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Though pleiotropy, which refers to the phenomenon of a gene affecting multiple traits, has long played a central role in genetics,
development, and evolution, estimation of the number of pleiotropy components remains a hard mission to accomplish. In this
paper, we report a newly developed software package,Genepleio, to estimate the effective gene pleiotropy fromphylogenetic analysis
of protein sequences. Since this estimate can be interpreted as theminimum pleiotropy of a gene, it is used to play a role of reference
for many empirical pleiotropy measures. This work would facilitate our understanding of how gene pleiotropy affects the pattern
of genotype-phenotype map and the consequence of organismal evolution.

1. Introduction

Understanding the role of gene pleiotropy in the map from
genotypes to phenotypes has been one of the central topics
for biologists, which refers to the phenomenon of a gene
affectingmultiple traits As amajormeasure for the functional
importance of a gene, this concept has played a fundamental
role in genetics, development, and evolution (see [1–3] for
recent reviews and comments). However, the degree of gene
pleiotropy remains largely unknown. Historically, proposed
the concept of universal pleiotropy; that is, a single mutation
can potentially affect all phenotypic traits. Though Fisher’s
model has been widely used as a theoretical basis for
exploring the evolutionary interplay between the genotype
and phenotype, the notion of universal pleiotropy has not
been well tested.

Indeed, compared with the wide availability of genomics
data, the whole-range phenotype recourses, or “phenomics,”
are highly limited. Nevertheless, recent advances have been
able to bring high throughput data to bear on the nature and

extent of pleiotropy [4–6]. These experiments showed that
the number of phenotypic traits that may be affected by a
gene may be actually limited implying the role of modularity
in shaping the degree of gene pleiotropy. Many controversial
issues such as the problem of arbitrary number of correlated
traits may directly affect the count of phenotypes that are
predicted to be affected by a gene. On the other hand, a new
approach has emerged in the past decade, to estimate the
gene pleiotropy from genetics or sequence data, rather than
from the affected phenotypes [7–13] (Chen et al., 2013). In
particular, Gu [8] developed a practically feasible approach.
It proposed that molecular evolution of a gene occurs in a
multidimensional space corresponding to the same canonical
number of molecular phenotypes. Random mutations of the
gene could affect these molecular phenotypes constrained
by the stabilizing selection. Moreover, Gu [8] developed a
statistical method to estimate the “effective pleiotropy” (𝐾

𝑒
)

of a gene from the multiple sequence alignment of protein
sequences. Most genes have𝐾

𝑒
in the range between 1 and 20

[11], with the medium of 𝐾
𝑒
= 6.5 of these estimates that is
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comparable to some empirical pleiotropy measures [1, 3]. Yet
the relationship between these two approaches remains com-
plex. As the degree of gene pleiotropy is a basic parameter for
understanding the complexity of genotype-phenotype map,
to facilitate this line of research we develop a software pack-
age Genepleio (freely available at http://www.xungulab.com)
to estimate the effective gene pleiotropy from the protein
sequences.

2. Material and Methods

2.1. Sequences. Three groups of datasets include eight verte-
brates, twelve fruit flies, and seven yeast species. Each dataset
contains 300 random selected orthologous sets. Eight verte-
brates are fugu, zebrafish, xenopus, chicken, dog, cow,mouse,
and human. TwelveDrosophila species areD.melanogaster, D.
pseudoobscura, D. sechellia,D. simulans,D. yakuba,D. erecta,
D. ananassae, D. persimilis, D. willistoni, D. mojavensis, D.
virilis, and D. grimshawi. Seven yeast species are Candida
glabrata, Debaryomyces hansenii, Kluyveromyces lactis, Sac-
charomyces bayanus, Yarrowia lipolytica, Saccharomyces cere-
visiae, and Schizosaccharomyces pombe. Vertebrate CDS and
protein sequences were extracted from Ensmart, Drosophila
CDS and protein sequences were extracted from FlyBase, and
yeast CDS was extracted from ORNA Man’s dataset (corre-
sponding protein sequences were translated by Bioperl).

2.2. Sequences Alignment. Multiple protein sequence align-
ment for each orthologous group was obtained by ClustalW
at default settings.

