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We are interested in the balance of energy and protein synthesis in
bacterial growth. How has evolution optimized this balance? We
describe an analytical model that leverages extensive literature data
on growth laws to infer the underlying fitness landscape and to draw
inferences about what evolution has optimized in Escherichia coli. Is
E. coli optimized for growth speed, energy efficiency, or some other
property? Experimental data show that at its replication speed limit, E.
coli produces about four mass equivalents of nonribosomal proteins
for every mass equivalent of ribosomes. This ratio can be explained
if the cell’s fitness function is the the energy efficiency of cells un-
der fast growth conditions, indicating a tradeoff between the high
energy costs of ribosomes under fast growth and the high energy
costs of turning over nonribosomal proteins under slow growth.
This model gives insight into some of the complex nonlinear rela-
tionships between energy utilization and ribosomal and nonribo-
somal production as a function of cell growth conditions.

growth laws | fitness landscape | energy efficiency | yield |
bacterial metabolism

Since the work of Monod in the 1940s, there has been interest in
understanding the principles of bacterial growth laws (1–12).

Monod observed that increasing glucose increases Escherichia coli’s
growth rate, up to a maximum rate beyond which the cells cannot
replicate any faster (1). On the one hand, such growth laws are ex-
perimentally observable. On the other hand, growth laws, per se, do
not give insight into the evolutionary driving forces that lead to them.
Evolutionary principles are expressed by fitness landscapes (13),

which are mathematical surfaces that represent how the organism’s
fitness depends on some cellular property that can be altered by
evolution over time. Peaks on fitness landscapes represent states of
maximal fitness. To understand why a cell has a particular growth
law, we need a mathematical model that relates its growth law
(how the growth rate of the cellular population depends on food
concentration) to its underlying fitness landscape (how the cell’s
growth parameters can be altered through evolution). Thus far, this
is relatively uncharted territory for cellular modeling. Here, we
develop a model to explore how bacteria balance their fluxes of
energy and ribosomal (RPs) and nonribosomal proteins (NRPs).
By comparing the model with data, we can explore possible fitness
objectives for bacterial replication. Are bacteria evolutionarily
optimized to maximize their duplication speed? Or, are bacteria
evolutionarily optimized to maximize the energy efficiency of their
duplication processes? Or, something else? By “evolutionarily
optimized,” we mean the tradeoffs that a cell must make. By
evaluating extensive growth data on E. coli through the lens of the
present model, which relates growth observables to fitness land-
scapes, we conclude that a principal evolutionary driving force for
bacteria is the energy efficiency of the fastest-growing cells.

Modeling E. coli’s Balance of Energy Flux and Protein
Synthesis
Fig. 1 shows our kinetic model of bacteria growing in the expo-
nential phase. This model defines relationships among four dy-
namical quantities: the rate of synthesis of ribosomal proteins, the
synthesis and degradation rates of NRPs, the production and uti-
lization rates of energy (ATP), and the steady-state specific growth

rate of the cell. After Scott et al., Klumpp et al., and others (10, 14,
15), we develop a coarse-grained model based on the following
observations: (i) half of the biomolecular mass in a cell are proteins
(16); (ii) under fast growth, ∼86% of the total RNA investment of
a cell is in ribosomes (6); (iii) under fast-growth conditions, more
than 80% of the cell’s ATP requirements for biomass is spent on
protein and rRNA synthesis (17, 18); and (iv) bacterial fitness
costs, defined as relative loss of fitness, increase with excess pro-
duction of protein (19, 20). Hence our coarse-grained modeling here
focuses on just three internal cell components: ATP (our surrogate
quantity that represents internal energy supplies, taken broadly),
ribosomes (R), and nonribosomal protein (P).*
We model the concentration dynamics as follows:

dR
dt

= Jr − λR; [1]

dP
dt

= Jp − ðλ+ γÞP; [2]

dA
dt

= maJa −mrJr −mpJp − λA; [3]

ρ = MrR+MpP: [4]

