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Abstract

Over the last decade, the field of cancer metabolism has mainly
focused on studying the role of tumorigenic metabolic rewiring
in supporting cancer proliferation. Here, we perform the first
genome-scale computational study of the metabolic underpin-
nings of cancer migration. We build genome-scale metabolic
models of the NCI-60 cell lines that capture the Warburg effect
(aerobic glycolysis) typically occurring in cancer cells. The extent
of the Warburg effect in each of these cell line models is quan-
tified by the ratio of glycolytic to oxidative ATP flux (AFR),
which is found to be highly positively associated with cancer
cell migration. We hence predicted that targeting genes that
mitigate the Warburg effect by reducing the AFR may specifi-
cally inhibit cancer migration. By testing the anti-migratory
effects of silencing such 17 top predicted genes in four breast
and lung cancer cell lines, we find that up to 13 of these novel
predictions significantly attenuate cell migration either in all or
one cell line only, while having almost no effect on cell prolifer-
ation. Furthermore, in accordance with the predictions, a signifi-
cant reduction is observed in the ratio between experimentally
measured ECAR and OCR levels following these perturbations.
Inhibiting anti-migratory targets is a promising future avenue in
treating cancer since it may decrease cytotoxic-related side
effects that plague current anti-proliferative treatments.
Furthermore, it may reduce cytotoxic-related clonal selection of
more aggressive cancer cells and the likelihood of emerging
resistance.
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Introduction

Altered tumor metabolism has become a generally regarded hall-

mark of cancer (Hanahan & Weinberg, 2011). The initial recognition

that metabolism is altered in cancer can be traced back to Otto

Warburg’s early studies, showing that transformed cells consume

glucose at an abnormally high rate and largely reduce it to lactate,

even in the presence of oxygen (Warburg, 1956). Over the last

decade, much of the field of cancer metabolism has focused on the

role of the Warburg effect in supporting cancer proliferation (Vander

Heiden et al, 2009). However, the role of this process in supporting

other fundamental cancer phenotypes such as cellular migration has

received far less attention.

Contemporary cytotoxic cancer treatment has been mainly

based on drugs that kill proliferating cells generally unselectively

and are therefore accompanied by many undesirable side effects.

Drug targets that can inhibit migration but leave cellular prolifer-

ation relatively spared may be able to avoid such side effects.

Such targets may have the additional benefit of reducing the

selection for more resistant clones that occurs due to the elimi-

nation of treatment-sensitive cells. The growing availability of

high-throughput measurements for a range of cancer cells

presents an opportunity to study a wider scope of dysregulated

metabolism across many different cancers. Here, we aim to
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integrate pertaining data with a genome-scale mechanistic model

of human metabolism to study the role of the Warburg effect in

tumor progression and its potential association with cellular

migration.

Genome-scale metabolic modeling is an increasingly widely

used computational framework for studying metabolism. Given

the genome-scale metabolic model (GSMM) of a species along-

side contextual information such as growth media and ‘omics’

data, one can obtain a fairly accurate prediction of numerous

metabolic phenotypes, including growth rates, nutrient uptake

rates, gene essentiality, and more (Covert et al, 2004). GSMMs

have been used for various applications (Oberhardt et al, 2009;

Chandrasekaran & Price, 2010; Jensen & Papin, 2010; Szappanos

et al, 2011; Wessely et al, 2011; Lerman et al, 2012; Nogales

et al, 2012; Schuetz et al, 2012) including drug discovery

(Trawick & Schilling, 2006; Oberhardt et al, 2013; Yizhak et al,

2013) and metabolic engineering (Burgard et al, 2003; Pharkya

et al, 2004). Over the last few years, GSMMs have been success-

fully used for modeling human metabolism as well (Duarte et al,

2007; Ma et al, 2007; Shlomi et al, 2008; Gille et al, 2010; Lewis

et al, 2010; Mardinoglu et al, 2013). Specifically, GSMM models

of cancer cells have been reconstructed and applied for predict-

ing selective drug targets, as well as for studying the role of

tumor suppressors and oxidative stress (Folger et al, 2011; Frezza

et al, 2011; Agren et al, 2012, 2014; Jerby et al, 2012; Goldstein

et al, 2013; Gatto et al, 2014). In the context of studying the

Warburg effect, the original human metabolic model does not

predict forced lactate secretion under maximal biomass produc-

tion rate, even when oxygen consumption rate equals zero.

This renders it unsuitable for studying the Warburg effect as is,

as already noted by (Shlomi et al, 2011). While the addition of

solvent capacity constraints has been shown to overcome this

hurdle in principle (Shlomi et al, 2011), this addition requires

enzymatic kinetic data which are still largely absent on a

genome-scale.

