - - 2 - 2008 [54] 

Power control - 0.35 - 71.5% 5 - 2011 [55] 

Power control 8 0.18 - - 3.3 10 2011 [56] 

Power control 13.56 - 20 mW 69% - - 2011 [57] 

Power control 1 - - - 5 0–11.8 2012 [58] 

Power control 13.56 0.35 - 80% - - 2012 [59] 

Power control 8 0.35 - 63% 3 10–20 2014 [60] 

In 2011, Andia et al. [57] used a closed loop to control voltage supplied to a PA by using a DC/DC 

converter. At 20 mW implant power consumption the measured efficiency was 69%. Pablo et al. [58] 
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controlled and regulated the DC voltage in an implanted device. The efficiency of the system increases 

using amplitude voltage control for mutual displacement between coils of 0–11.8 mm. Frequency 

control was improved too. Hongcheng et al. [59] improved the transcutaneous closed loop power 

management efficiency. The controller achieved the best transfer in case of the coupling variation; the 

system achieves high efficiency even with loss in the compact components such as the PCB pattern 

coil and the CMOS switch [60]. The output voltage is kept constant under distance and load variations. 

Summaries of frequency, power consumption, coils displacement and efficiency for power control are 

shown in Table 3. 

3.1.3. Voltage Controlled Oscillator (VCO) with Closed Loop Technique 

A different method which can be implemented for monitoring the RF transmitter, uses feedback 

control techniques. That follows a design of a simple control system to auto-correct the RF signal 

using VCO frequency that offers output power stability for the power amplifier as shown in Figure 14. 

It provides constant voltage at the implant device [61]. This method is simple to implement to reduce 

the reader hardware. The feedback system consists of an amplifier for the RF signal passed through a 

square circuit (multiplier) filtered at the center frequency. The RF signal is converted into the digital 

signal, which converts the captured transmitted signals in the digital form. The phase comparator is 

used to compare the digital transmitted signal with respect to the fundamental transmission pulse 

signal by VCO. 

Figure 14. Voltage controlled oscillator.  

 

The voltage controlled oscillator (VCO) was used by Gyu and Cho in 1998 [62]; they designed a 

transcutaneous inductive coupled system that power an artificial heart. Design reduced the effects of 

variations in coupling coefficient and changing with load. Shabou et al. [63] used numeric control 

operating with a VCO (voltage controller output). Results showed approximately zero power loss 

while switching. Mizannojehdehi et al. [64] used a transcutaneous power system with frequency 

controller. Results showed that self-tuning ability while the system is operating led to high efficiency 

and more reliability. Walia and Drakakis [65] designed a 13.56 MHz frequency shift keying (FSK) 

short-range (7–8 cm) biotelemetry link. Design of a PLL with a VCO control loop at 13.56 MHz  

was applied. 
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In 2011, Betancourt et al. [66] built a low power RF transmitter suitable for near field implantable 

devices. Aqueveque et al. [67] developed a frequency controller by using a VCO to control the 

operating frequency of the system. Regulated voltage was stable when the distance between coils 

varies between 0 mm and 40 mm. Results show that it is not necessary to increase the supply voltage 

of the external unit to regulate the internal voltage. Adeeb et al. [68] designed a biotelemetry  

system, demonstrating power transmission of 125 mW with 12.5% power link transmission efficiency. 

Summaries of frequency, power consumption, coils displacement and efficiency for the VCO 

frequency controller are shown in Table 4. 

Table 4. VCO method used in transcutaneous amplifier control. 

Technique Carrier (MHz) 
CMOS 

(μm) 

Power 

Consumption 
Efficiency

Power 

Supply (V) 

Displacement 

(mm) 

Year 

[Reference] 

VCO 0.1225–0.1733 - - - - 10–20 1998 [62] 

VCO 10.8–13.2 0.35 - - 3.3–4.5 - 2005 [63] 

VCO 0.385–0.408 - - 73% 14 10–24 2006 [64] 

VCO 13.56 0.8 - - - 70–80 2007 [65] 

VCO 174–216 0.5 - - - - 2011 [66] 

VCO 0.950–1.2 - - - 2.3–5.5 6–20 2012 [67] 

VCO 0.2 - - - - - 2012 [68] 

3.1.4. Capacitor Control Operating Frequency Method 

There are other methods to stabilize the system operating frequency using a variable capacitor fixed 

in parallel with transmitter coil whose equivalent capacitance is controlled by semiconductor switches 

as shown in Figure 15. 