Here, R, P, and A are the concentrations of ribosomes, NRPs, and
ATP, respectively, and λ is the specific growth rate of cells.ma is the
stoichiometric number of ATP molecules derived by the cell per
glucose molecule, andmr andmp are the stoichiometric numbers of
ATP molecules required to synthesize a ribosome (i.e., ribosomal
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proteins plus ribosomal RNAs) and an NRP, respectively. Mr is the
sum of molecular weights of all of the RPs in a ribosome, andMp is
the average molecular weight of an NRP. γ denotes degradation
rate of the NRPs (22–24),† whereas ribosomes are assumed to be
stable (25). The total protein density of a cell is denoted by ρ, and it
is conserved over a range of growth rates as observed in experi-
ments. For specific values, see Table 1. The rate equations (Eqs. 1–
3) contain dilution terms ðλRÞ, ðλPÞ, and ðλAÞ, respectively. As the
cell grows, its volume increases, so even if the numbers of cellular
protein molecules were fixed, their concentrations would diminish
as the cell grows. We set λA= 0, because this term is negligible
compared with the other fluxes in Eq. 3.‡

Now, we express the production–rate fluxes Jr of ribosomal
proteins, Jp of NRPs, and the consumption–rate flux of glucose,
Ja, for ATP generation in Eqs. 1–3 in terms of concentrations, R,
P, A, and extracellular glucose, G

Jr = krfr½AðGÞ� ·R; [5]

Jp = kpfp½AðGÞ� ·R; [6]

Ja = kaðGÞ ·P; [7]

where ka, kp, and kr are rate coefficients. These functions are
given explicitly in Eqs. S1–S5 and Fig. S1A. We note here for
example that frðAÞ is a step-like activation function that saturates
with ATP concentration (which, in turn, depends on glucose) to
f∞r , whereas fpðAÞ= f∞p is nearly independent with cell’s energy
status (26). We express these functional dependences explicitly
above to indicate that even though this coarse-grained model is
simple in having few equations, it retains considerable complex-
ity of the nonlinearities and feedback that are essential for treat-
ing cells beyond common linear approximations.

Our interest here is in the cell growth dynamics over a time-
scale of hours, so we now focus on steady-state conditions. We
obtain the three steady-state relationships from this model by
setting the time derivatives in Eqs. 1–3 to zero, giving

R
P
= ðλ+ γÞ�kpfp; [8]

λ = krfr; [9]

maJa = mrJr +mpJp: [10]

Eq. 9 shows that the maximum growth rate of the cell, the “speed
limit,” is the product (also see ref. 10)

λ∞ = krf∞r ; [11]

of model quantities that depend on how fast ribosomes are made.

Deriving Monod’s Growth Law from the Underlying Fitness
Landscape
Using this simple coarse-grained model, we develop the central
result of this work, namely a mathematical relationship between
a growth law (how the growth rate of an average cell depends on
food concentration, on timescales shorter than its lifetime) and
its fitness landscape (the fitness costs to a cell lineage from al-
tering its machine properties and growth parameters through
evolutionary changes on long timescales). We seek an expression
for the cell’s growth rate λ≡ λðG; cmÞ, as a function of G, the
extracellular sugar concentration, and cm, the vector of bio-
physical machine-property set points, such as the degradation
and elongation rates of NRPs and maximum rate of ribosomal
synthesis. If we had a mathematical function λ≡ λðG; cmÞ, then
varying G at fixed cm would express the growth law: how the
concentrations and fluxes of A, R, and P depend on sugar as
a cell grows. Alternatively, the dependence of λ on cm expresses
the fitness landscape, namely how the cellular growth rate de-
pends on the cell’s intrinsic biochemical and biophysical proper-
ties, which have been established through evolution.
To find this function, we solve the set of equations above in

the steady-state limit. That leads us to an expression for the
growth rate as a cubic polynomial (SI Text)

a3λ3 + a2λ2 + a1λ+ a0 = 0: [12]

where the coefficients a0, a1, a2, and a3 depend on the glucose
concentration, biophysical constants (Table 1), and metabolic
parameters (Table 2). Its solution gives λ= λðG; cmÞ, providing
both the Monod’s growth law and the evolutionary fitness land-
scape of the model.
Here is how we use this model. First, we use experimental data

to determine the parameters of the model (Fig. 2). In particular,
we require three types of experimental data: (i) the growth rate
vs. sugar, λ= λðGÞ, such as in Monod’s growth law; (ii) the ribo-
somal fraction vs. growth rate, ϕ=ϕðλÞ; and (iii) the ATP con-
centration as a function of growth rate, A=AðλÞ. These three
types of experiments fully specify the model (SI Text). We are
especially interested in the energy-mass balance topology and the
principles and limits arising out of it over evolutionary timescales.
Then, given the fully specified model, we can explore the fitness
landscape. In particular, we ask what E. coli is optimized to do, in
the context of how its energy is trafficked between RPs and NRPs.

