
Article

Potential of fecal microbiota for early-stage
detection of colorectal cancer
Georg Zeller1,†, Julien Tap1,2,†, Anita Y Voigt1,3,4,5,†, Shinichi Sunagawa1, Jens Roat Kultima1, Paul I

Costea1, Aurélien Amiot2, Jürgen Böhm6,7, Francesco Brunetti8, Nina Habermann6,7, Rajna Hercog9,

Moritz Koch10,‡, Alain Luciani11, Daniel R Mende1, Martin A Schneider10, Petra Schrotz-King6,7,

Christophe Tournigand12, Jeanne Tran Van Nhieu13, Takuji Yamada14, Jürgen Zimmermann9, Vladimir

Benes9, Matthias Kloor3,4,5, Cornelia M Ulrich6,7,15, Magnus von Knebel Doeberitz3,4,5, Iradj Sobhani2,* &

Peer Bork1,5,16,**

Abstract

Several bacterial species have been implicated in the development
of colorectal carcinoma (CRC), but CRC-associated changes of fecal
microbiota and their potential for cancer screening remain to be
explored. Here, we used metagenomic sequencing of fecal samples
to identify taxonomic markers that distinguished CRC patients from
tumor-free controls in a study population of 156 participants. Accu-
racy of metagenomic CRC detection was similar to the standard fecal
occult blood test (FOBT) and when both approaches were combined,
sensitivity improved > 45% relative to the FOBT, while maintaining
its specificity. Accuracy of metagenomic CRC detection did not differ
significantly between early- and late-stage cancer and could be vali-
dated in independent patient and control populations (N = 335) from
different countries. CRC-associated changes in the fecal microbiome
at least partially reflected microbial community composition at the
tumor itself, indicating that observed gene pool differences may
reveal tumor-related host–microbe interactions. Indeed, we deduced
a metabolic shift from fiber degradation in controls to utilization of
host carbohydrates and amino acids in CRC patients, accompanied
by an increase of lipopolysaccharide metabolism.
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Introduction

Colorectal carcinoma (CRC) is among the three most common

cancers with more than 1.2 million new cases and about 600,000

deaths per year worldwide (Jemal et al, 2011). In most cases, initial

genomic alterations, for example, in the APC/Wnt signaling path-

way, cause hyperproliferation, which can lead to the formation of

adenomas, and finally invasive carcinomas upon accumulation of

further driver mutations (Cancer Genome Atlas Network, 2012;

Vogelstein et al, 2013). If CRC is diagnosed early, when it is still

localized (American Joint Committee on Cancer (AJCC) stages 0, I,

or II), the 5-year survival rate is > 80%, but decreases to < 10% for

late diagnosis of metastasized cancer (in AJCC stage IV) (O’Connell
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et al, 2004). Therefore, population-wide screening and prevention

programs are recommended in many countries. Fecal occult blood

testing (Hemoccult FOBT) is currently the standard noninvasive

screening test (Levin et al, 2008; Zavoral et al, 2009). However,

because FOBT has limited sensitivity and specificity for CRC and does

not reliably detect precancerous lesions (Allison et al, 1996; Faivre

et al, 2004), there is an urgent demand for more accurate screening

tests to identify patients who should undergo colonoscopy, which is

considered the most effective diagnostic method (Levin et al, 2008).

As the majority of CRC cases are thought to be of a sporadic

nature rather than due to inheritance (Lichtenstein et al, 2000),

environmental risk factors have been investigated for a long time,

but only recently have microbes colonizing the gut been considered

as potential cancer-promoting factors. While in gastric, hepatic, and

cervical cancers, a causal role is established for a single infectious

agent in each case, namely Helicobacter pylori, hepatitis B virus, and

human papillomaviruses, respectively (de Martel et al, 2012), in

CRC, a variety of bacterial species and tumor-promoting virulence

mechanisms have been investigated, mostly in cell lines and mouse

models. For example, Bacteroides fragilis strains producing genotox-

ins (BFTs) can induce inflammation, leading to DNA damage in host

cells (Wu et al, 2009; Goodwin et al, 2011); similarly, Escherichia

coli strains harboring a genomic virulence island (pks) can cause DNA

damage and chromosomal instability in the host (Cuevas-Ramos et al,

2010; Arthur et al, 2012), and very recently, Fusobacterium nucleatum

strains were reported to promote carcinogenesis upon invasion of host

cells (Kostic et al, 2013; Rubinstein et al, 2013). However, it remains

unclear how many CRC cases can be attributed to each of these

agents, how these exactly interact with the human host or the micro-

bial community in the gut, and whether altered microbial abundances

may provide a basis for an accurate CRC screening test.