In this study, we utilize individual genome-scale metabolic

models tailored separately to each of the NCI-60 cancer cell lines

to study the role of the Warburg effect in supporting cancer cellu-

lar migratory capacity. We first test and validate the individual

models against both existing and novel bioenergetic experimental

data. Then, we examine the extent of the Warburg effect occur-

ring in a given cancer cell line, by quantifying the glycolytic to

oxidative ATP flux ratio (AFR). We find that the AFR is highly

positively correlated with cancer cell migration, emphasizing the

role of glycolytic flux in supporting the more aggressive meta-

static stages of tumor development. To determine whether a

causal relation exists between AFR levels and cell migration, we

predict gene silencing that reduce this ratio. These potential

targets are then filtered further to exclude those predicted to

result in cell lethality. Reassuringly, the predicted targets are

found to be significantly more highly expressed in metastatic and

high-grade breast cancer tumors. Experimental investigation of

the top predicted targets via siRNA-mediated knockdown shows

that a significant portion of them truly attenuate cancer cell

migration without inducing a lethal effect. Furthermore, in accor-

dance with the predictions, a significant reduction is observed in

the ratio between ECAR and OCR levels following these genes

silencing perturbations.

Results

Stoichiometric and flux capacity constraints successfully capture
the coupling of high cell proliferation rate to lactate secretion
across individual NCI-60 cancer models

As a starting point for this study, we developed a set of metabolic

models specific for each of the NCI-60 cell lines. We built these

models using a new algorithm we have recently developed termed

PRIME, for building individual models of cells from pertaining

omics data (Yizhak et al, submitted, Supplementary Information

and Supplementary Fig S1). PRIME uses the generic human model

as a scaffold and sets maximal flux capacity constraints over a

subset of its growth-associated reactions according to the expression

levels of their corresponding catalyzing enzymes in each of the

target cell lines.

An important hallmark of cancerous cells is the production of

lactate through the Warburg effect (Warburg, 1956). As a first step

in validating the basic function of our NCI-60 models, we assessed

whether maximizing biomass forces production of lactate, which

would signify proper coupling of biomass production with lactate

output as seen in cancer cells. We found that the models indeed

must secrete lactate under biomass maximization (Supplementary

Information and Supplementary Fig S2). Hence, in contrast to the

original generic model of human metabolism, they enable us to

systematically assess the extent of lactate secretion and study the

Warburg effect across a wide range of cancer cell lines without

needing to add (mostly unknown) solvent capacity constraints, thus

identifying its functional correlates on a genome scale.

Comparing predicted versus experimentally measured
bioenergetics capacity

We compared the predicted lactate secretion rates across all cell

lines to those measured experimentally by Jain et al (Jain et al,

2012), obtaining a moderate but significant correlation (Spearman

correlation R = 0.36, P-value = 5.7e�3, Fig 1A, Materials and Meth-

ods). To further test the models’ performance under different envi-

ronmental conditions, we measured lactate secretion rates in four

breast cancer cell lines, T47D, MCF7, BT549, and Hs578T (Supple-

mentary Dataset S1), under both normoxic and hypoxic conditions

(see Materials and Methods). Utilizing the corresponding cell line

models from the NCI-60 set, we found a high correlation between

measured and predicted lactate secretion levels across both condi-

tions (Spearman correlation R = 0.95, P-value = 1.1e�3, Fig 1B).

The ratio of glycolytic versus oxidative capacity in a cell can be

quantified using its extracellular acidification rate (ECAR, a proxy of

lactate secretion) and its oxygen consumption rate (OCR). To

further examine how well our cell line models capture measured

Warburg-related activity in response to genetic perturbations, we

utilized measured ECAR and OCR levels in response to perturba-

tions in two NCI-60 lung cancer cell lines (A549 and H460), and

compared the results to predictions from our models (Materials and

Methods) (Wu et al, 2007). Qualitatively similar ECAR and OCR

changes are found in response to various enzymatic perturbations

along the glycolytic pathway. Specifically, increased glycolytic inhi-

bition resulted in reduced ECAR and elevated OCR levels in both

cells, while the maximum cellular respiration increase in H460 cells
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observed after all glycolysis inhibitors was lower than the corre-

sponding increase in A549 cells (Fig 1C).

Quantifying the Warburg effect and its relation to proliferation
and migration across the NCI-60 cell lines

While ECAR and OCR are the commonly used measures for experi-

mentally quantifying the bioenergetic capacity of the cell and thus

the Warburg effect, the genome-wide scope of GSMMs enables us to

examine other putative measures as well. One promising such

measure we examined is the ratio between the ATP flux rate in the

glycolysis versus its flux rate in OXPHOS (AFR). Clearly, higher AFR

values denote more ‘Warburgian’ cell lines and vice versa. A

comparison of our new AFR metric versus the aforementioned

state-of-the-art ECAR/OCR ratio (EOR) (Materials and Methods and

Supplementary Dataset S2) showed a significant correlation across

the NCI-60 models (Spearman correlation R = 0.66, P-value = 2e�8).

