
help determine lung transplant candidacy or to predict
pretransplant and post-transplant outcomes. n
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Is Pulmonary Hypertension a Metabolic Disease?

Pulmonary hypertension (PH) is a heterogeneous disorder likely
to be composed of overlapping syndromes with varying origins and
heterogeneous pathobiology and presenting with many phenotypes
(1). Knowledge of the underlying pathobiology is necessary for
understanding clinical disease manifestations and for devising
specific and effective therapies. Enhanced pulmonary vascular cell
proliferation, dysregulated cell apoptosis, increased angiogenesis,
and vasoconstriction are hallmarks of the disease (Figure 1) (2)
and lead to structural and morphological changes within the
lung vasculature, including vascular remodeling and arterial wall
narrowing. These dysfunctional processes lead to a progressive
increase in pulmonary vascular resistance and, ultimately, right
ventricular failure and death (3). At the molecular level, genetic factors
and derangements in signaling pathways, cytokines, chemokines,
and growth factors have been linked to the pathobiology of PH (4).

More recently, metabolic dysregulation has emerged as a major
area of research in the pathobiology of PH (Figure 1). Just like
cancer, PH is characterized by cell proliferation, apoptotic resistance,
and increased angiogenesis (5). Also much like patients with cancer,
patients with PH exhibit excessive cellular glucose uptake and

increased glycolytic metabolism compared with healthy individuals
(6, 7). Patients with PH also exhibit alterations in levels of leptin,
adiponectin, high-density lipoprotein cholesterol, and insulin
resistance (8–11). Cancer cells exposed to these metabolic alterations
reprogram their metabolism and protein homeostasis to adapt to
nutrient stress conditions, as well as to establish tumor development,
progression, and survival. Often, these cells undergo changes in
glycosylation (i.e., O-linked N-acetylglucosamine modification of
proteins and hyaluronan production) and lipid metabolism (12–14).
These observed metabolic changes in cancer are increasingly
becoming recognized in the pathogenesis of PH as well (15, 16).

One such example is dysregulation in sphingosine 1-phosphate
(S1P) metabolism, which is increasingly recognized for its direct
involvement in cell proliferation. Two lipid kinases, sphingosine
kinase (SphK) 1 and 2, catalyze the conversion of the sphingolipid,
sphingosine, to S1P. SphK1 has been linked to several signaling
pathways involved in cancer cell proliferation and survival (17).
Overexpression of SphK1 has been observed in many tumor tissues,
which results in the accumulation of S1P, increased cell proliferation,
apoptotic resistance, and disease development and progression
(18). Conversely, a reduction in SphK1 activity and subsequent S1P
levels is associated with increased cellular ceramide levels, which
have been linked to apoptosis and cell cycle arrest (18). Indeed, the
homeostatic balance between ceramide and S1P levels (the ceramide/
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S1P rheostat) is a gauge for cell death or survival. A recent report
made a possible link between SphKs and PH (19).

In this issue of the Journal, Chen and colleagues (pp. 1032–1043)
examined the SphK1/S1P pathway in PH and show that it promotes
pulmonary arterial smooth muscle cell (PASMC) proliferation (20).
This finding was identified using a combination of rodent models
of hypoxia-mediated PH, human explanted lungs, and isolated
human PASMCs. By investigating the functional consequences of
altering SphKs or S1P in PH, the authors show that overexpression of
SphK1 or S1P stimulation promoted PASMC proliferation, whereas
loss of SphK1 blocked the PASMC proliferation in PH. In human
PH lungs and PASMCs, SphK1 (but not SphK2) was upregulated,
which was consistent with their findings of increased S1P levels. In
addition, the protective effect of SphK1 deficiency on hypoxia-induced
PH was highlighted. These findings of the direct involvement of the
SphK signaling pathway in PH vascular proliferation demonstrate the
homeostatic balance that is required for sphingosine metabolism
in PH. The molecular changes in the SphK1/S1P metabolic pathway,
guided by the current knowledge of its role in cancer cell proliferation,
may open new avenues to identify its role as a contributor to pulmonary
vascular remodeling and a potential therapeutic target in PH.