2.3. Estimation of 𝑑
𝑁
/𝑑
𝑆
. The number of synonymous sub-

stitutions per synonymous site (𝑑
𝑆
) and the number of

nonsynonymous substitutions per nonsynonymous site (𝑑
𝑁
)

between human and mouse orthologs were calculated by
CODEML of PAML package [14]. When calculating the
variance of 𝑑

𝑁
and 𝑑

𝑆
, we changed “getSE = 1” in CODEML

control file; otherwise, we used the default CODEML param-
eters. We used the estimates of 𝑑

𝑁
/𝑑
𝑆
between human and

mouse for vertebrates, those between D.melanogaster (dmel)
and D. sechellia (dsec) for Drosophila, and those between S.
bayanus and S. cerevisiae for yeasts, respectively.

3. Results and Discussion

3.1. Estimation of Effective Gene Pleiotropy. Gu [8] analyzed
the pleiotropy model of molecular evolution under the
following assumptions. (i) K-dimensional molecular phe-
notypes (y) of the gene are under Gaussian-like stabilizing
selection, indicating a single fitness optima for multiple
functions. Any deviation from the optima is under the
purifying selection. (ii) The fitness optima of y may shift
randomly during the course of evolution, according to a
multivariate normal distribution. It generates the process
of microadaptation that could be caused by the external
(environmental) or internal (physiological) perturbations or
the functional compensation for the previously fixed slightly

deleterious mutation. (iii) And the distribution of mutational
effects, 𝑝(y), follows a multivariate normal distribution.

The estimation procedure implemented in the software
Genepleio is summarized in Figure 1. We address several key
issues concisely to help in understanding how the software
works. One may see Gu [8], Su et al. [11], and Gu (2014) for
technical details.

3.1.1. Calculation of H-Measure. Calculation of 𝐻 is the key
step to estimate 𝐾

𝑒
. Biologically, 𝐻 measures the strength of

rate variation among sites: 𝐻 = 0 when var(𝜆) = 0, and
𝐻 = 1 when var(𝜆) = ∞. After the gene phylogeny is given
or inferred by the NJ option, the software implemented the
methods of Gu and Zhang [15] to infer the number of amino
acid changes along the phylogeny at each site, after correcting
the multiple hits. The next step is to calculate the mean (𝑀)
and variance (𝑉) of the estimated number of changes over
sites. Under the Poisson-based evolutionary model,𝐻 can be
estimated by𝐻 = (𝑉 −𝑀)/[𝑉 +𝑀(𝑀 − 1)].

3.1.2. Estimation of Effective Gene Pleiotropy (𝐾
𝑒
). Genepleio

has implemented the following procedure to estimate 𝐾. (i)
Calculate the 𝑑

𝑁
/𝑑
𝑆
ratio (the ratio of nonsynonymous to

synonymous rates) used as an empiricalmeasure for themean
sequence conservation. (ii) Calculate the 𝑔-function 𝑔 =
𝑑
𝑁
/𝑑
𝑆
/(1−𝐻). (iii) And the effective gene pleiotropy (𝐾

𝑒
) can

be estimated by numerically solving the following equation:
𝑑
𝑁
/𝑑
𝑆

1 − 𝐻
= 2
−𝐾
𝑒
/2

[1 + 𝜙 (𝐾
𝑒
)] , (1)

where 𝜙(𝐾
𝑒
) = 0.0208𝐾

𝑒
(𝐾
𝑒
+ 2)/(1 + 0.289𝐾

𝑒
).

3.1.3. Estimation of Selection Intensities. There are two types
of selection intensity measures. The first one is the (overall)
selection intensity of the gene under study, 𝑆, for the over-
all strength of purifying selection imposed on the protein
sequence; the negative sign indicates the negative (purifying)
selection. The second one is the baseline selection intensity,
𝐵
0
, which is a scaled measure for the contribution of a single

pleiotropy component. The relationship between 𝐵
0
and 𝑆 is

𝑆 = −𝐾×𝐵
0
. When𝐾

𝑒
is obtained, the software estimates the

effective selection intensity 𝑆
𝑒
for 𝑆 and the effective baseline

selection intensity (𝐵
𝑒
) for the baseline selection intensity 𝐵

0
.

3.1.4. Calculation of Sampling Variance of 𝐾
𝑒
. The sampling

variance of 𝐾
𝑒
can be approximately calculated by the delta

method. Numerical analysis of (1) found that the following
formula is accurate enough in practice:

Var (𝐾
𝑒
) ≈ 11.037 [

Var (𝑑
𝑁
/𝑑
𝑆
)

(𝑑
𝑁
/𝑑
𝑆
)
2
+

Var (𝐻)
(1 − 𝐻)

2
]

≈ 11.037 [
Var (𝑑

𝑁
)

𝑑
2

𝑁

+
Var (𝑑

𝑆
)

𝑑
2

𝑆

+
Var (𝐻)
(1 − 𝐻)

2
] .

