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Abstract

Appropriate interneuron migration and distribution is essential for the construction of functional 

neuronal circuitry and the maintenance of excitatory/inhibitory balance in the brain. GABAergic 

interneurons originating from ventral telencephalon choreograph a complex pattern of migration to 

reach their target destinations within the developing brain. This review examines the cellular and 

molecular underpinnings of the major decision-making steps involved in this process of oriental 

navigation of cortical interneurons.
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Introduction

The functions of the central nervous system (CNS) requires balanced and coordinated 

activities between the excitatory, glutamatergic projection neurons and inhibitory 

GABAergic (gamma-aminobutyric-acid) interneurons. In contrast to the projection neurons 

that are generated in the dorsal telencephalon (pallium) and migrate radially over a relatively 

shorter distance into the developing cortical plate, interneurons originate from distinct 

regions of the subpallium and migrate tangentially in multiple streams, across areal 

boundaries of the developing telencephalon, to reach their intended destinations in the 

neocortex, striatum, hippocampus, and olfactory bulb (OB)1. During this process, 

interneurons precisely integrate their cell-intrinsic characteristics with input from local 

environmental cues to facilitate decisions that are necessary for appropriate patterns of 

migration (Text Box 1). This review provides a summary of the major decision-making 

© 2013 Elsevier Ltd. All rights reserved.

Correspondence to: E. S. Anton, anton@med.unc.edu.

UNC Neuroscience Center and the Department of Cell Biology and Physiology, The University of North Carolina School of 
Medicine, Chapel Hill, NC 27599, Tel.: +919-843-6114, fax: 919-966-1844

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Trends Cell Biol. Author manuscript; available in PMC 2015 June 01.

Published in final edited form as:
Trends Cell Biol. 2014 June ; 24(6): 342–351. doi:10.1016/j.tcb.2013.12.001.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



steps involved in interneuron migration and the cellular and molecular mechanisms 

underlying each of these steps. In particular, we focus on the determinant steps that enable 

cortical interneurons to navigate towards and incorporate into defined neural microcircuitry 

in the cortex and the challenges remaining in our understanding of this process.

Text Box 1

Origins and migratory routes of interneurons in the developing brain

Interneurons are highly heterogeneous and diverse neuronal population that arises from 

progenitor pools within the lateral ganglionic eminence (LGE), medial ganglionic 

eminence (MGE), caudal ganglionic eminence (CGE), preoptic area (POa), and septal 

anlage of the subpallium in the developing telencephalon2–6. Post-mitotic interneurons 

from these distinct proliferative domains exit through distinct pathways7–12, dorsally to 

the cortex, ventrolaterally to the striatum, caudally to the hippocampus and rostrally to 

the OB, to reach their final target destinations.

The most extensively studied of these pathways is the GE-derived GABAergic 

interneurons migrating towards the dorsal cortex. Early tracing studies have 

demonstrated that different streams of interneurons arising from GE are able to transit 

across the cortico-subpallial boundary, and course tangentially into the cortex. An early 

stream of interneurons (~ E11.5 in mouse) from MGE migrate dorsolaterally onto the top 

of the preplate, where many of them eventually become layer I Cajal-Retzius neurons2. 

Later during corticogenesis (~ E13-E15 in mouse), a second and more prominent stream 

of interneurons, mainly from MGE, rapidly migrate into the neocortex, through the 

intermediate zone (IZ)2. This latter stream is joined by interneurons from LGE, although 

much less robustly and via a more restricted route through the cortical proliferative 

zone1, 2. At later stages of corticogenesis, interneurons enter the cortex via multiple 

streams, largely through lower IZ and subventricular zone (SVZ), as well as through 

migratory streams in subplate (SP) and marginal zone (MZ). Additionally, CGE has been 

shown to be another major source of cortical interneurons. 3-D profile of cortical 

interneuron migration indicates that simultaneous with the MGE derived streams, a wave 

of interneurons originating from CGE migrate in a lateral and medial direction to enter 

the caudal-most end of the cerebral cortex8, 9, 13 (Figure 1).

Subpallially originating interneurons also tangentially migrate toward other destinations 

within the developing brain: ventrolaterally to the striatum, caudally to the hippocampus 

and rostrally to the OB. MGE together with the adjacent POa gives rise to striatal 

interneurons that migrate tangentially into the developing striatum, where they 

differentiate and integrate into the local striatal neural circuitry7. CGE is the largest 

source of hippocampal interneurons. By E13.5 in mouse, a stream of CGE-derived 

interneurons rapidly migrate towards the caudal end of telencephalon, where they enter 