Testing both measures using a genome-wide NCI-60 drug response

dataset (Scherf et al, 2000), we find that the model-predicted wild-

type AFR levels across all cell line models are significantly corre-

lated (Spearman P-value < 0.05; FDR corrected with a = 0.05) with

Gi50 values of 30% of the compounds across these cell lines

(empiric P-value < 9.9e�4), whereas the model-predicted EOR

measure accomplish this task for only 19% of the compounds

(Materials and Methods). Interestingly, we find that out of the 30%

AFR-Gi50-correlated compounds, 97% are positively correlated,

suggesting that the more ‘Warburgian’ cell lines are less responsive

and therefore require higher dosage of compound to suppress their
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Figure 1. A comparison between experimental and predicted in silicomeasurements of lactate secretion (or ECAR) and OCR across different cancer cell lines.

A Measured versus predicted lactate secretion rates across the 59 cell lines available at Jain et al (2012).
B Measured versus predicted lactate secretion rates in hypoxic (red) and normoxic (blue) conditions for four breast cancer cell lines: T47D, MCF7, BT549, and Hs578T.

Bars represent the measured lactate secretion rates and the line represents the corresponding predicted rates. Error bars represent SD; number of samples for
experimental data (bars) is n = 7; number of samples for predicted data (line) is n = 1000.

C Predicted ECAR and OCR by the A549 and H460 cell line models following inhibitory perturbations in the glycolytic pathway. The models predictions show a decrease
in ECAR (red line) and an increase in OCR (blue line). As found experimentally, the predicted OCR increase in H460 cells is lower than that found for A549 cells. The
x-axes represent the level of inhibition imposed, starting from a zero to a maximal inhibition (Materials and Methods). The specific perturbations include 3BpRA that
inhibits the enzyme hexokinase 2; Iodoacetate that inhibits the enzyme glycerol-3-phosphate dehydrogenase; Fluoride that inhibits the enzyme enolase; and
Oxamate that inhibits the enzyme lactate dehydrogenase.

ª 2014 The Authors Molecular Systems Biology 10: 744 | 2014

Keren Yizhak et al Identifying anti-migratory metabolic drug targets Molecular Systems Biology

3



growth. The effect of most of these compounds is also negatively

correlated with the cells’ growth rates, suggesting that slowly

proliferating cells are more resistant to treatment (similar results were

previously shown for compounds targeting cell growth (Penault-

Llorca et al, 2009; Vincent-Salomon et al, 2004)). Interestingly, the

response to many compounds in this dataset shows a significant

association with the AFR measure while having no association with

the cells’ growth rate. 133 such compounds were identified (Supple-

mentary Dataset S3), possibly suggesting that their mechanism

might be related to the Warburg level of the cells rather than to their

proliferation. Finally, predicted AFR values correctly separate

between epithelial and mesenchymal breast cancer cell lines (with

the more aggressive mesenchymal cell lines exhibiting larger

Warburg effect (Sarrio et al, 2008), Fig 2A). Once again, the AFR

was more predictive of this experimental observation than the EOR

(Supplementary Dataset S2).

We next turned to our primary objective of examining the rela-

tion between the Warburg effect and tumor proliferation and migra-

tion. To this end, we experimentally measured the migration speed

of six NCI-60 breast cancer cell lines (Fig 2B and C, Materials and

Methods, Supplementary Fig S3, and Supplementary Dataset S2)

and utilized publically available measured growth rates for these

cell lines. While the AFR correlates markedly negatively with cell

growth rate (Spearman correlation of R = �0.55, P-value = 4.53e�6,
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Figure 2. Association between AFR levels and cell proliferation and migration.

A The 20 cell lines that are predicted to exhibit the Warburg effect to the greatest/least extent according to the AFR measure. The x-axis and y-axis represent the mean
and SD of the normalized ATP flux rate in glycolysis and OXPHOS, respectively (Materials and Methods). The AFR measure correctly separates between mesenchymal
(orange) and epithelial cell lines (green), showing that the former (which are known to be more aggressive) have higher AFR levels.

B We analyzed a panel of six breast cancer cell lines for their migration capacity using live cell imaging. Differential Interference Contrast (DIC) images of the six cell
lines in the order of their respective migration speed (from low to high), scale bar is 100 lm (Materials and Methods).

C The average migration speed of cells followed for 12 h in complete medium. Error bars represent SEM; the number of samples is between n = 100 and n = 200.
D The correlation of predicted model-based EOR and AFR measures to growth and migration rates measured experimentally. Both measures represent a negative

correlation with growth and a positive correlation with migration rates. Significant results (P-value < 0.05) are marked with an asterisk.
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Fig 2D and Supplementary Table S1), it correlates even more

strongly in the positive direction with cancer cell migration

(Spearman correlation of R = 0.88, P-value = 0.03, Fig 2D and

Supplementary Table S1). Controlling for the cell lines’ measured

growth rates, this correlation becomes even more significant (partial

Spearman correlation of R = 0.96, P-value = 7e�3, Supplementary

Table S1). Overall, this finding suggests that glycolytic flux correlates

with migration rather than with growth, while OXPHOS flux exhibits

the opposite behavior. A similar association between lactate secretion

and growth rate has been recently found in an experimental study

by Jain et al (Jain et al, 2012) across the entire NCI-60 collection

(Spearman correlation of R = �0.22, P = 0.09). Furthermore,

previous studies have shown that high concentrations of lactate

correlate with a high incidence of distant metastasis (Hirschhaeuser

et al, 2011). The overall picture portrayed by these correlations is that

while glycolytic carbon diverted to biosynthetic pathways may

support cell proliferation, non-diverted glycolytic carbon supports cell

migration and metastasis (Supplementary Fig S4).