Cells Are Optimized for Energy Efficiency of the Fast-
Growing Cells and Not Just Growth Rate or Efficiency Alone
We are interested in the cell’s energy efficiency. We define the
energy efficiency as the growth rate λ divided by the rate, Ja, of
conversion of sugar to ATP, specifically

«
�
λ; f∞p

�
=

�
ρ

ma

��
λ

Ja

�
; [13]

(27). « is a measure of how effectively the organism converts its
input energy into its duplication speed. The energy efficiency «
is a function of the values of the machine constants that have
resulted from evolutionary optimization (18, 28, 29).

Fig. 1. Minimal model of E. coli. Extracellular sugar is converted to ATP, which
powers a two-compartment proteome: RPs and NRPs. In turn, the proteome
catalyzes the energy-conversion process and growth of the cell. The black arrows
show the ATP fluxes: maJa is the influx of sugar conversion to ATP, mrJr is the
flow of ATP to produce ribosomes,mpJp is the flow of ATP to produce NRPs, →∅
indicates the degradation of NRPs, and λ is the specific growth rate of E. coli.

†Average cost of making 1 aa is ∼2 ATP; average cost of making a peptide bond is ∼4 ATP
and adding these together gives ∼6 ATP. The average cost of making an average RNA
nucleotide and joining a pair of nucelotides is ∼ 10 ATP (ref. 16, table 1, chapter 4).

‡The justification for λA � ðmrJr +mpJpÞ in Eq. 3 is as follows. From Fig. 2B, range of
growth rates is 0–1 h−1, whereas the range of ATP concentration is 0.1–10 mM. There-
fore, λA varies between 0 and 10 mM/h. Conversely, from Fig. 4F, the range of
ðmrJr +mpJpÞ is about 500–15,000 mM/h. These numbers justify λA � ðmrJr +mpJpÞ.
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The present model can be used to explore what values of the
biophysical constants are optimal. We can compute its point of
maximum fitness to address how E. coli chooses one of its im-
portant operating parameters. Here, we focus on one particular
biophysical constant. We suppose some properties are largely
fixed by chemical and physical limits, including the rate constants
of protein synthesis ðkp′Þ, degradation (γ), and ribosomal assem-
bly ðkrÞ, and the relative costs of P vs. R ð«p=«rÞ.§ We suppose
that evolution can optimize a cell’s ribosome utilization by
altering the value of f∞p , the fraction of ribosomes that are
producing NRPs under fast-replication conditions ðλ→ λ∞Þ. We
ask what value, f∞p = f∞;p

p , maximizes the cell’s energy efficiency
«? In SI Text, we show that the value of f∞;p

p that maximizes the
energy efficiency of the cell under the fast-growth condition is

f∞;p
p ≈ 1−

1
kr

γ

«rp

�
1−

kp′
kr

�
−
1
kr

ffiffiffiffiffiffiffiffiffiffiffiffi
γ

«rp
kp′

r
: [14]

Substituting the known machine constants from Table 1 into
Eq. 14 gives the value f∞;p

p ∼ 0:8 and therefore f∞;p
r = 1− f∞;p

p
∼ 0:2. This result is quite robust, independent of the substrates
for growth and the mode of energy metabolism, e.g., fer-
mentation vs. oxidative phosphorylation. A key uncertainty is
in er . If we increase er by 50%, then the model predicts the
peak at f∞;p

p = 0:69, which is within the error of the experi-
mental data. This result predicts that, at its maximum speed, each
ribosome produces about four mass units of NRP for every mass
unit of ribosome it produces. Remarkably, these predicted values
are very close to the observed values of fp for fast-growing aerobic
E. coli under different conditions (Fig. 3 and Fig. S2A).
Here is our interpretation. Consider two idealized limiting

cases: (i) if a bacterial cell had only one ribosome ðf∞;p
p → 1Þ, the

cell would require years to duplicate; or (ii) if a bacterial cell
was a “bag of ribosomes” ðf∞;p

p → 0Þ, the cell could duplicate in
about 6 min. In reality, the observed speed limit for duplicating
E. coli is about 20–30 min. Therefore, to first approximation, E. coli
has evolved to nearly reach the bag of ribosomes limit under fast-
growth conditions. However, to second approximation, this is not

exactly true. Why is E. coli not able to squeeze out the remaining
factor of 3–4 in speed? Why must each ribosome duplicate about
four times its own weight in NRPs at the cell’s speed limit? On the
one hand, there could be biological reasons why there is a minimal
essential set of NRPs that must be duplicated. On the other hand,
we simply note that it is remarkable that the observed mass ratio of
four can be derived from a simple principled general energy-
balance argument.
Put metaphorically, this evolutionarily optimized energy balance