MZ and eventually settle down in the hippocampus9, 13. In contrast, LGE give rise to 

most if not all interneurons that migrate rostrally and populate both the glomerular and 

granule cell layers of the olfactory bulb7, 10, 14, 15. The migration of olfactory interneuron 

precursors continues throughout postnatal period and adulthood, providing a constant 

supply of interneurons to the local neural circuits of the olfactory bulb16, 17. The 
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subventricular zone (SVZ), a mitotically active region in the dorsal-medial corner of 

striatum that is derived from embryonic LGE, gives rise to these postnatal olfactory 

interneurons18, 19. Compared to the embryonic stages of olfactory interneuron migration, 

during which loosely associated neurons disperse through the extracellular space, new 

born interneurons in neonates and adults organize into a network of interlinked chains, 

surrounded by astroglial tubes, to migrate in a restricted and highly oriented route named 

rostral migration stream (RMS) 16, 17.

Decision-making steps of interneuron migration

The cellular dynamics (Text Boxes 1, 2) underlying the navigation of interneurons from 

their sites of birth to their final areal and laminar destinations (Text Box 3) can be broadly 

divided into six decision-making steps and the mechanisms serving each of them are 

examined below.

Text Box 2

Cellular dynamics of migrating interneurons

Unlike the stereotypical migratory behavior of many neurons that extend a single leading 

process in the direction of migration, interneurons search for guidance signals by 

vigorously and continuously extending multiple, diverging branches from the leading 

process to better sense and align with the source of the orienting gradients20, 21. The 

branch that best aligns with the net gradient of the guidance cues then is stabilized, while 

other branches retract, and the nucleus moves in the direction of the stabilized leading 

process. Further, interneurons can also alter migratory direction by reversing their 

polarity, i. e., by converting the trailing process directly into a leading process while the 

previous leading process retracts like a trailing process22.

Once the migratory direction is decided, interneurons advance forward by performing a 

repeated cycle of two-phase nucleokinesis23. First, as the leading process is stabilized, 

organelles including the centrioles and Golgi apparatus within the perinuclear cytoplasm 

form a presomal swelling and extend into the leading process. In the second phase, the 

nucleus translocates toward the presomal swelling as the trailing process retracts toward 

the new position of the cell soma. This two-phase nucleokinesis results in the 

characteristic saltatory mode of interneuron migration, alternating between a resting 

phase, when the leading process is actively extending and exploring, and a moving phase, 

when the cell soma translocates in a new direction23, 24. Two sets of cellular forces 

facilitate the nuclear movement in migrating interneurons: the microtubule-dependent 

pulling force and the actomyosin-dependent pushing force. The pulling force is generated 

by the microtubule “perinuclear cage”, which envelops the nucleus and is tethered to the 

centrosome to couple the nuclear movement with the direction set by the leading 

process23. In contrast, non-muscle myosin II that accumulates at the rear end of the cell 

body provides the contractile pushing force for the forward movement of nucleus23. This 

pattern of coordinated leading process/nucleokinesis dynamics is repeated to facilitate 

directional movement of interneurons.
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Text Box 3

Laminar and areal allocation of cortical interneurons

Once in the dorsal cortex, interneurons employ multiple modes of migration as they 

move to specific areal and laminar locations within the emerging CP22, 25–28. The local 

migration within the dorsal cerebral wall is crucial in determining the final positioning of 

cortical interneurons. For example, interneurons migrating in MZ stream undergo 

multidirectional local migration, actively contacting radial glial endfeet, before turning 

inwards and moving radially towards the CP8, 25–28. Interneurons in SP or IZ/SVZ 

streams also switch their mode of migration from tangential to radial, and extensively 

contact the radial glial processes as they migrate up towards the CP8, 26–28. Moreover, a 

subpopulation of interneurons within IZ exhibit “ventricle-oriented migration”, during 

which they migrate radially into VZ, and pause at the bottom of VZ, extending multiple 

processes to scan the ventricular surface, possibly to obtain positional information or 

modulate progenitor proliferation, prior to migrating up radially towards the CP22, 26.

Interneurons follow a lateral to medial gradient to colonize the neocortex, with younger 

neurons arriving at the lateral cortical domains earlier than the medial regions29 (Figure I. 

A). After arriving at the appropriate cortical area, interneurons settle into specific laminar 

positions prior to forming functional synaptic contacts with appropriate projection 

neuronal partners. Birthdate analysis of specific interneuron subtypes suggests that 

interneurons follow heterogeneous developmental rules for laminar positioning8, 30–34. 