Figure 15. A capacitor used to control resonance frequency. 

 

In 2005, a variable capacitor used to control the resonance frequency by Si et al. [69] to regulate the 

transcutaneous power by adjusting the resonant frequency of the primary elements. Results monitored a 

power efficiency of 80% at 1 cm gap demonstrating that the proposed method is very effective  

in stabilizing the operating frequency, while maintaining the zero voltage switching operation.  
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Ping Si et al. [70] used a method for adjusting the resonant operating frequency of the primary part. 

Operating frequency was changed by effective tuning capacitance, and by soft switching the heating at the 

secondary coil was reduced. The result shows the need for better thermal management on the primary side. 

Dissanayake et al. 2009 [71] used closed loop frequency control system with a switched capacitor 

control method and power regulated for separations of 10 mm to 20 mm at 10 W. Mohamadi [72] 

changed the operating frequency by controlling the tuned capacitor on the primary side, according to 

the feedback signals. Shmilovitz et al. [73] used a method where voltage regulation is based on 

hysteretic control of the implanted storage capacitor voltage. The results show the improvement in 

system response to the change of load. Summaries of frequency, power consumption, coils 

displacement and efficiency for capacitance frequency control are shown in Table 5. 

Table 5. Capacitance control method used in transcutaneous amplifier control.  

Technique 
Carrier 

(MHz) 

CMOS 

(μm) 

Power 

Consumption
Efficiency 

Power 

Supply (V) 

Displacement 

(mm) 

Year 

[Reference] 

Capacitance control 0.087 - - - 10 - 2005 [69] 

Capacitance control 0.078 - - 80% 10 10 2008 [70] 

Capacitance control 0.163–0.173 - - - 23.5 10–20 2009 [71] 

Capacitance control 0.1 - - - 6 - 2011 [72] 

Capacitance control 0.75 - - - - 20–85 2014 [73] 

3.1.5. Microcontroller Operating Frequency 

Another method is using microcontrollers as more flexible tools, whether the programming code 

use assembler or C languages. A modulation technique for controlling the fundamental carrier signal 

led to an increase of the system performance efficiency. Many techniques for generating the control 

signal use microcontrollers so the application of this facility in microcontrollers for generating the 

control signal offers flexibility to update the data and auto-correction for the ASK signal or PWM 

signal [74]. By introducing the feedback control for the power amplifier transmitted signal, modifying 

the design for the controller to control the fundamental carrier signal that increased the stability for 

Class E power amplifiers. Figure 16 shows a frequency control system using a microcontroller.  

Figure 16. A microcontroller used to control frequency shift. 
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The automatic controller circuit was introduced for improving the transmitter power to the implant 

device. That offer a stability of transfer of the wireless power and provides minimum shifting of the 

carrier frequency. The microcontroller is generating a control pulse signal, this transmitted signal 

captured by the loop coil circuit is amplified and then compared to the filtered transmitted carrier 

signal. The microcontroller converts them into digital form for the compactor, and the error signal is 

fed back into the control signal generator to correct the output. 

The microcontroller technique used by Kiani and Ghovanloo [75] developed a closed-loop 

transcutaneous system operating at 13.56 MHz. The coils’ distance was changed between 5–20 mm. 

using microelectronic devices (IMDs) to control the system. Kuanfu et al. [76] designed an integrated  

256 channel IC. Integrated digital controllers control the power and operating frequency of the system. 

Tsujimura et al. [77] designed a microcontroller, while the external unit also has a converter. The 

system could monitor and control the conditions of a patient’s artificial heart. Paglinawan et al. [78] 

used a microcontroller unit (MCU) that was configured to control the whole system. 

Lee et al. [79] in 2011 designed a programmable implanted stimulator, so the power control unit 

consists of a rectifier, battery charging and detection and a regulator. A PLL-based phase shift keying 

demodulator was used to stimulate data and adjust the clock. Choi et al. [80] used a resonant regulated 

rectifier with carrier frequency of 6.78 MHz that delivers 6 W power and efficiency of 86%.  

Li et al. [81] designed a 13.56 MHz wireless power transfer system with a 1X/2X reconfigurable 

resonant regulating (R3) rectifier. A PWM loop on the secondary side controls the duty cycle of 

switching the rectifier and configures load and coupling variations. Summaries of frequency, power 

consumption, coils displacement and efficiency for microcontroller frequency control are shown in  

Table 6. 

Table 6. Microcontroller used in transcutaneous amplifier control.  

