
COMMENTARY

Ferment in the family tree
Nathaniel J. Dominy1

Departments of Anthropology and Biological Sciences, Dartmouth College, Hanover, NH
03755-3537

In 1953, botanist Jonathan D. Sauer sug-
gested that our initial motivation to culti-
vate cereals was not for flour or bread, but
for beer (1). The implications of this idea—
that a preference for dietary ethanol, or
alcohol, sparked the Neolithic Revolution
(2)—are profound. No stage of human evo-
lution has left a larger global footprint than
the domestication of plants, animals, and
landscapes (3). However, there is scant
evidence of directed fermentation before
the onset of the Neolithic, approximately
10,000 B.C.E. (4). The earliest archaeologi-
cal evidence of alcohol is associated with
the cultivation (5) and initial domestication
(6) of cereals during the early Neolithic
(Fig. 1), which suggests that fermentation
was the happy outcome, rather than the
cause, of grain storage and consumption.
Any gene involved in the alcohol metabolic

pathway is therefore an exemplary candidate
for testing the concept of gene-culture coevo-
lution (7), a branch of theoretical population
genetics that integrates Neolithic cultural
shifts into models of genetic inheritance (8).
This approach has been rewarding (9); how-
ever, the coevolutionary process is usually

preceded with “cultural selection” (8), wherein
cultural traits, such as dietary preference, im-
pel the evolution of novel phenotypes. The
reverse sequence is seldom considered, but
a recent study in PNAS (10) raises new and
alluring questions about the genetic adapta-
tions that enabled our shift from foraging to
producing societies.
In PNAS, Carrigan et al. (10) report the

protein sequences and corresponding kinetic
activities of alcohol dehydrogenase class IV
(ADH4), the first enzyme to encounter and
metabolize dietary alcohol. The authors fo-
cused on 18 primate species and resurrected
nine ancestral proteins to better understand
the evolution and functional ecology of
ADH4. This innovative approach revealed
three key results. First, the ADH4 enzymes of
most primates are essentially inactive against
ethanol. Second, a single amino acid change
(A294V) causes a dramatic 40-fold increase
in ethanol-catalyzing activity. Third, this mu-
tation arose independently in two distantly
related primates, the aye-aye (Daubentonia
madagascariensis) and the last common
ancestor of African apes and humans.

Ethanol with an Aye to Ecology
In the hall of animal oddities, the aye-aye is
an exemplar of dietary specialization. It
is a peculiar lemur that uses percussive
foraging to prey on the larvae of cerambycid
(longhorn) beetles. Given that beetle larvae
are an improbable source of alcohol, the
A294V transition of aye-ayes is very likely a
spurious mutation: except that aye-ayes ap-
pear to have an enduring mutualism with the
traveler’s tree (Ravenala madagascariensis;
Strelitziaceae) (11, 12). Aye-ayes probably
pollinate R. madagascariensiswhen they probe
the large (30-cm) inflorescences for nectar
(Fig. 2A). Carrigan et al.’s (10) speculation that
aye-ayes are ingesting fermented nectar invites
immediate testing. A diet of fermented floral
nectar is not unknown among primates (e.g.,
Nycticebus coucang) (13).

A Happy Hour for the Miocene
Perhaps the most striking outcome of
Carrigan et al.’s (10) study is the evidence
for enhanced ethanol-catalyzing activity
in the last common ancestor of gorillas
(Gorilla), chimpanzees and bonobos (Pan),
and humans (Homo). This ancestor lived in
Africa about 10 million y ago and, by in-
ference, it traveled terrestrially between
patches of arboreal resources. This view
is based on the postcranial anatomies of
Gorilla and Pan, which reflect a compromise
between the competing demands of arboreal
and terrestrial locomotion. Even still, terres-
trial travel is energetically costly for any ape
with a flexed hindlimb (14), suggesting an
ancestral incentive to exploit energy-rich re-
sources on the forest floor, including, possibly,
fermented fruits (Fig. 2B).
There are at least two reasons for an ape to

consume fermented fruit in moderation (Fig.
2C). First, the reward is substantial: the caloric
value of ethanol (7.1 kcal/g) is nearly twice
that of carbohydrates (4.1 kcal/g) (15). Sec-
ond, the taste could be appealing. Fermenta-
tion releases glutamate and the savory taste of
umami (16). Paul Breslin (16) has suggested
that our preference for glutamate evolved
in tandem with a diet based on fermented
products. This tantalizing idea raises the
possibility of coevolution between ADH4 and
the glutamate taste receptors T1R1 and T1R3.