MGE and POa derived somatostatin+(SST+), parvalbumin+(PV+), and calbindin+(CB+) 

subtypes show a time-dependent, inside-out pattern of positioning that is similar to 

projection neurons. In contrast, CGE-derived calretinin+ interneurons show an outside-in 

placement pattern8, 29. Further, vasoactive intestinal polypeptide+ (VIP+) and 

neuropeptide Y+ (NPY+) interneurons do not show a strict inside-out layering pattern, but 

preferentially localize to superficial layers or scatter widely within the cortex, 

respectively29, 34(Figure I. A, B). The final cortical distribution of interneurons therefore 

depends on the temporal and spatial origin of interneurons, subtype specification, as well 

as on interactions with radial glial scaffold and projection neurons.
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Figure I. The developmental distribution of interneuron subtypes
(A) Schematic of a coronal section through the mouse neonatal cerebral cortex showing 

the areal and laminar positioning of MGE- and CGE-derived GABAergic interneurons. 

Both MGE- and CGE-derived interneurons reach their final areal positions in a lateral to 

medial gradient (i.e., arriving first in laternal regions of cortex). MGE-derived 

interneurons show an inside-out pattern of distribution, whereas CGE-derived 

interneurons exhibit an outside-in pattern of distribution. MGE-derived interneurons 

distribute relatively evenly in the neocortex, whereas CGE-derived interneurons 

preferentially distribute in superficial layers. (B) Laminar distribution of main subtypes 

of interneurons. PV+ interneurons are abundant throughout cortical layers II–VI. SST+ 

interneurons mainly localize to layers II–V. CR+ interneurons preferentially distribute in 

layer I. VIP+/CR+ interneurons preferentially distribute through layer II/III. NPY+/

nNOS+ interneurons mainly localize to layers II–IV. PV, parvalbumin; SST, 

somatostatin; CR, calretinin; VIP, vasoactive intestinal polypeptide; NPY, neuropeptide 

Y; nNOS, neuronal nitric oxide synthase. I–VI: cortical layers.

Exit from the proliferative zone and initiation of migration

Newborn interneurons cluster around radial glial fibers or coalesce as migratory stream as 

they exit from the subpallial proliferative zone (Figure 1)4, 35. Newborn interneurons initiate 

their exit away from the proliferative zone in subpallium by utilizing a combination of 

chemorepulsive guidance cues and motogenic factors36, 37. Chemorepulsive cues play a key 

role in guiding the path of exit of migrating interneurons away from the VZ of GE. 

Diffusible guidance proteins Slit1 and Netrin1, known chemorepulsive cues for axonal 
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growth and guidance, have been shown in vitro to repel interneurons from GE region, 

although, in vivo genetic models failed to provide direct evidence supporting their repulsive 

influence on interneuron migration38–40. Further, a recent study has demonstrated that 

guidance molecule Ephrin-A5 acts as the repellent force to facilitate the exit of newborn 

interneurons from GE41. Ephrin-A5 is expressed in the VZ of GE, while its signaling 

receptor EphA4 is strongly expressed in newborn, GE-derived interneurons41. In vitro 

assays showed that down-regulated Ephrin-A5 in the VZ of GE led to ectopic invasion of 

interneurons into VZ41. In contrast, exogenously applied Ephrin-A5 recombinant protein 

restores the avoidance of VZ by migrating interneurons41.

Once repelled away from the proliferative zone, several motogenic factors have been 

identified to stimulate the migration of newborn interneurons from GE24, 42. Of these, 

dysfunction of hepatocyte growth factor/scatter factor (HGF/SF) signaling resulted in 

impaired cell mobility and reduced interneuron migration into the cortex42. Other growth 

factors including brain-derived neurotrophic factor (BDNF), neurotrophin 4 (NT4) and glial 

cell line-derived neurotrophic factor (GDNF) have also been suggested to be potent 

motogenic factors for newborn interneurons in GE24, 43. Although genetic evidence is still 

lacking to conclude a direct role for these molecules in the initiation of interneuron 

migration in vivo, several in vitro experiments using isolated interneurons and cortical slices 

have clearly suggested their influence on interneuron motility42–45. Together, these 

observations suggest a combination of chemorepellent and motogenic cues present in the 

proliferative zones of the GE may impel newborn interneurons to exit GE and initiate their 

migration.

Selection of migratory route towards dorsal cortex

Once migration is underway, interneurons face the challenge of selecting a specific 

migratory route into the dorsal or ventral cortex (Figure 1). Interneurons with different 

temporal and spatial origin in the subpallium follow specific migratory routes, suggesting 

that distinct origins of interneurons help prespecify their migratory routes. Indeed, the 

results of isochronic and heterochronic transplantation experiments have shown that 

interneurons are cell-autonomously committed to their specific migratory fate as early as 

E11.5 for LGE-derived interneurons and E13.5 for MGE and CGE-derived 

interneurons9, 13, 15, 46. The intrinsic migratory fate of interneurons are specified by the 

combinatorial expression of several key transcription factors that are expressed within the 

progenitor domains of the subpallium22, 47–51. These transcription factors not only define 

subpallial patterning and interneuron differentiation, but also provide migratory route 

instructions for the newborn interneurons22, 47–53. One of these transcription factors is 