Predicting drug targets that revert the AFR and hence may
inhibit cancer migration

The congruence between AFR levels and disease severity led us to

ask if we could build upon this association to identify potential new

drug targets. We searched for drug targets predicted to reduce the

AFR ratio by simulating the knockout of each metabolic reaction

across the NCI-60 models, and examining the effects of the knock-

outs on biomass production, lactate secretion, and the AFR. As

lactate secretion is a basic indicator of the Warburg effect, we first

identified a set of 113 reactions whose knockout is predicted to

abolish lactate secretion rate in all cancer cell lines under biomass

maximization. Interestingly, the set of enzymes catalyzing these

reactions is significantly more highly expressed in the NCI-60 cell

lines than the background metabolic genes (one-sided Wilcoxon

P-value < 1.6e�8), indicating the potential oncogenic nature of

these genes.

To avoid selecting for drug-resistant clones it would be advanta-

geous to develop drugs that reduce the virulence of cancer cells but

avoid killing them. The knockout of 12 of 113 lactate-reducing reac-

tions reduces the AFR but relatively spares biomass production

(Materials and Methods and Supplementary Table S2). Importantly,

the knockout of these 12 reactions according to models of healthy

lymphoblast cells built by PRIME (Choy et al, 2008) also spares

their biomass production (Materials and Methods). Moreover, we

found that none of the lymphoblast cell lines show the forced lactate

secretion that is observed in cancer cells. While the Warburg effect

is sometimes referred in the literature as occurring in highly prolifer-

ating cells in general, our analysis finds that this phenomenon is

apparently more prominent in cancer cells, at least with regard to

the lymphoblastoid cell population studied here.

The final list of predicted gene targets includes 17 metabolic

enzymes that are associated with the final 12 reactions, spanning

glycolysis, serine, and methionine metabolism (Fig 3A). 10 of the

predicted targets have significantly higher expression levels in meta-

static versus non-metastatic breast cancer patients (Chang et al,

2005) (one-sided Wilcoxon P-value < 0.05, Fig 3B). Moreover, 9 of

the predicted targets exhibit higher expression levels in grade 3

tumors than in grade 1 tumors (Miller et al, 2005) (one-sided

Wilcoxon P-value < 0.05, Fig 3C). Finally, lower expression of nine

of the predicted targets is significantly associated with improved

long-term survival (Curtis et al, 2012) (log-rank P-value < 0.05,

Fig 3D), testifying for their potential role as therapeutic targets. All

P-values are corrected for multiple hypothesis using FDR with a = 0.05.

siRNA-mediated gene knockdown experiments testing the
predicted targets

To experimentally test our predictions we silenced the 17 predicted

AFR-reducing genes and examined their phenotypic effects in the

MDA-MB-231, MDA-MB-435, BT549, and A549 cell lines. Knock-

down experiments were performed with SmartPools from Dharma-

con using a live cell migration and fixed proliferation assays

(Materials and Methods). 8–13 out of the 17 enzymes (8–10 out of

12 metabolic reactions) were found to significantly attenuate migra-

tion speed in each cell line (two-sided t-test P-value < 0.05, FDR

corrected with a = 0.05, Fig 4, Materials and Methods and Supple-

mentary Dataset S4). This result is highly significant as only 17% of

the metabolic genes were found to impair cell migration in a siRNA

screen of 190 metabolic genes (Fokkelman M, Rogkoti VM et al,

unpublished data, Bernoulli P-value in the range of 3.9e�3 and

1.18e�7). Of note, the association between the gene expression of

the predicted targets and the measured migration speed is insignifi-

cant for all targets but one, testifying for the inherent value of our

model-based prediction analysis (Supplementary Table S3). It

should also be noted that the knockdown of the three splices of the

enolase gene have almost no significant effect on these cells’ migra-

tion speed, possibly because of isoenzymes backup mechanisms.

Importantly, most of the gene knockdown experiments do not

manifest any significant effects on cell proliferation (Fig 4). In

accordance with the findings of Simpson et al (Simpson et al,

2008), we found that the correlation between the reduction in

migration speed and reduction in proliferation rate is mostly

insignificant (Supplementary Dataset S4), suggesting that the

reduced migration observed is not simply a consequence of

common mechanisms hindering proliferation, but rather that it

occurs due to the disruption of distinct migratory-associated

metabolic pathways.