in E. coli is akin to optimizing a race car. A race car has a front end
(fuel system) and back end (engine). The best race car is one in
which the fuel system is matched to the engine, neither too big for
the engine nor too small for it. For E. coli, the front end entails
conversion of glucose to ATP and the back end entails the expen-
diture of ATP. In short, if the cell invests too heavily in ribosomes, it
will not have enough NRPs to catalyze the biochemical conversion
of glucose to ATP. The optimization of energy efficiency for fast-
replicating cells occurs within the maximal growth rate, which cor-
responds to a matching of the catabolic and anabolic fluxes

λ∞ = krf∞r = λaf∞p ; [15]

where λa is related to the NRP’s rate constant for energy gener-
ation (SI Text).{

This argument can also be framed in terms of energy costs.
Making ribosomes is more expensive than making NRPs per unit
weight. The evolutionary tradeoff is between the intrinsic cost of
energy-expensive ribosomes needed for fast growth, on the one
hand, and the unavoidable cost of NRP turnover at slow growth. As
a caveat, to be clear, we note that our efficiency quantity describes
the conversion of ATP, not glucose, to proteins and ribosomes.
Therefore, our arguments about optimizing energy efficiency do
not address the relative importance of fermentation to respiration.
Also, the energy optimization described here pertains to evolu-
tionary timescales, over which cells can alter their machine con-
stants. Stressing cells can certainly lead to nonoptimality under
daily growth conditions, in ways that could only be improved by
evolutionary changes.

Table 1. Structural, rate, and bioenergetic constants

Constants Symbol Value Reference

Physical constants
Protein density ρ 0.25 g·cm−3 (46)
Molecular weight of RPs per ribosome Mr 7,336 aa × 110 g/mol/aa = 806,960 g·mol−1 (6)
Molecular weight of an NRP Mp 325 aa × 110 g/mol/aa = 35,750 g·mol−1 (47)
Molecules of ATP produced per glucose molecule ma 30 (32)
Molecules ATP consumed to create one ribosome mr (7,336 aa × 6) + (4,566 nu × 10) ∼ 89,700 †

Molecules of ATP consumed to create one NRP mp 325 aa × 6 = 1,950
Rate of NRP elongation per ribosome, 20 aa/s kp′ 20 × 3,600 (aa/h)/7,336 aa ∼ 10 aa/h/(RP aa) (6)
Nonribosomal protein degradation rate γ 0.1 NRP per total NRP per hour (22)

Derived constants
Maximum number of protein molecules translated

per hour per ribosome (capacity)
kp Mrkp′=Mp = 215 h−1

NRP translation rate per ribosome scaled by pathway efficiencies λp ð«r=«pÞkp′∼5 h−1

Maximum number of ribosomes synthesized per hour per ribosome ð= λpÞ kr 5 h−1

Ribosomal pathway efficiency, grams of RPs synthesized per mole ATP «r Mr=mr ∼9 g·mol−1

Protein pathway efficiency, grams of NRPs per mole ATP «p Mp=mp ∼18 g·mol−1

Relative pathway efficiency between P and R pathways «rp ð«p − «rÞ=«r ∼1

†Average cost of making 1 aa is ∼2 ATP; average cost of making a peptide bond is ∼4 ATP and adding these together gives ∼6 ATP. The average cost of
making an average RNA nucleotide and joining a pair of nucelotides is ∼10 ATP (ref. 16, table 1, chapter 4).

§We take their values to be «rp = ð«p − «r Þ=«r = 1, which is a stoichiometric ratio; γ = 0:1 1/h,
which is the protein degradation rate fixed by protein hydrolysis chemistry; and kp′= 9:7
1/h, which is the E. coli translation speed (alternatively expressed as 20 amino acids per
second; Table 1).

{λa is the ratio of a cell’s total ATP generation flux to the ATP cost of making 1 NRP
molecule; it has units of hours−1 and represents a driver of biomass growth. It has an
impression of efficiency of the metabolic proteins for energy production and could also
be measured from experiments.
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The Cell Shifts Its Energy Flows Under Different Growth
Conditions
What are the cellular activities under different growth conditions?
Fig. 4 gives a summary of the model results. First, under slow-
growth conditions, the cell is not efficient at converting energy to
proteins or ribosomes (Fig. 4A). Under slow growth, the cell
invests its energy in maintenance, replenishing proteins that are
degrading.k The blue dashed curve shows that the efficiency
would be much higher if there were no protein degradation (i.e.,
γ = 0). Fig. 4 F and G shows that the cell is producing mostly
NRPs, and Fig. 4H shows that most of energy in NRPs is going
into protein degradation and not dilution under slow-growth
conditions.
Second, at higher glucose levels, growth efficiency increases.