Nkx2.1. Its expression is maintained in newborn interneurons migrating into striatum, but is 

downregulated in interneurons destined for the cortex. This differential Nkx2.1 expression is 

necessary for interneurons to migrate into cortex and serves as a sorting mechanism for 

directional migration of cortical and striatal interneurons52. In contrast, COUP transcription 

factor II (COUP-TFII), preferentially expressed in the CGE, is required for the CGE-derived 

interneuron migration in the caudal direction54. Notably, overexpression of COUP-TFII in 

MGE interneurons is sufficient to change their migratory orientation to caudal direction 

when transplanted into the CGE environment, thus providing an example of how a single, 
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locally expressed transcription factor activity is capable of determining the migratory fate of 

interneurons in its local environment54.

It is likely that transcription factors specify the intrinsic migratory fate of interneurons by 

modulating the expression of signaling receptors and cytoskeletal components that impart 

them with competence to respond selectively to route specific environmental cues. For 

example, the MGE-derived cortical interneurons avoid ventral POa and lateral striatum as 

they migrate toward dorsal cortex39, 55. Chemorepulsive cues play an essential role in 

establishing this pattern. EphrinB3 expressed in POa and its derivatives acts as a repulsive 

cue by binding to EphA4 receptor expressed by MGE-derived cortical interneurons56. This 

repellent activity prevents MGE interneurons from migrating in a ventral direction and is 

possibly responsible for their dorsal orientation toward the cortex56. Also, the repellent 

activity mediated by class 3 semaphorins (Sema3A and Sema3F) present in the developing 

striatum is largely responsible for the sorting between MGE-derived cortical interneurons 

and striatal interneurons. The expression of Neuropilin 1 (Nrp) and Nrp2 receptors by MGE-

derived interneurons destined to cortex, but not by striatal interneurons, ensures cortical 

interneurons are competent to respond to the repulsive actions of Sema3A and Sema3F, and 

thus enabling them to migrate around the developing striatum and enter the neocortex57. 

Importantly, Nkx2.1 has been shown to directly repress Nrp levels57. Thus, the 

downregulation of Nkx2.1 expression in MGE-derived interneurons renders them sensitive 

to Sema3A/Sema3F repellent cue, and facilitates their choice of specific migratory route. 

The downregulation of Nkx2.1 in cortical interneurons requires transcription factor Sip1. 

Sip1 also contributes to the sorting of cortical vs. striatal interneurons by repressing Netrin1 

receptor Unc5b expression in cortical interneurons to facilitate their entry into the 

neocortex58, 59.

In addition to repulsive cues, GE-derived interneurons also utilize gradients of permissive 

and attractant cues to migrate towards cortex39. Two isoforms of Neuregulin-1 (Nrg1), a 

membrane-bound isoform, CRD-Nrg1, and a diffusible isoform, Ig-Nrg1, have been shown 

to act as short-range permissive and long-range chemoattractant cue, respectively, for 

cortical interneurons60, 61. CRD-Nrg1 is expressed throughout the LGE from the VZ to the 

developing striatal mantal zone, providing a permissive corridor from the MGE to the 

pallial-subpallial boundary60. In contrast, Ig-Nrg1 is released in the neocortex, providing a 

diffusible cue that attracts cortical interneurons towards the neocortex as they exit the CRD-

Nrg1+ permissive corridor60. The function of Nrg1 requires activity of ErbB4 

receptors60, 61. Consistently, perturbation of ErbB4 signaling decreases the number of 

interneurons entering the neocortex60, 61.

Further, recent evidence suggests that neurotransmitters including ambient GABA, glycine, 

glutamate and dopamine promote interneuron migration and their entry into the 

neocortex62–74. Glycine functions through GlyRs to regulate interneuron migration velocity 

and nucleokinesis by controlling actomyosin contractility74. Acute loss of GlyR function 

impairs interneuron corticostriatal boundary crossing and entry into the neocortex74. In 

contrast, migrating interneurons appear to activate their response to ambient GABA signal 

or glutamate once they reach the neocortex. This switch-on response is accomplished by 

altering the expression profile of distinct GABAA receptor subunits (increased expression of 

Guo and Anton Page 7

Trends Cell Biol. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the α1-, α2-, γ5-, γ2-, and γ3-subunits) and activation of AMPA receptors, respectively, as 

interneurons navigate from subpallium to the neocortex62, 68, 69, 71, 72. Moreover, a balance 

in distinct dopamine receptor activities differentially modulates interneuron migration from 

GE to cortex: D1 receptor activation promotes, whereas D2 receptor activation decreases 

interneuron migration67. Taken together, interneurons integrate their transcription factor and 

signaling receptor expression profile with extrinsic environmental cues (e.g., 

chemorepulsive cues, chemoattractive cues, and neurotransmitters) to facilitate the selection 

of a migratory route from the GE to the cortex.