ECAR and OCR levels following selected gene silencing

To further study the association between reduced AFR levels and

impaired cell migration we used the Seahorse XF96 extracellular

flux analyzer to measure both ECAR and OCR fluxes in the MDA-

MB-231 cell line, following knockdown of a selected group of targets

(Materials and Methods and Supplementary Fig S6). As the AFR

measure is very difficult to measure experimentally, we tested the

conventionally measured EOR (ECAR/OCR) as its proxy. We

focused on a subset of seven genes (Fig 5) whose knockdown is

predicted to have the highest effect on cell migration and span all

three predicted metabolic pathways. As shown in Fig 5, a significant

EOR reduction versus the control is found for all seven examined

genes (two-sided t-test P-value < 0.05, FDR corrected with a = 0.05,

Materials and Methods and Supplementary Table S4). The silencing

of the four glycolytic genes (HK2, PGAM1, PGK2, and GAPDH)

results in both decreased ECAR and increased OCR levels, while

the silencing of the serine- and methionine-associated genes

ª 2014 The Authors Molecular Systems Biology 10: 744 | 2014

Keren Yizhak et al Identifying anti-migratory metabolic drug targets Molecular Systems Biology

5



(PSPH, AHCY, and PHGDH) results with decreased ECAR solely

(Fig 5A). Furthermore, a matching significant difference in

experimentally measured EOR levels is found between the lowest and

highest AFR-reducing genes (one-sided Wilcoxon P-value = 0.05).

Overall, taken together our results testify that, as predicted, the

knockdown of the top-ranked genes results in attenuated cell

migration that is accompanied by reduced EOR and AFR levels.

Discussion

In this study we explored the role of the Warburg effect in support-

ing tumor migration, going beyond recent investigations focusing on

its role in assisting cancer proliferation. A model-based investigation

across cancer cell lines shows that the ratio between glycolytic and

oxidative ATP flux rate is significantly associated with cancer migra-

tory behavior. Gene silencing perturbations predicted to reduce this

ratio were indeed found to attenuate cell migration, and result with

a significant reduction in ECAR to OCR levels. Of note, our modeling

approach relies on gene expression differences between the cells

and does not take into account specific uptake rates. It is therefore

more suited for capturing qualitative rather than exact quantitative

differences between the cells, as demonstrated throughout the

paper. Moreover, the lion share of our analysis is focused on the

simulations of perturbations where specific uptake rates are not

available. Nonetheless, utilizing such uptake measurements can

significantly increase the correlation to the measured lactate rates

(Spearman correlation R = 0.67, P-value = 1.5e�8), suggesting that

uptake rates measurements under perturbation states can signifi-

cantly increase the models’ prediction power.

Our AFR measure is conceptually analogous to a bioenergetic

(BEC) index previously introduced by Cuezva et al (Cuezva et al,

2002). In that study, the ratio between the expression of the glyco-

lytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
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Figure 3. Gene targets that are predicted to reduce the AFR and their association with prognostic markers of breast cancer patients.

A A schematic representation of the 12 predicted gene targets, marked in red.
B Ten predicted targets that show a significantly higher expression in metastatic versus non-metastatic tumor samples (n = 295).
C Nine predicted targets that show a significantly higher expression in grade 3 versus grade 1 tumor samples (n = 236).
D Nine predicted targets whose lower expression is significantly associated with improved long-term survival (n = 1568).
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and the b-catalytic subunit of ATP synthase forming the BEC index

was found to have a prognostic value in assessing the clinical

outcome of patients with early-stage colorectal carcinomas. The

AFR measure and the BEC index (as computed by its corresponding

RNA levels) are significantly correlated (Spearman R = 0.58,

P-value = 1.6e�6) across the NCI-60 cell lines, and the BEC index is

perfectly correlated with migration speed across the six breast

cancer cell lines (Spearman R = 1, P-value = 2.8e�3). However, the

BEC index has inferior performance in predicting drug response

(Supplementary Table S1).

The finding that enhanced glycolytic activity plays a key role in

cancer cell migration is also in line with a very recent study by

De Bock et al, showing that glycolysis is the major source of ATP

production in endothelial cells and that the silencing of the glyco-

lytic regulator PFKFB3 impairs the cell migration capacity and inter-

feres with vessel sprouting (De Bock et al, 2013). In addition,

silencing of PFKFB3 was shown to suppress cell proliferation in

about 50% (De Bock et al, 2013). Overall, the results presented in

this study, as well as findings reported by others (Simpson et al,

2008), suggest that proliferation and migration are not mutually

exclusive, and the effect of potential targets on both processes

should be carefully examined.

Some of our predicted targets have been previously studied in

the context of cell proliferation as well (Cheong et al, 2012).

Possemato et al (Possemato et al, 2011) have showed that suppres-

sion of PHGDH in cell lines with elevated PHGDH expression, but not

Figure 4. Normalized to control mean speed per SmartPool gene silencing of the predicted targets.