(2)

In (2), Var(𝑑
𝑁
/𝑑
𝑆
) can be estimated by the delta

method so that Var(𝑑
𝑁
/𝑑
𝑆
) ≈ Var(𝑑

𝑁
)/(𝑑
𝑁
)
2

+ (𝑑
𝑁
)
2

∗
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Figure 1: A flow chart to outline the computational pipeline implemented in software Genepleio.

Var(𝑑
𝑆
)/(𝑑
𝑆
)
4, where Var(𝑑

𝑁
), Var(𝑑

𝑆
) are the variances

of 𝑑
𝑁

and 𝑑
𝑆
, respectively. The sampling variance 𝐻

is difficult to compute analytically. Genepleio has imple-
mented a bootstrapping approach to calculate the sam-
pling variance of 𝐻, Var(𝐻), whereas sampling vari-
ances of 𝑑

𝑁
and 𝑑

𝑆
, Var(𝑑

𝑁
) and Var(𝑑

𝑆
), depend on

the users’ input; their default values are set to be zero.
Using this method, we can bootstrap 100 times within 1∼2
minutes.

We use triosephosphate isomerase gene (TPI1, SWIS-
SPROT P60174) for illustration. (i) Infer the phylogenetic
tree from the multiple alignment of vertebrate homologous
TPI1 protein sequences (human, mouse, dog, cow, chicken,
xenopus, fugu, and zebrafish), which is consistent with the
known vertebrate phylogeny. (ii) Estimate 𝑑

𝑁
/𝑑
𝑆
= 0.045

between the human and mouse genes by the likelihood
method using PAML. (iii) Estimate 𝐻-index for the rate
variation among sites; 𝐻 = 0.614 for TPI1 gene. (iv) And
we estimated 𝐾

𝑒
= 7.29 and the mean selection intensity

𝑆 = −11.65. Then, the baseline selection intensity is given by
𝐵
0
= 11.65/7.29 ≈ 1.60.
The estimated effective gene pleiotropy varies among

different treatments but the scale of variation is small. On
the other hand, we found that when the number of changes
at each site is estimated by the parsimony method without
any correction, gene pleiotropy tends to be overestimated. At
any rate, we conclude that these 5–10% estimation differences
should not affect the general pattern about the degree of gene
pleiotropy.

3.2. Biological Interpretation of 𝐾
𝑒
. The key question is how

one can acquire the number of pleiotropy components of a
gene without biologically knowing each component (Su et al.,
2010) [12, 16]. Gu (2014) [17] addressed this issue, showing
that the method of Gu [8] actually aims to estimate the
rank (𝐾) of genotype-phenotype map. The main result can
be concisely represented by the following simple formula:
𝐾 = min(𝑟, 𝑃min), where 𝑃min is the minimum pleiotropy
among all legitimate pleiotropy measures and 𝑟 is the rank
of mutational effects. In short, the meaning of “effective
gene pleiotropy” (𝐾

𝑒
) estimated by Gu-2007 method is as

follows. (i) 𝐾
𝑒
is an estimate of 𝐾 = min(𝑟, 𝑃min), the rank

of genotype-phenotype map. (ii) 𝐾
𝑒
is an estimate for the

minimum pleiotropy 𝑃min only if 𝑃min < 𝑟. (iii) Gu-2007
method attempted to estimate the pleiotropy of amino acid
sites, a conserved proxy to the true minimum pleiotropy.
(iv) With a sufficiently large phylogeny such that the rank of
mutational effect at an amino acid site is 𝑟 → 19 (the number
of amino acid types minus one), one can estimate 𝑃min in the
range from 1 to 19 by this method. And (V) 𝐾

𝑒
is a conserved

estimate of𝐾 because those pleiotropy components that have
small effects on fitness would be effectively removed by the
estimation procedure.

3.3. Software Overview. We have developed Genepleio, a
GUI-based software package that estimates the effective
gene pleiotropy from the phylogenetic sequence analysis of
amino acids. Genepleio has three inputs. (i) Input the file
of multisequence alignment (MSA) of protein sequences:
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Figure 2: Screen illustration of the software Genepleio.