Choices of migratory streams within the neocortex

Interneurons form specific migratory streams through MZ, SP and IZ/SVZ as they traverse 

the neocortex22, 26 (Figure 1). This migratory pattern raises the question of whether 

interneurons randomly distribute in these streams or actively choose one of these three 

streams. If the latter is true, what are the factors that determine the choice of the migratory 

stream and does the selective path of migration plays a role in the eventual emergence of the 

interneuron subtype identity?

Cell intrinsic determinants are thought to play an essential role in migratory stream choices 

of interneurons. For example, transplantation experiments with retinoblastoma (Rb) mutant 

interneurons showed a dramatic failure of mutant neurons to migrate along the MZ stream in 

the wild type brain, suggesting a cell-autonomous requirement for Rb protein in 

interneuronal migration in the MZ stream75. Further, pharmacological blockade of the 

GABAB receptor resulted in accumulation of interneurons migrating in the SVZ/VZ stream 

and fewer interneurons in the MZ stream66. In contrast, dysfunction of GlyR α2 subunit 

specifically decreased interneurons migrating in the SVZ stream74. In addition, loss of 

Dopamine D1 receptor signaling significantly decreased the migration of interneurons in IZ 

and VZ/SVZ streams, whereas loss of D2 Dopamine receptors led to an increase of 

interneurons migrating in these streams66, 67. These results suggest that cell-intrinsic 

characteristics dictate interneuronal route preferences within the neocortex.

Aside from cell-intrinsic determinants, regionally localized environmental cues also 

influence the interneuron migration routes within the neocortex. For example, Netrin1 is 

produced in the cortical MZ and Netrin1’s binding to α3β1 integrin is required for the 

migration of interneurons through the MZ stream in the neocortex76. Consistently, in 

Netrin1/α3β1 integrin double mutants, significantly fewer interneurons migrate through the 

MZ stream and increased number of interneurons ectopically migrate through the VZ76. 

Further, Cajal-Retzius (CR) cells may provide positional cues for the interneurons migrating 

in close apposition below them in the MZ stream. It has been shown that either loss of CR 

cells or abnormal distribution of CR cells disrupt interneuron migration along the cortical 

MZ77–79. Gene expression profile analysis has revealed that a large number of genes 

including signaling receptors (e.g. Cdh8, Epha3, Robo2) and intracellular signaling 

modulators (e.g. Cdc42ep3, Plcb1, Rasgdf1b) are differentially expressed between the 

interneurons that migrate through either the MZ or the IZ stream in the neocortex80. Thus, it 

is likely that distinct intrinsic characteristics of migrating interneurons, either acquired prior 

to or after their entry into the cortex, in combination with extracellular cues released within 
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the cerebral wall, dictate the choice of distinct interneuron migratory routes within the 

cerebral wall.

Determination of local orientation of migration in neocortex

The directional steering of migrating interneurons within or in between streams is achieved 

by biased choices of leading process branches. This choice correlates tightly with rapid 

changes in growth cones dynamics. In particular, the stabilized leading branch of a 

migrating interneuron displays an elaborate growth cone, whereas the growth cones of non-

selected branches rapidly collapse prior to branch retraction20. Growth cones serve to 

elongate or retract the branches by receiving various environmental guidance cues and 

relaying this guidance information to the two main cytoskeletal networks: actin filaments 

and microtubules20. The dynamic interplay between the pushing force exerted via 

microtubule assembly and the actin-driven pulling force at the leading edge of the growth 

cone is required for process extension and retraction. Semaphorin signaling in the growth 

cone provides an illustrative model of how guidance cues coordinate the cytoskeletal 

rearrangement necessary for local directional migration. Semaphorins function as 

chemorepellent cues by inducing growth cone collapse via Rho GTPases and associated 

proteins81–88. Semaphorin regulated activation of Rho GTPases Rac1 or RhoA lead to either 

decreased actin turnover or increased actin contractility, respectively, resulting ultimately in 

growth cone collapse81, 82, 84. Alternatively, semaphorin-mediated signaling could also 

regulate microtubule dynamics via GSK3β activity, leading to microtubule destabilization 

and growth cone collapse86, 88. As a result, only the branch that is oriented farthest away 

from source of the repulsive cue gets stabilized and subsequently facilitates the 

nucleokinesis of the neurons away from the repellent cue. Conversely, the presence of 

chemoattractants (e.g. Nrg1) influences the initial orientation of the newly extended 

branches towards the chemoattractant gradients and helps to selectively stabilize the leading 

process branch that is in closest proximity to the source of the attractant, and thus enables 

efficient directional change20.