Technique 
Carrier 

(MHz) 

CMOS 

(μm) 

Power 

Consumption 
Efficiency 

Power 

Supply (V) 

Displacement 

(mm) 

Year 

[Reference]

microcontroller 13.56 - 78 mW–1.1 W - 3.6 5–20 2010 [75] 

microcontroller 8 0.18 - - 36 - 2010 [76] 

microcontroller 2.4 GHz - - - - - 2010 [77] 

microcontroller 10 0.35 0.39 mW–0.745 mW - 3–4.5–15 - 2011 [78] 

microcontroller 4 0.35 - - - - 2011 [79] 

microcontroller 6.78 0.35 - 86% 10–14 - 2013 [80] 

microcontroller 13.56 0.35 - 92.6% - - 2014 [81] 

4. Issues and Challenges  

Recently, it has become necessary for wireless communication systems to be used in biomedical 

implanted devices. Therefore, circuits with compact design, lowest cost, and low power loss transfer 

occupy most of the attention of researchers. In biomedical implanted devices the delivered power and 

the stability of DC supplied voltage to the implanted device are very important to make the device 

work in an optimum state while ensuring patient safety. The misalignment between transfer coils 

(external and internal) in any direction X-axis or Y-axis or angular misalignment or due to load 

variation results in a frequency shift and power losses. To achieve a low-cost and highly reliable 
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transcutaneous power system, there are parameters that must be achieved and investigated like using a 

sufficiently high efficiency power amplifier with suitable transfer coils, good modulation, using 

biomedical frequency bands and good control technique. 

4.1. Efficient Transcutaneous Power Amplifiers  

To achieve low-cost and highly reliable transcutaneous wireless transmission with high power and 

high efficiency the use of power amplifiers (PAs) is necessary. High efficiency PAs are commonly 

used switch-mode topologies, such as Class D, E, and F. The CMOS process offers the highest 

integration level at the lowest cost and with smaller size. CMOS transistors possess enough speed to 

implement RF circuits and they offer the highest density digital circuits. Power efficiency is an 

important factor in the design of the power amplifier (PA) [2]. The power efficiency of switched mode 

PAs like Class D, E and F, amplifiers have a better transfer efficiency compared with these linear 

amplifiers, such as Class A, AB, B, and C, especially at high frequencies, wide bandwidth and low 

power losses. 

4.2. Coil Size  

Power supply and antenna space limitations are important in implant antenna design. Many factors 

are considered in antenna design, such as low signal power levels, reduced space availability and the 

effect that the tissue characteristics have on the antenna. Both transfer coils should be adjusted to the 

same resonance frequency so maximum power transfer occurs [27]. Efficiency of coils can be 

increased by antenna design techniques and by modifying their lumped components to cancel 

reluctance and match dissimilar impedances, however, these elements increase antenna loss. The use 

of low frequencies in small antennas is also impractical, that it has greater signal attenuation in body 

tissues, therefore a specific biomedical frequency band required, taking into consideration the lack of 

increase of tissue heating [82]. The main reason for the power dissipation is the implanted coil. 

Therefore, the coil shape and geometry should be effective and as small as possible with the lowest 

misalignments and lowest power dissipation possible [83]. To overcome the above issue, the design 

and optimization of efficient inductive power links with small size have been well studied in [84,85]. 

4.3. Suitable Carrier Frequency  

The carrier frequency is very important in designing implanted devices and biotelemetry systems. 

Most of the implantable devices are powered by a low frequency, less than 1 MHz, however, the 

standard safety level with respect to human body exposure to radio frequency electromagnetic fields is 

3 kHz–30 GHz [86]. 

The main drawback of inductive links is that the low frequency limits the available bandwidth 

which results in low data rates. To overcome range limitations, a dedicated frequency band has been 

allocated for medical implantable device communication system (MICS), which uses the frequency 

band of 402–405 MHz, which involves a number of allowable frequencies such as 27 MHz and  

216–217 MHz. The MICS solves the range limitations associated with inductive links. They also have 

good signal propagation characteristics in the human body. Also, the standard frequencies of the 
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Industrial, Scientific and Medical (ISM) band were applied like 125 KHz, 135 KHz, 6.678 MHz,  

13.56 MHz, 20 MHz, 27 MHz and 47 MHz [87]. The ISM has different frequency bands, with the 

most used being the 2.4 GHz and sub-1 GHz band. The 2.4 GHz band is known for its high speed. 

These frequencies are used to protect the human from hurt by spoiling the skin tissue or any  

side effects. 