A–D The four different cell lines that were analyzed: MDA-MB-231, MDA-MB-435s, BT549, and A549. Significant results (two-sided t-test, P-value < 0.05 after correcting
for multiple hypothesis using FDR with a = 0.05) are marked with an asterisk. Two different controls are used: (1) non-targeting siRNA (= negative control); and (2)
a positive control DNM2 which is known to block both migration and proliferation (Ezratty et al, 2005). Left panel shows migration speed and right panel shows
nuclear count. Error bars represent SD; the number of samples is n = 3.
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in those without, inhibits cell proliferation. Accordingly, as PHGDH

is not amplified in the cell line MDA-MB-231 which was examined

in both studies, its suppression is indeed non-lethal. However, we

show that its suppression significantly attenuates cell migration,

suggesting that metabolic enzymes can promote different cancerous

phenotypes in different cancer cells.

Remarkably, analyzing the model-predicted flux rates has

successfully uncovered a fundamental association between the AFR

and cancer migration, even given the relatively small set of cell lines

for which migration was measured. Our analysis has also revealed

other potential associations between individual fluxes and cell

migration (Supplementary Fig S4). However, future studies measur-

ing cellular migration data across a much wider array of cell lines

(of the order for which we already have proliferation data) are

needed to determine the actual significance of these potential leads.

As this study has shown, cellular proliferation and migration have

distinct underlying metabolite correlates; understanding the meta-

bolic correlates that are strongly associated with cell migration may

lead to new anti-metastatic treatment opportunities. It is important

to note, however, that while the inhibition of migration alone might

be a good strategy for avoiding the adverse side effects of cytotoxic

treatment, cell migration is a crucial process also in normal physiol-

ogy, for instance, in immune response and tissue repair (Förster

et al, 1999; Ridley et al, 2003). Therefore, future anti-migratory

drugs may pose different drug selectivity challenges that should be

carefully addressed in the future studies. Irrespectively, they may

result in lesser clonal selection, and as a result, their usage may be

accompanied with lesser rate of emergence of drug-resistant clones.

Materials and Methods

Computational methods

Genome-scale metabolic modeling (GSSM)

A metabolic network consisting of m metabolites and n reactions

can be represented by a stoichiometric matrix S, where the entry Sij
represents the stoichiometric coefficient of metabolite i in reaction j

(Price et al, 2004). A CBM model imposes mass balance, directional-

ity, and flux capacity constraints on the space of possible fluxes in

the metabolic network’s reactions through a set of linear equations:

Sv ¼ 0 (1)

vmin � v� vmax (2)

where v stands for the flux vector for all of the reactions in the

model (i.e. the flux distribution). The exchange of metabolites with

the environment is represented as a set of exchange (transport)

reactions, enabling a pre-defined set of metabolites to be either

taken up or secreted from the growth media. The steady-state

assumption represented in equation (1) constrains the production

rate of each metabolite to be equal to its consumption rate. Enzy-

matic directionality and flux capacity constraints define lower and

upper bounds on the fluxes and are embedded in equation (2).

In the following, flux vectors satisfying these conditions will

be referred to as feasible steady-state flux distributions. Gene

knockouts are simulated by constraining the flux through the

Figure 5. ECAR and OCR levels of top predicted gene targets.

A Mean and SEM (normalized to nuclear count) ECAR and OCR levels after silencing of seven different genes (HK2, PGAM1, PGK2, GAPDH, PSPH, AHCY, and PHGDH)
compared to the control. Silencing of the four glycolytic genes results in both a decrease in ECAR levels (x-axis) and an increase in OCR levels (y-axis), while the
serine- and methionine-associated genes show only a decrease in ECAR levels. Error bars represent SEM. The number of samples is n = 18.

B Mean and SD of computed ECAR/OCR (EOR) levels for control and selected gene silencing (Materials and Methods). For all genes a significant reduction in EOR levels
is observed. Error bars represent SD. The number of samples is n = 18.
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corresponding metabolic reaction to zero. The biomass function

utilized here is taken from (Folger et al, 2011). The media simu-

lated in all the analyses throughout the paper is the RPMI-1640

media that was used to grow the cell lines experimentally (Lee

et al, 2007; Choy et al, 2008).

Building cell-specific metabolic models and computing lactate secretion

Our method to reconstruct the NCI-60 cancer cell lines (see Supple-

mentary Material, based on the yet unpublished methods in Yizhak

et al, submitted) required several key inputs: (a) the generic human

model (Duarte et al, 2007), (b) gene expression data for each cancer

cell line from (Lee et al, 2007), and (c) growth rate measurements.

The algorithm then reconstructs a specific metabolic model for each

sample by modifying the upper bounds of growth-associated reac-

tions in accordance with their gene expression (Note: the growth

rates were used only to determine which reactions should be used

in constraining the models, in order to obtain models that were as

physiologically relevant as possible; they were not used to deter-

mine reaction bounds). A similar procedure was used to reconstruct

the lymphoblast metabolic models (Choy et al, 2008) for compari-

son against normal proliferating cells. A more detailed description is

found in the Supplementary Material.