Table 1: Simulation results of𝐾
𝑒
-estimation by Genepleio.

𝐾 𝐵
0

𝐾
𝑒
(model (a)) 𝐾

𝑒
(model (b)) 𝐾

𝑒
(model (c))

2 0.5 0.98 ± 0.03 0.94 ± 0.02 0.95 ± 0.02
4 0.5 1.98 ± 0.03 1.96 ± 0.03 1.58 ± 0.03
8 0.5 4.05 ± 0.05 3.67 ± 0.05 2.49 ± 0.03
12 0.5 6.16 ± 0.06 4.76 ± 0.06 3.89 ± 0.05
16 0.5 8.29 ± 0.13 6.65 ± 0.10 4.36 ± 0.06
2 1.0 1.34 ± 0.04 1.31 ± 0.04 1.31 ± 0.04
4 1.0 2.71 ± 0.06 2.13 ± 0.05 2.13 ± 0.05
8 1.0 5.44 ± 0.13 4.99 ± 0.10 3.26 ± 0.07
12 1.0 8.17 ± 0.29 6.56 ± 0.16 5.22 ± 0.10
16 1.0 10.9 ± 0.84 9.10 ± 0.37 5.85 ± 0.17
2 2.0 1.64 ± 0.06 1.60 ± 0.03 1.61 ± 0.06
4 2.0 3.28 ± 0.12 3.25 ± 0.05 2.61 ± 0.08
8 2.0 6.50 ± 0.40 6.12 ± 0.07 4.04 ± 0.15
12 2.0 9.67 ± 0.65 8.27 ± 0.07 6.59 ± 0.32
16 2.0 13.02 ± 0.67 11.30 ± 0.22 7.45 ± 0.46

Genepleio supports the alignment format of CLUSTALW.
As required by the method, the multiple alignment file
should contain at least four sequences with reasonably large
sequence divergences between them. (ii) Input two values 𝑑

𝑁

(nonsynonymous distance) and 𝑑
𝑆
(synonymous distance).

Several methods such as PAML can be used to obtain these
estimates.We suggest choosing closely related sequences, say,
𝑑
𝑆
< 1, to avoid large sampling variance when calculating

the 𝑑
𝑁
/𝑑
𝑆
ratio. Note that the 𝑑

𝑁
/𝑑
𝑆
ratio should be less

than 1; otherwise, the gene may not be suitable to do this
type of analysis. (iii) Input the tree file in the Phylip format.
Alternatively, onemay use the neighbor-joining (NJ) method
implemented in the software to infer the gene phylogeny.
As illustrated in Figure 2, the interface of Genepleio includes
three main tab pages: the first page is for the MSA input and
𝑑
𝑁
/𝑑
𝑆
values, the second page is for the input or the inference

of the phylogenetic tree, and the third page will output the
results of estimation.

We have conducted a preliminary analysis and found
that the 75% quantile of estimated 𝐾

𝑒
is typically within

𝐾
𝑒
± 2, suggesting that 𝐾

𝑒
estimation as a measure of gene

pleiotropy is statistically reliable. Besides, we notice that the
contributions from Var(𝑑

𝑁
) and Var(𝑑

𝑆
) are nontrivial. In

other words, the sampling variance of 𝐾
𝑒
would be severely

underestimated if the user has no input for the sampling
variances of 𝑑

𝑁
and 𝑑

𝑆
.

There are some notices about usage of Genepleio. First,
the multiple alignment file should contain more than four
sequences; second, the 𝑑

𝑁
/𝑑
𝑆
value should be within (0, 1);

third, the sequences similarity >90% should be cautious
because of the lack of statistical power; fourth, in order to
shorten the time consumed, we do not give the mean of
𝐾
𝑒
value through bootstrapping in Genepleio. Nevertheless,

according to much simulation, the mean value is close to the
estimated𝐾

𝑒
value, so we only give the estimated𝐾

𝑒
value.

3.4. Computer Simulations. We have carried computer simu-
lations to evaluate the software performance.We set𝐾 to vary
from 1 to 20, with the fixed baseline selection intensity 𝐵

0
=

0.5, 1.0, or 2.0, respectively. In particular, we consider three
simulation models. (a) Independent-equal model: pleiotropy
components are identical and independent of each other.