Although little is known about the molecular mechanisms that directly transfer extracellular 

guidance cue information to the underlying cytoskeleton in motile interneurons, 

doublecortin (DCX), a microtubule associated protein known to stabilize mircrotubles, has 

been shown to play an important role in regulating growth cone dynamics and process 

stability in migrating interneurons89–91. In DCX-deficient interneurons, the leading 

processes exhibit increased growth cone formation and branching89–91. As a result, their 

ability to make directional changes in response to environmental cues is compromised and 

DCX-deficient interneurons migrate in a less organized manner from GE into the 

neocortex91. In addition, other cytoskeletal regulators such as microtubule associated protein 

Lissencephaly 1 (Lis1), Doublecortin-like kinases (DCLKs), their upstream regulators 

CDK5/p35, and transcription factors such as Dlx1/2, are also known to modulate the 

oriented extension of the leading process during interneuronal migration59, 88, 91–97.

Interneuron nucleokinesis, which follows leading process stabilization, also relies on rapid 

cytoskeletal rearrangements involving both microtubules and actin networks. Nuclear 

translocation requires centrosome-nucleus coupling by the microtubule perinuclear cage. 
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Consistently, in DCX mutant interneurons, the branching defects are coupled with 

nucleokinesis defects, the latter being characterized by shorter nuclear displacements and 

abnormal perisomal swelling dynamics91. The mechanism of nuclear translocation in 

interneurons is also heavily dependent upon myosin II-mediated actin contractability at the 

rear of the cell23. Notably, Nonmuscle myosin II inhibition efficiently blocked nuclear 

translocation in migrating interneurons23. Recent studies have also suggested that primary 

cilium, a microtubule-based sensory organelle, is essential for sensing and integrating 

networks of signaling pathways necessary for oriented interneuron migration98, 99. The 

membrane of primary cilium is enriched with signaling receptors that enable it to act as a 

sensor of shallow gradients during oriented interneuronal migration. The proximity and 

linkage of the primary cilium to the nucleus and centrosomes may facilitate its ability to 

efficiently convey determinant signals necessary for nucleokinesis. Coordination of 

branching dynamics and nucleokinesis by signals emanating from different domains of 

interneurons may thus help set the local migratory direction of interneurons.

Intracortical dispersion of interneurons

Upon traversing the neocortex in different streams, interneurons radially invade the CP once 

in their appropriate cortical areas100 (Figure 1). Chemoattractant activity mediated by 

signals such as chemokine CXCL12 normally confines interneurons within the migratory 

streams and may regulate their appropriate exit from the streams. CXCL12 is strongly 

expressed within MZ and SVZ, and at a lower level in SP78, 100–104. CXCL12 signaling 

restricts the migrating cortical interneurons into confined streams by suppressing the leading 

process branching and thereby maintaining their tangential migratory direction105, 106. The 

expression of both receptors CXCR4 and CXCR7 are required for interneurons to respond to 

CXCL12102–104. In CXCR4 or CXCR7 mutants, interneurons display frequent branching, 

defects in forming organized migratory streams through MZ and SVZ, and prematurely 

invade the developing CP100–103, 105, 107, 108. Thus, CXCL12 signaling not only confines 

interneurons into tangential migratory streams, but may also prevent them from invading 

into the developing CP prematurely.

Within the MZ stream, interneurons exhibit a particular migratory behavior called “random 

walk”, leading to constant, multidirectional changes25. This behavior of interneurons is 

believed to contribute to the tangential dispersion of interneurons to appropriate cortical 

areal positions. Layer I Cajal-Retzius cells and interneurons in the MZ stream both show 

similar multidirectional migration with their leading processes arranged in similar 

orientations25, 27, 28. CR cells occupy the entire surface of the cerebral cortex and arrive 

through tangential migration at earlier stages of corticogenesis109. Repetitive, random cell-

cell repulsive interaction mediated by Eph/ephrin signaling appears to be essential for the 

even dispersion and final distribution of CR cells in the cerebral cortex109. This contact 

repulsion process is also required to establish and stabilize the boundaries between different 

territories of subgroups of CRs that are born in discrete regions (cortical hem, pallial septum 

and ventral pallium)109–111. Further, contact between interneurons and radial glial endfeet is 

known to alter the migratory patterns of subtypes of interneurons26–28. It is tempting to 

speculate that similar contact repulsive interactions may exist between individual 

interneurons within MZ stream, between CR cells and interneurons, or between interneurons 
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and radial glial endfeet, and may thus contribute to the appropriate dispersion of 

interneurons within the cerebral cortex.