Simulations of the Warburg effect include the examination of

minimal lactate production rate under different demands for

biomass production, glucose, glutamine, and oxygen uptake rates

(Supplementary Material). We examined the minimal value of

lactate secretion as it testifies whether or not the cell is enforced to

secrete lactate under a given condition (Supplementary Fig S1). All

the correlations reported in the paper are Spearman rank correla-

tions and their associated P-values are computed using the exact

permutation distribution.

Calculating wild-type and perturbed lactate secretion rates and

OCR levels

For simulating lactate secretion under normoxic conditions (when

comparing to Jain et al (Jain et al, 2012), Wu et al (Wu et al, 2007)

and the breast cancer data collected in this paper), oxygen maximal

uptake rate was set to the highest value under which minimal

lactate secretion is positive. Since metabolic models are designed to

maximize growth yield rather than growth rate, using an unlimited

amount of oxygen in GSMM simulations will result in a state where

the minimal lactate secretion rate equals zero. However, it’s impor-

tant to note that even under the limited oxygen levels simulated

here, the generic human model doesn’t show lactate secretion (as

opposed to the NCI-60 cancer cell line models described above). For

simulating the hypoxic conditions measured here for the breast

cancer cell lines, we lowered the oxygen maximal uptake rate by

50% of its normoxic state as described above. Under each of these

conditions, we sampled the solution space under maximal biomass

yield and obtained 1,000 feasible flux distributions (Bordel et al,

2010). The predicted lactate secretion rate is the average lactate

secretion flux over these samples. For emulating the perturbation

experiments in Wu et al we gradually lowered the bound of the

corresponding compound target (from the maximal bound to 0)

and repeated the procedure described above for computing

the ECAR (lactate secretion) and the OCR, which in a similar

manner is defined as the average oxygen consumption flux across

all samples.

Calculating the EOR and AFR measures for assessing the Warburg level

of the cell lines and using them to predict drug response

The EOR and AFR measures were calculated in a similar manner to

that described above. Specifically, the EOR is calculated as the mean

over lactate secretion across all samples divided by the mean over

oxygen consumption across all samples. Similarly, the AFR is calcu-

lated as the mean flux carried by the reactions producing ATP in

glycolysis versus the mean flux carried by the reaction producing

ATP in OXPHOS. To determine an empiric P-value in the drug

response analysis we randomly shuffled the drug response data

1,000 times, each time examining the resulting Wilcoxon P-value

over the original set of cell lines.

Predicting the effect of reaction knockouts

Each metabolic reaction in each cell line model is perturbed by

constraining its flux to zero. Under each perturbation the minimal

lactate secretion (under maximal growth rate) and the maximal

growth rate is calculated. The set of reactions that eliminate forced

lactate secretion while maintaining a level of cell growth that is

> 10% of the wild-type growth prediction is further tested for the

AFR level. The mean AFR level for each cell line under each of these

perturbations is calculated over 1,000 flux distribution samples as

described above. The final set of predicted reactions includes those

whose knockout reduces the AFR to below 60% of its wild-type level.

Datasets

Growth rate measurements and drug response data were down-

loaded from the NCI website.

Growth rate: http://dtp.nci.nih.gov/docs/misc/common_files/

cell_list.html

Drug response: http://discover.nci.nih.gov/nature2000/naturein

tromain.jsp

Experimentally measuring lactate secretion rates of breast
cancer cell lines

Cell Culture

The MCF7, T47D, Hs578T and BT549 breast cancer cell lines were

obtained from the American Type Culture Collection and London

Research Institute Cell Services. Cells were cultured in DMEM/F12

(1:1), with 2 mM L-glutamine and penicillin/streptomycin. Medium

was supplemented with 10% FCS (GIBCO) for the cancer cell lines

and 5% horse serum, 20 ng/ml EGF, 5 lg/ml hydrocortisone,

10 lg/ml insulin, and 100 ng/ml cholera toxin for the non-

malignant cell lines.

Lactate secretion measurements

Cells were cultured under normoxic (20% O2) and hypoxic (0.5%

O2) conditions for 72 h. Cells were starved of glucose and glutamine

for 1 h and full medium was added for 1 h. Lactate secretion was

determined from normoxic and hypoxic cells and normalized to

cell growth (increase in total protein during the 72 h incubation in

normoxia). Lactate concentrations in media incubated with or

without cells were determined using lactate assay kits (BioVision).

Total protein content determined by Sulforhodamine B assay was

used for normalization. Two experiments were performed with

three or four biologically independent replicates (total of seven

replicates).
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Cell culture for live cell imaging and cell migration assays

T47D, MCF-7, MDA-MB-435, BT549, MDA-MB-231 and Hs578t were

cultured in RPMI (GIBCO, Life Technologies, Carlsbad, CA, USA)

supplemented with 10% FBS (PAA, Pashing Austria) and 100

International Units/ml penicillin and 100 lg/ml streptomycin

(Invitrogen, Carlsbad, CA, USA).