In spite of the novel findings in this report, many questions
remain unanswered. Are the metabolic features described here
universal in PH? Or do they represent a novel phenotype? Because
there were only a few samples from patients with PH analyzed in
this study, it will be interesting to determine whether the same
observations of increased SphK1 activity and S1P levels holds true
in a larger population of patients with PH. What are the main
contributors to the increased SphK1 and S1P levels (i.e., hypoxia,
altered glucose, lipid, or protein metabolism)? Will targeting the
SphK1 activity result in a reduction or reversal of the pulmonary
vascular proliferation? Alternatively, could the direct delivery of

exogenous ceramide or stimulation of ceramide synthesis slow or
reverse the process? Addressing these questions will be necessary to
determine the fate of this molecular pathway as a novel therapeutic
target in PH. In the meantime, however, the findings by Chen
and colleagues invite us to explore deeper the global effects of altered
metabolism in the pathogenesis of PH, a journey that will hopefully
open doors to new therapeutic targets in this deadly disease (3). n
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Figure 1. Select identified metabolic derangements in pulmonary hypertension (PH). Dysregulated carbohydrate, lipid, and amino acid metabolism
impacts the central phenotypic features of PH. On alteration, these derangements govern the changes in cell proliferation, apoptosis, angiogenesis, and
vasoconstriction. These same metabolic derangements have been documented in cancer. At this time, several metabolic pathways are targets for
PH therapy (bold). ADMA = asymmetric dimethylarginine; Arg = arginine; HA = hyaluronan; HDL-C = high-density lipoprotein cholesterol; MCD =
malonyl-CoA decarboxylase.
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Eat and Suppress: The Two-Faced Role of Myeloid-derived
Suppressor Cells in Tuberculosis

Despite advances in drug discovery (1), tuberculosis remains one
of the leading causes of death worldwide with an estimated one-
third of the world’s population infected with this bacterium (2).
While it is well known that Mycobacterium tuberculosis can invade
and exploit host cells to escape from immune surveillance (3),
the precise mechanism by which it evades adaptive immunity has
not been fully understood (4). T cells, particularly CD41 Th1 and
CD81 cells, are critical for protection against M. tuberculosis (5)
and have been linked to disease susceptibility and progression (6).
Patients with latent infection show protective T-cell responses
in contrast to a lack of an efficient T-cell immunity in patients with
active tuberculosis (7, 8), underscoring the importance of T-cell
activities for controlling this disease. Although regulatory T cells
(9) have been involved, the underlying innate immune mechanisms
that regulate T-cell functions in tuberculosis remain poorly defined.

Using murine infection models, Knaul and coworkers
(pp. 1053–1066) from the Max Planck Institute for Infection
Biology in Berlin have dissected the complex interaction between
M. tuberculosis and innate immune cells and discovered a
multifaceted role of suppressive myeloid cells in this disease,
reported in this issue of the Journal (10). They initially observed
that an immature Gr11 myeloid cell population accumulated in
lungs of susceptible mice. By using depleting antibodies, the

authors went on to demonstrate that Gr11 cells are key
determinants for tuberculosis susceptibility in vivo. Because
Gr11 cells comprise a broad and heterogeneous group of myeloid
cells, the scientists further sought to define this myeloid cell
population more precisely using global gene expression profiles and
immunostaining. These approaches revealed that the identified
cell population resembled phenotypic characteristics of myeloid-
derived suppressor cells (MDSCs), as they coexpressed arginase
1 (Arg1) and nitric oxide synthase 2 (Nos2) in line with other
MDSC-signature transcripts (11).

MDSCs represent a distinct subset of innate cells, initially
identified in cancer, which suppress T cells and help pathogens to
undermine adaptive host defenses (12). Based on surface marker
profiles, MDSCs can be classified into granulocytic/neutrophilic
(CD11b1Gr11Ly6G1) and monocytic (CD11b1Gr11Ly6C1)
subsets. In their tuberculosis model, Knaul and colleagues found
that both MDSC subsets accumulated in the infected lungs. To
functionally prove that the identified “MDSC-like” cell population
indeed represented bona fide MDSCs, the authors analyzed their
functional capacity to suppress T-cell responses. These studies
demonstrated that lung-isolated MDSCs suppressed T cells, albeit
heterogeneously depending on the time course of disease and the
applied readout for T-cell activation (proliferation vs. IFN-g secretion).
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