Fig. 1. Alcohol production in antiquity. (A) Early Neolithic jars, with flaring necks and rims, from Phase 2–3 of Jiahu
(Henan Province, China), ca. 6500–5500 B.C.E. Chemical analyses (6) indicate a fermented mix of rice, honey, and fruit.
Image courtesy of Juzhong Zhang (Institute of Cultural Relics and Archaeology of Henan Province, University of Science
and Technology of China, Hefei, China). (B) A Sumerian tablet reports the allocation of beer, Late Uruk period, ca. 3100–
3000 B.C.E. (British Museum accession no. 140855; photo © Trustees of the British Museum). (C) Impression of
a Sumerian cylinder seal from the Early Dynastic IIIa period, ca. 2600 B.C.E. (27). The upper row depicts the use of long
straws to drink unfiltered beer from a globular vessel (British Museum accession no. 121545; photo © Trustees of the
British Museum). (D) Facsimile painting from the tomb of Nakht (Theban Tomb 52, Egypt), ca. 1400–1390 B.C.E. The
scene depicts early viticulture and wine production. Image courtesy of Metropolitan Museum of Art www.metmuseum.
org, artists Norman de Garis Davies, Lancelot Crane, and Francis Unwin; Rogers Fund, 1915.
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Ethanol and the Rise of Homo imbibens
If the last common ancestor of Gorilla, Pan,
and Homo turned to fermented fruit to partly
offset the energetic costs of terrestrial travel,
then a 40-fold increase in the ethanol-cata-
lyzing activity would have conferred selective
advantages. For Carrigan et al. (10), this
surge in ADH4 activity was a preadapation
that improved our fitness “only after humans
developed the process and tools for di-
recting fermentation.” Quite inexplicably,
given Sauer’s suggestion (1), there was no
consideration for another scenario: that we
evolved fermentative technologies because
of our adaptive predilection for ethanol. In
this light, directed fermentation is perhaps
best viewed as cultural exaptation.
Recent evidence from Mozambique speaks

to the processing of wild Sorghum grains
105,000 y ago (17). Sorghum grains can be
malted to produce beer (4, 5), but the process
requires inoculation with yeast (Saccharomyces
cerevisiae). Middle Stone Age people could
have added fermented fruit to the malted
grains; or, insects (e.g., bees, Drosophila) could
have landed on and inoculated the mix with
yeast from their bodies. In any case, S. cer-
evisiae is a species complex that diversified into
several strains approximately 12,000 y ago
(18–20). The two oldest strains—those in-
volved with grape and rice wine—show evi-
dence of domestication (18), suggesting
that the antiquity of directed fermentation

is coincident with the early Neolithic, if not
much earlier.
The origins of directed fermentation, or

“Homo imbibens” (21), are therefore uncertain,
but it is clear that the evolution of agriculture

and dairy farming revolved, in part, around
the production of fermented foods and bev-
erages; indeed, fermented products account for
about one-third of contemporary diets world-
wide (22). This idiosyncrasy of human be-
havior is an enduring topic of interest within
anthropology (23), and Carrigan et al.’s com-
mendable paleogenetic analysis (10) sheds new
light on how and why the behavior evolved.

Future Directions
The ADH4 enzyme of most primates is es-
sentially inactive against ethanol (10). This
result is puzzling in light of Robert Dudley’s
drunken monkey hypothesis (24), which
reasons that all ripe fruit must contain some
ethanol (Fig. 2D). Accordingly, all fruit-eating
primates face the challenge of metaboliz-
ing ethanol, and it is tempting to suggest
that natural selection has acted on other
ethanol-metabolizing enzymes (e.g., ADH1,
ADH2, MEOS) or those involved in the
metabolism of ethanol-induced byproducts
(e.g., ALDH2, which oxidizes the acetalde-
hyde created from ethanol).
The hypothesized link between terrestrial

travel and a diet of fermenting fruit (10) is
compelling, but also unblemished by data.
The ethanol contents of fruits in primate diets
are scarcely known; only a handful of fruits
have been analyzed in Panama (25) and
Singapore (26), and none in tropical Africa.
Moreover, the proportions of fermented fruits
(and the yeasts within) are unknown in the
diets of Gorilla and Pan. These empirical voids
are telling and command attention.
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Fig. 2. (A) Inflorescense of Ravenala madagascariensis. The large bracts contain pooled, possibly fermented, nectar.
Image courtesy of Rolf P. Kudritzki (University of Hawaii at Manoa, Honolulu, HI). (B) Ground-sourced fruits exhibit
a range of developmental stages; here the fruits of Stemmadenia donnell-smithii (Apocynaceae) illustrate decomposition.
For African apes, overripe fruits could have a calorically optimal combination of sugar and ethanol. Image courtesy of Jim
Marden (Pennsylvania State University, University Park, PA). (C) A recumbent chimpanzee (Pan troglodytes) consumes the
fermented fruit of an undetermined species in Kibale National Park, Uganda (image courtesy of Mike Knoche). (D) A
mantled howling monkey (Alouatta palliata) consumes the fruit of Astrocaryum standleyanum (Arecaceae), a species in
which ripe fruit can have an ethanol content ranging from 0.52 to 0.61% (25) (image courtesy of Greg Willis).
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