The final stages of intracortical dispersion of interneurons depend on a tangential to radial 

switch of the interneuronal migratory mode. To date, the mechanisms coordinating this 

switch remain largely unclear. A series of isochronic or heterochronic transplant 

experiments have demonstrated that interneurons of different birthdates remain within the 

tangential migration streams for similar amount of time (~ 48 hours)100. The temporally 

regulated loss of responsiveness to CXCL12 signaling seems to be critical for this process 

since the interneurons that radially invade the CP no longer respond to CXCL12 

signaling24, 102, 105. These observations led to the suggestion that interneurons and the 

cortical environment might undergo stage-dependent and synchronized maturation to 

coordinate tangential to radial switch and interneuronal entry into the developing CP.

Further, it is likely that radial glial scaffold is instructive in interneurons’ tangential to radial 

migration transition24, 26. The adhesion protein Connexin 43 (CX43) has been shown to be 

required for the interaction between interneurons and radial glia and deletion of CX43 

significantly retards the tangential to radial transition of interneurons112. In order to make 

the tangential to radial directional switch, interneurons rapidly extend new branches that are 

oriented orthogonally to their tangential migratory direction 20, 24, 26. Changes in the 

dynamics of interneuron branching appear to be critical for this transition. For instance, 

over-activation of PAK3, a member of the p21-activated serine/threonine kinases (PAKs) 

family, in Dlx1/2 mutant interneurons contributes to decreased branching, excessive leading 

process extension and the resultant defect in tangential to radial migration transition97. 

Consequently, Dlx1/2 mutant interneurons accumulate in the MZ and IZ in the neocortex97. 

Similarly, inhibition of RhoA/ROCK signaling also leads to leading process elongation, 

reduced branching, and impaired tangential to radial transition20. Recently, Sonic hedgehog 

signaling mediated by primary cilia was shown to coordinate nucleokinesis and leading 

process extension dynamics necessary for tangential to radial transition, further highlighting 

the importance of coordination of these two cellular events for intracortical migration of 

interneurons99.

Termination of migration

Once within the CP, interneurons are directed to their final laminar positions (Figure 1). 

Several lines of evidence suggest that projection neurons with distinct layer identities 

selectively affect the distribution of subtypes of interneurons that are destined to populate 

the same cortical layers. First, majority of MGE-derived interneurons settle down with their 

coetaneous projection neurons in the same laminar layer, in an inside-out manner (i.e., later 

born interneurons migrating past earlier born populations to occupy more superficial laminar 

layer)30, 33, 113. A notable exception is the CGE-derived cortical interneurons which tend to 

populate the superficial layers regardless of their birthdates114 (Text Box 3). Second, 

heterochronic transplantations of MGE cells have suggested that both early- and late-born 

interneuron progenitors are able to switch their laminar fates in their new cortical 

environment, suggesting that the exposure to cortical environmental cues, can influence 

interneuronal laminar fate33. Interneurons delay their invasion into the CP until their 
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pyramidal neuronal counterparts have acquired their laminar identities31, 100, 115. 

Consistently, mutants that exhibit premature invasion of interneruons into the CP also show 

disrupted final laminar and regional distribution of interneurons100. Third, interneurons 

distribute abnormally in the cortex of mutants with projection neuron positioning 

defects31, 92, 116–118. Finally, projection neurons with different layer identities differentially 

affect the laminar distribution of distinct interneuron subtypes31, 115, 116, 118. Clonally 

related interneurons, similar to projection neuron clones, do not randomly disperse but are 

frequently arranged into vertical or horizontal clusters in the neocortex35, 119. It is possible 

that coordinated interactions between identity matched, spatially organized clones of 

inhibitory interneurons and excitatory projection neurons may contribute to the appropriate 

placement of neurons necessary for a lineage-dependent organization of microcircuits in the 

neocortex.

In addition to signals from projection neurons, postnatal neuronal activity can also affect 

interneuron positioning120. Once at the final laminar localization, interneurons cease 

migration by altering their intracellular calcium transients in response to ambient GABA and 

glutamate signal64. KCC2, a potassium/chloride exchanger, is the deciding factor during this 

process. The upregulation of KCC2 in interneurons as they arrive at their laminar locations 

triggers a depolarization to hyperpolarizion switch, thereby altering their response to 

ambient GABA and glutamate from motogenic to stop signal64. In CGE-derived 

interneurons, induced overexpression of the potassium channel Kir2.1 between postnatal 

days 0–3 alters their excitability and results in an aberrant increase in the localization of 

CGE-derived Calretinin+ interneurons in deeper layers120. Further, participation of cortical 

interneurons in the emergence of synchronized glutamate-dependent cortical network 

oscillations during early postnatal stages may also influence the laminar positioning of 

interneurons65, 121–123. Together, these observations suggest that interneurons integrate 

information about their temporal and spatial origin, subtype identity, and extrinsic signals 

from projection neurons and CP environment to establish their final laminar fate.