Gene silencing

Human siRNA SmartPools (a combination of four individual singles)

for the 17 predicted genes were purchased in siGENOME format

from Dharmacon (Lafayette, CO, USA). Plates were diluted to 1 lM
working concentration in complementary 1× siRNA buffer in a

96-well plate format. A non-targeting siRNA was used as negative

control. A 50 nM reverse transfection was performed according to

manufacturer’s guidelines. Complex time was 20 min and 5,000

cells were added. The plate was placed in the incubator overnight

and the medium was refreshed the following morning. After

48–72 h cells were used for various assays. Cell migration and meta-

bolic flux assay experiments were performed in duplicate while the

cell proliferation assay was performed in triplicate.

Live cell imaging random cell migration assay

Glass bottom 96-well plates (Greiner Bio-one, Monroe, NC, USA)

were coated with 20 lg/ll collagen type I (isolated from rat tails)

for 1 h at 37°C. 48 h after silencing, the MDA-MB-231 cells were re-

plated onto the collagen-coated glass bottom plate. 24 h after seed-

ing, cells were pre-exposed for 45 min to 0.1 lg/µl Hoechst 33342
(Fisher Scientific, Hampton, NH, USA) to visualize nuclei. After

refreshing the medium, cells were placed on a Nikon Eclipse

TE2000-E microscope fitted with a 37°C incubation chamber, 20×

objective (0.75 NA, 1.00 WD) automated stage and perfect focus

system. Three positions per well were automatically defined, and

the Differential Interference Contrast (DIC) and Hoechst signals

were acquired with a CCD camera (Pixel size: 0.64 lm) every

20 min for a total imaging period of 12 h using NIS software

(Nikon). All data were converted and analyzed using custom-made

ImagePro Plus macros (Roosmalen et al, 2011). Cell migration was

quantified by tracking nuclei in time. Changes in migration speed

per knockdown were evaluated via a two-sided t-test comparing the

speed for every individual cell followed overtime for 16 h and the

corresponding control values. Data shown are normalized to control

and represent only one replicate. Of note, for all four cell lines both

replicates showed a R2 of reproducibility above 0.75. Genes achiev-

ing P-value < 0.05 after correcting for multiple hypothesis using

FDR with a = 0.05 are considered as hits.

Proliferation assay

Cells were directly transfected and plated onto micro-clear 96-well

plates (Greiner Bio-one). After 5 days of incubation, the cells were

stained with Hoechst 33342 and fixed with TCA (Trichloroacetic

acid) allowing both a nuclear counting and/or Sulforodamine B

(SRB) readout. Whole wells were imaged using epi-fluorescence

and the number of nuclei was determined using a custom-made

ImagePro macro. Plates were further processed for SRB staining as

described earlier (Zhang et al, 2011). SRB data showed a complete

overlap with the nuclear count so this measure is used in all

figures. Changes in proliferation rates upon knockdown when

compared to control were evaluated in triplicate via a two-sided

t-test. The mean proliferation rate after knockdown between all

three replicates was calculated and normalized to the non-targeting

siRNA (= control). Genes achieving P-value < 0.05 after correcting

for multiple hypothesis using FDR with a = 0.05 are considered as

hits.

Metabolic flux assay

The bioenergetics flux of cells in response to gene silencing was

assessed using the Seahorse XF96 extracellular flux analyzer

(Seahorse Bioscience). About 8,000 MDA-MB-231 cells per well

(Seahorse plate) were treated with siRNAs or control for 72 h. Each

gene (in total 7) was knockdown in six different wells and the

experiment was performed twice (so a total of six replicates per

plate and two plates). Prior to measurement, the medium was

replaced with unbuffered DMEM XF assay medium. The basal

oxygen consumption rate (OCR) and extracellular acidification rate

(ECAR) were then determined using the XP96 plate reader with the

standard program as recommended by the manufacturer: three

measurements per well were done (so for each gene 18 measure-

ments were obtained for both OCR and ECAR). After the measure-

ments were completed, the plates were live stained with Hoechst

33342 for 1 h and fixed with TCA allowing both a nuclear counting

and/or SRB readout. Whole wells were imaged using epi-fluores-

cence and the number of nuclei was determined using a custom-

made ImagePro macro. Plates were further processed for SRB stain-

ing as described earlier (Zhang et al, 2011). SRB data showed a

complete overlap with the nuclear count so this measure was used

for normalization. All values are normalized to nuclear count. EOR

for control and each gene knockdown is computed by dividing the

corresponding ECAR and OCR values. A two-sided t-test is applied

to examine significant changes between control and knockdown-

induced EOR.

Supplementary information for this article is available online:

http://msb.embopress.org
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