Under fast-growth conditions, protein degradation happens at a
negligible rate, so less of the cell’s energy is devoted to repairing
degrading proteins. Now, the cell converts more sugar directly to
cell growth. Maximal values of yield of biomass from ATP have
been widely estimated before in aerobic E. coli grown in glucose
and other carbon sources (30, 31); our model is consistent with
that data. Third, increasing sugar leads to upshifting the pro-
duction of ribosomes relative to NRPs (6, 10, 32, 33). Experi-
ments are often used to determine ϕ, the mass fraction of all of
the cellular proteins that are ribosomal. Previous work has shown
that ϕðλÞ∝ λ, i.e., ϕ increases linearly with the growth rate of the
cell (10). Here, we show how ϕðλÞ is related to machine constants
of the cell. Using Eq. 8, we find that ϕ is given by

ϕ
�
λ; fp

�
=

MrR
MrR+MpP

=
λ+ γ

λ+ γ + kp′ fp
; [16]

where kp′= ðMpkp=MrÞ is the speed of protein translation. In E.
coli, kp′ is a constant of 20 amino acids per second per ribosome at
37 °C (6). We find that**

ϕðλÞ = ϕ0 +
λ

kp′ f∞p
; [17]

where ϕ0 = ðγ=kp′ f∞p Þ. Eq. 17 predicts the observed linear rela-
tionship (6, 10) in terms of the physical variables in our model: γ,
the protein degradation rate, and f∞p , the fraction of ribosomes
that are translating NRPs at the speed limit for growth. Also, we
noted above that, under the fast-growth limits, ribosomes pro-
duce about four mass equivalents of NRPs for every mass

equivalent of RPs. This comes from using ϕK f∞r = f∞;p
r ∼ 0:2,

which gives ðRP=NRPÞ=ϕ=ð1−ϕÞ∼ 1=4 (Fig. 2A).
Fourth, the model predicts that the net protein elongation rate

per ribosome, kper, should increase with the cell’s growth rate,
consistent with direct measurements of single peptide chain ex-
tension rates (34–39) (Fig. 5). The error in prediction is within
20% arising from discounting inactive ribosomal fraction (39).
Sometimes called ribosomal efficiency, here its growth rate de-
pendency (14, 40, 41) stems mainly from the synthesis of non-
ribosomal proteins against their tendency to turnover, especially
at small growth, and also on the demand to make more energy-
sensitive ribosomes at increased growth rates. Fig. S2B shows the
average time, the inverse of the rate, for extending the NRP
chain by one amino acid per ribosomal catalyst. This time varies
from 0.65 s under slow growth to 0.15 s at fast growth.

Limitations of the Model
To focus on the essentials, our modeling has neglected certain
factors of lesser importance for our purposes. First, the model
only treats implicitly, and not explicitly, certain processes such as
glucose transport across membrane, transcription of RNA, and
translation of ribosomal proteins. These are implicit in quantities

Table 2. Parameters of E. coli ODE numerical model obtained from fit of the model to data

ODE model parameters Symbol Value

Affinity constant between NRPs and glucose for glucose transport Dg 0.07 mM
Number of glucose molecules metabolized to ATP per hour per protein molecule k∞

a 120 h−1

Affinity constant between proteins and ATP for ATP generation Da 4.0 mM
ATP concentration threshold for ribosome synthesis Dr 0.18 mM
Maximum fraction of ribosomes translating RPs f∞r 0.2
Maximum fraction of ribosomes translating NRPs f∞p 0.7

0 0.5 1 1.5 2
λ, 1/h

0

0.1

0.2

0.3

φ

0 0.2 0.4 0.6 0.8 1
λ, 1/h

0
0.5

1
1.5

2

A,
 m

M

10-3 10-2 10-1 100

G, mM

0

0.5

1

λ ,
 1

/h

A

C

B

Fig. 2. Comparison of model results (—) vs. experiments (symbols) at 37 °C.
(A) The RP as a fraction of total protein weight in E. coli: °, Bremer and
Dennis (6); ×, Scott et al. (10); and □ Forchhammer et al. (44). To get ϕ, the
(rRNA/protein) ratio from ref. 10 is scaled by a factor of 0.46 (6). +, fraction
of ribosomal promoter activities of Zaslaver et al. (33) uniformly scaled to
align with (°, ×, □). At fast growth, ϕ reaches a limit of 0.21 (- - -). (B) ATP
concentration, A, in E. coli K-12 strain vs. specific growth rates of cells: ×, Ishii
et al. (45). (C) E. coli specific growth rate vs. extracellular glucose concen-
tration: ×, Monod (1).