Concluding remarks

Although significant advances have been made in delineating the various molecular 

mechanisms underlying interneuron migration, many questions about the decision-making 

aspects of this process remain open. The current approaches to the study interneuron 

migration use fixed tissue analysis of limited cortical regions, dissociated neurons in vitro, 

or focus on movement of tens of neurons in small areas of often undefined embryonic 

cortical regions. While these approaches have provided insights into the modalities and 

molecular control of neuronal migration, they do not help us understand how specific 

subtypes of interneurons navigate and achieve their laminar and areal positions at the right 

time in right numbers within the entirety of cerebral cortex. This parceling out of appropriate 

numbers and types of cortical interneurons to distinct cortical areas is fundamental to the 

emergence of functional specification and connectivity of cerebral cortex. New methods that 

can track the behavior of large cohorts of interneurons from the time of birth to the final 

placement in distinct cortical areas35, 124 will be necessary to gain comprehensive insights 

into the impact of interneuron migration in the emergence of neuronal connectome. 

Combining such approaches with examination of signaling dynamics in developing 
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interneurons will also facilitate answers to several other related outstanding issues. For 

example, do interneurons at different decision points along their migration route utilize 

different signaling networks to mediate their choices? What are the hierarchical relationships 

between the different signaling networks used to make different choices during the process 

of migration? STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 

analysis of proteins regulating interneuron migration indicates that the strength of 

interactions between genes in specific signaling pathways predominate over others94. But 

how these distinct signaling networks are recruited seamlessly to facilitate different stages of 

interneuron migration and epigenetic regulation of these mechanisms remain to be 

deciphered. Furthermore, how do interneurons sense and coordinate environmental guidance 

cues with intracellular signal transduction and cytoskeletal rearrangements necessary for 

oriental cellular movement? Signaling emanating from different cellular compartments (e.g., 

growth cone, cilium, cell soma etc.) may differentially affect the migratory behavior or 

decisions of interneurons. On a system wide basis, subtypes of interneurons appear to 

coordinate their communication with radial glial scaffold and projection neurons to achieve 

their final area and laminar fate. Elucidation of signaling network dynamics in developing 

interneurons will help us understand how these patterns of coordination are achieved. Lastly, 

developmental disruptions of interneurons and the resultant changes in excitatory/inhibitory 

balance of cortical circuits are thought to be an underlying cause of neurobehavioral 

disorders125. Thus it will be informative to examine (a) if susceptibility genes associated 

with interneuronal dysfunction in diseases such as schizophrenia, autism, and related 

neuropsychiatric disorders affect selective steps of interneuron migration? (b) the epigenetic 

deregulation of these interneuron related developmental pathways in neuropsychiatric 

disorders, and (c) how such perturbations affect the emergence of excitatory/inhibitory 

balance of cortical circuits? Answers to these questions will not only lead to a richer 

understanding of the process of interneuron migration, but will also help illuminate its 

relevance for normal cortical development and aberrant brain functions in 

neurodevelopmental disorders.
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Highlights

Process of migration regulates placement and differentiation of interneurons.

Interneuronal placement affects excitatory/inhibitory balance in cortex.

This review evaluates the decision making steps of cortical interneuron migration.
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Figure 1. Patterns of interneuron migration in the developing telencephalon
This schema shows rostral and caudal hemi-section through the mouse telencephalon at mid-

embryonic (E15) stage. The major decision-making steps (1-6) involved in the migration of 

cortical interneurons derived from the subpallium are illustrated. Interneurons derived from 

MGE (green), POa (purple), or CGE (orange) exit the proliferative zones and initiate their 

migration towards the developing neocortex and striatum. Cortical interneurons traverse 

around the developing striatum, transit across the cortico-subpallial boundary, and course 

tangentially into the cortex, whereas striatal interneurons ventrolaterally migrate into the 

developing striatum. Cortical interneurons transit the neocortex mainly through the MZ, SP, 

IZ/SVZ migratory streams. Once in the neocortex, tangentially migrating interneurons 

undergo multi-modal local migration as they reach and settle in specific areal and laminar 
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locations within the emerging CP, prior to forming functional synaptic contacts with 

appropriate projection neuron partners. Multiple decision-making steps are involved in this 

process. These include: (1) exit from the proliferative zone and initiation of migration in the 

subpallium, (2) selection of migratory route towards the dorsal cortex, (3) choice of 

migratory streams within the neocortex, (4) local orientation of migration within the cerebral 

wall, (5) identification of the final areal and laminar location, and (6) termination of 

migration at the appropriate cortical layer. Arrows indicate net directionality of movement. 

LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; POa, preoptic area; 

Str, striatum; MZ, marginal zone; CP, cortical plate; IZ, intermediate zone; SVZ, 

subventricular zone; VZ, ventricular zone.
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