BioMed Research International 5

60

50

40

30

20

10

0
5.00 10.00 15.00 20.00

Fr
eq

ue
nc

y

Ke

Mean = 5.84
Std. Dev. = 3.094

N = 300

Vertebrate 60

50

40

30

20

10

0

Fr
eq

ue
nc

y
5.00 10.00 15.00 20.00 25.00 30.00

Se

Mean = 10.09
Std. Dev. = 3.86

N = 300

Vertebrate

Fr
eq

ue
nc

y

5.00 10.00 15.00 20.00

Mean = 2.00
Std. Dev. = 1.514

N = 300

Vertebrate250

200

150

100

50

0

B0

(a) Vertebrates

60

50

40

30

20

10

0

Fr
eq

ue
nc

y

Ke

5.00 10.00 15.00 20.00 25.00

Mean

Fruit fly

= 6.04
Std. Dev. = 3.893

N = 300

80

60

40

20

0

Fr
eq

ue
nc

y

10.00 20.00 30.00 40.00

Se

Fruit fly

Mean = 11.21
Std. Dev. = 4.567

N = 300

5.000.00 10.00 15.00 20.00 25.00 30.00

Fruit fly

Mean = 2.31
Std. Dev. = 2.106

N = 300Fr
eq

ue
nc

y

250

200

150

100

50

0

B0

(b) Fruit flies

80

60

40

20

0

Fr
eq

ue
nc

y

Ke

5.00 10.00 15.00 20.00 25.00

Yeast

Mean = 8.86
Std. Dev. = 2.257

N = 300

Yeast

Mean = 1.35
Std. Dev. = 0.188

N = 300

Fr
eq

ue
nc

y

200

150

100

50

0

B0

2.00 3.00 4.00 5.00

60

40

20

0

Fr
eq

ue
nc

y

Se

Yeast

Mean = 11.75
Std. Dev. = 2.581

N = 300

5.00 10.00 15.00 20.00 25.00 30.00

(c) Yeasts

Figure 3: Estimation of𝐾
𝑒
from three datasets: eight vertebrates, twelve fruit flies, or seven yeast species, respectively. Each dataset contains

300 random selected (one-to-one) orthologous sets.

(b) Independent-unequal model: pleiotropy components are
independent of each other but have different strengths.
(c) Random-matrix model: the strengths and correlations
between pleiotropy components are randomly drawn from
a specified random matrix model. Our main results are
summarized in Table 1. In general, the estimation bias of
𝐾
𝑒
decreases with the increasing of the baseline selection

intensity 𝐵
0
. For instance, in model (a), underestimation of

𝐾
𝑒
is considerable only when 𝐵

0
is very small, say, 0.5 or less.

The estimation bias becomes intermediate when 𝐵
0
> 1 and

becomes negligible when 𝐵
0
> 3 (not shown). Moreover,

the estimation bias of 𝐾
𝑒
may increase when the simulation

model becomes more complex. Indeed, in model (c),𝐾
𝑒
only

describes the canonical number of pleiotropy components
that could be much less than the number of pleiotropy
components used in the simulation model.
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3.5. Case Studies. To validate the performance of the newly
developed software for the estimation of 𝐾

𝑒
, we ana-

lyzed three datasets, each of which includes eight verte-
brates, twelve fruit flies, or seven yeast species, respectively
(Figure 3). Each dataset contains 300 random selected (one-
to-one) orthologous sets. We calculated 𝐾

𝑒
, 𝑆
𝑒
(selection

intensity), and 𝐵
0
(the baseline selection intensity). Our

analysis shows that all 𝐾
𝑒
estimates are in a reasonable range

with only a few outliners. Interestingly, the distribution of𝐾
𝑒

estimates is similar across these distantly related species. The
underlying reason to explain this similarity remains unclear.
𝐾
𝑒
is an important parameter for evolutionary analysis.

Indeed, the square of coefficient correlation (𝑟2) between
𝐾
𝑒
and 𝑆

𝑒
is 0.64 in vertebrates, 0.94 in yeasts, and 0.55

in fruit flies, suggesting that gene pleiotropy may be an
important evolutionary constraint in molecular evolution. In
short, in this paper, we have reported a new software package
Genepleio and demonstrated the steps of gene pleiotropy
(𝐾) estimation. We also examined the extent to which the
statistical properties of 𝑑

𝑁
/𝑑
𝑆
and 𝐻 affect the estimation

efficiency of 𝐾 and 𝑆. Comparison among three different
groups of species validates the stability of 𝐾 estimation
procedure.
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