jjMaintenance energy has been defined in previous works through the use of linear
models where the metabolic Ja is often decomposed into a growth and a nongrowth
term. The nongrowth term has been called the maintenance energy requirement. These
models generally are not valid over the entire range of growth rate from small to large
because the maintenance energy is not a constant (42). Here, we treat efficiency without
requiring a linearization approximation.

**We consider the fast-growth limit, where λ+ γ � kp′f∞p . This condition is not very re-
strictive, however, because whenever glucose is limiting, E. coli’s fastest division time is
about 45 min, which is much longer than the timescale of NRP translation per ribo-
some: 1=ðkp′f∞p Þ≈ 6.4 min division time. Also note that a good approximation under
fast-growth conditions is fp ≈ f∞p (Fig. S2A).

Maitra and Dill PNAS | January 13, 2015 | vol. 112 | no. 2 | 409

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421138111/-/DCSupplemental/pnas.201421138SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421138111/-/DCSupplemental/pnas.201421138SI.pdf?targetid=nameddest=SF2


λa and kr . The slowest rate coefficient (under fast growth) is
λa, which characterizes metabolism and not the production of

protein. With these simplifications, there are energy sources and
sinks in the cell that we have not modeled here. Second, we have
only considered respiration. It is well known that aerobic E. coli
uses fermentative metabolism at fast growth rates. In quantita-
tive terms, fermentation contributes increasing energy at faster
growth rates. However, the amounts are small. We estimate this
contribution to be ∼10% at λ= 0:6 h−1.†† Interestingly, the cell’s
optimal energy efficiency state (Eq. 14) is given by properties
unrelated to the mode of energy generation. Third, we consid-
ered the efficiency of energy to biomass, a property that is dif-
ficult to measure. More experiments for accurate estimates are
required. However, based on indirect measurements, it has been
suggested that maximal energy efficiency seems to lie close to
maximal growth rates (18). Fourth, our model is relevant in the
growth speed regime 0:1K λK 1 h−1 as observed in glucose-lim-
ited cultures. At slower growth rates, stress machineries and
chaperones are activated, whereas at very fast growth, additional
nutrient supplements are required, which we do not consider.

Discussion
We developed a coarse-grained model of the concentrations and
fluxes of the basic energy and biomass flows in a typical bacterial
cell such as E. coli. With three dynamical equations and one
constraint relationship, taken in the steady-state limit, this is
about the simplest model of the energy–biomass balance of
a simple cell, which is a complex and nonlinear system. It pre-
dicts the fluxes and concentrations of ATP and RPs and NRPs as
a function of glucose concentration. The model also gives an
expression for the linear law of ribosomal increase with growth
rate and how it depends on the cell’s machine constants, and it
expresses the basic behavior that cells invest energy in repairing
proteins when sugar is low vs. duplicating when sugar is high. The
model gives a relationship between the cell’s growth law and its
fitness landscape. It explains why each ribosome in E. coli du-
plicating at full speed produces about four mass equivalents of
NRP for every unit mass of RP. The present model shows that
the observation can be explained if the evolutionary fitness
function for E. coli is the energy efficiency of the fast-growing
cells instead of the maximum speed itself or some other prop-
erty. This appears as a result of evolution in which a cell achieves
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††At about λ = 0.6 1/h, the glucose uptake flux is ∼1.5 g glucose/g dry cell weight per hour,
and acetic acid export flux is ∼0.4 g acetic acid/g dry cell weight per hour (43). Assuming
50% of the glucose up take produces ATP at 30 ATP per glucose molecule by respiration,
whereas fermentation of glucose to acetic acid produces 2 ATP per acetate gives the
percentage of ATP generation by fermentation to be about 10%. We consider mol. wt.
of glucose and acetate to be 180 and 60 Da, respectively.
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a balance between the cost of energy-expensive ribosomes re-
quired for fast replication, on the one hand, and the unavoidable
costs of maintaining proteins against instability, denaturation,
and turnover, on the other hand, which are important under
slow-growth conditions.
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