The low and high frequencies between 3 kHz–30 MHz are widely used in transcutaneous wireless 

due to its ability penetrate water and skin over a short range and the fact they cannot heat the 

surrounding biological tissue, which is tested by Mutashar et al. [82]. 

4.4. Modulation Technique Consideration 

One biomedical system operation is the transmission of sensor data in real time for monitoring  

and diagnosis. Many biotelemetry modulations such as amplitude shift keying (ASK), frequency  

shift keying (FSK) and pulse shift keying (PSK) are used. Important parameters needed for the 

transcutaneous power transfer system are wide bandwidth, compact design, low power losses, secured 

data, and best signal quality. Those parameters ensure good performance over the transmission channel 

and reduce noise and distortion. The ASK modulation is considered as the simplest modulation used in 

near-field transcutaneous power systems. However, for more immunity against interference, noise 

reduction and high data rate (PSK) is used [88]. 

There are many methods to conserve power and reduce the interference on nearby electronics by 

choosing a suitable operated frequency according to the ISM band, suitable modulation and suitable 

design of the modulator and demodulator. The detailed literature review of this chapter is based on 

modulation forms technique which is used in the implanted devices. These modulation techniques are 

amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) [89].  

In general the ASK modulation technique is widely used in implanted devices due to its simplicity  

and low power consumption. However, it has a number of limitations for high-bandwidth data 

transmission; and high order filters with a sharp cut off frequency [1,90]. 

4.5. Frequency Control Techniques  

The goal is to monitor and control the transmitter carrier frequency of the power amplifier by using 

a frequency control technique which offers a high transfer wireless power stability that maintains the 

stability of DC voltages at the implant device. The technique used should satisfy the general 

requirement of transcutaneous systems which are high power transfer efficiency, high data rate, 

compact design, low cost and safety. Each of one of the techniques mentioned in this paper has 

advantages and disadvantage according to these requirements. The use negative feedback with a 

control technique, allows the transmission system to have a constant transfer voltage, adjustable duty 

ratio and no frequency shift in the transmitted signal. The effectiveness of the negative feedback 

technique was tested in many control techniques with a variable load and variable displacement 

between coils. The experimental results show that the power amplifier with feedback loop can keep 

operating in a better state under these conditions [44].  
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4.6. Transmitter Chip Size 

The use of an automatic control circuit is introduced to improve the power transmitted toward the 

implant device. That offers stability and minimum shifting for the carrier frequency. This controller 

and related feedback circuitry increase the chip size of the external part of transcutaneous transmission 

system, so the power dissipation generated by the circuit increases as heat. The lower system cost and 

small form factor, the digital, analog and RF circuitry should be integrated onto a single die. Recently 

technologies like the CMOS process are used to fabricate chips. CMOS transistors have the speed to 

implement RF circuits and have high density digital circuits. Fabrication using standard 0.35 µm 

CMOS technology was widely used for its high speed, low cost, low power consumption. 

5. Conclusions and Suggestions 

This work explains the details of the various biomedical power amplifier operating frequency 

control techniques. Wireless inductive coupling technology for biomedical applications was used 

which transmits a low power, which is less than a milliwatt. Radiated, radio frequency (RF) power 

signals from reader coil antennas deliver a stable wireless power transmission. The best RF signal 

quality makes DC voltage at the implant device stable, independent of distances between coils. The 

feedback technique used to develop the transmitted signal from the external part coil of the biomedical 

implanted device to the receiver coil implanted inside the body (internal part). Maximum power 

transfer efficiency of inductive coupling link is done by adjusting both sides of the cooling coils at the 

same resonant frequency f0.  

The misalignment or change in distance between the coils will cause a carrier frequency shift.  

Class E power amplifiers are commonly used for transcutaneous power transmission because of their 

simple circuit design, high efficiency, and reliability. The operating point of the Class E amplifier will 

be shifted and cannot adjust frequency, duty cycle and there will be power dissipation in the switching 

device and device distortion. The feedback frequency link will reduce power consumption, keep the 

resonant frequency stable and control frequency shifts. That feedback signal is used to control 

transistor gate switching of the power amplifier or power control. This study focused on the existing 

frequency feedback control methods used in biomedical implant devices and their results, 

disadvantages and present challenges to satisfy the needs for high efficiency, low cost, simple circuit 

design and high data transmitted rate. To achieve the abovementioned a kind of artificial intelligence 

based on an automatic frequency controller is used to deliver stable signals with low losses. 
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