Obtaining a comprehensive view of the microbial ecosystem in our

gut—the microbiome—has become possible with high-throughput

environmental sequencing techniques (Qin et al, 2010; Human

Microbiome Project Consortium, 2012), and a number of reports

have associated gut microbiota with diseases, such as obesity, type 2

diabetes, and atherosclerosis (e.g., Karlsson et al, 2013; Koeth

et al, 2013; Le Chatelier et al, 2013; Qin et al, 2012; Turnbaugh

et al, 2009). Several medium-scale studies recently characterized

the microbiota of colonic tumor biopsies compared to healthy

mucosa either by quantifying the 16S rRNA phylogenetic marker

gene or by metatranscriptomic sequencing (Marchesi et al, 2011;

Castellarin et al, 2012; Kostic et al, 2012; McCoy et al, 2013; Warren

et al, 2013; Flanagan et al, 2014; Tahara et al, 2014). Even though

these consistently documented an enrichment of members of the

Fusobacterium genus, the relevance of these or other microbial

agents for noninvasive CRC screening remains unclear.

Here, we systematically investigate the potential of fecal micro-

biota for noninvasive detection of colorectal cancer in several

patient populations from different countries.

Results

The gut microbiome of a French CRC study population

To explore associations between the gut microbiome and colorectal

carcinoma (CRC), we first analyzed fecal metagenomes from a popu-

lation of 156 participants recruited in France (study population F

in the following, see Table 1, Supplementary Table S1 and Supple-

mentary Dataset S1 for patient data), who underwent colonoscopy

to either diagnose colorectal neoplasia in the form of adenoma(s)

(polyps) or CRC, or confirm the absence of these. Carcinomas were

further classified according to established staging systems (AJCC

and TNM) (O’Connell et al, 2004). We first analyzed global commu-

nity properties: While CRC-associated dysbiosis did not result in

significant changes of microbial community diversity or richness

(Supplementary Fig S1D and F), the distribution of enterotypes, as a

descriptor of global community structure (Arumugam et al, 2011),

varied slightly, but significantly between patient groups (Supple-

mentary Fig S1A and B). We further observed significant differences

in the abundance of specific taxa (Kultima et al, 2012) (Supplemen-

tary Fig S2). The gram-negative phyla of Fusobacteria and, to a

lesser extent, Proteobacteria were significantly increased in CRC

patients, whereas Actinobacteria were decreased. Bacteroidetes and

Firmicutes were enriched and depleted, respectively, in CRC patients

(consequently, also the ratio between these two phyla (Turnbaugh

et al, 2006) differed significantly, see Supplementary Fig S1C).

When comparing patients with adenomas (of any size) to neopla-

sia-free controls and to CRC patients in terms of their microbiota

composition, we found them to be almost indistinguishable from

neoplasia-free participants (significant differences, except for the

Ruminococcus genus, could not be detected). Additionally, many of

the CRC-specific changes were seen in the comparison to both

neoplasia-free participants and adenoma patients (Supplementary

Fig S2). For subsequent analyses of the CRC-associated microbiota, we

therefore included patients with small adenomas (diameter < 10 mm)

in the control group, whereas large adenomas as clinically significant

precursors of CRC were excluded from these comparisons as has been

done in other CRC screening studies before (Imperiale et al, 2014).

A metagenomic classifier for CRC

To explore the suitability of gut microbiota for CRC detection, we

evaluated the predictive power of global measures of taxonomic

community composition. While these differed significantly between

CRC patients and controls (Supplementary Fig S1G–J), they would

not allow for accurate CRC detection, as quantified by an area under

the receiver operating characteristic (ROC) curve (AUC) of 0.73

(Supplementary Fig S1K). As individual species abundance differ-

ences were already more discriminative (AUCs up to 0.75; Supple-

mentary Fig S3), we hypothesized that a combination of marker

species would lead to improved detection accuracy. To this end, we

adopted a classification methodology based on penalized linear

models (see Materials and Methods) (Tibshirani, 1996). The consen-

sus signature, extracted from an ensemble of classifiers (see Materi-

als and Methods) that were trained on taxonomic abundance

profiles, consisted of 22 species (Fig 1A). On average, > 51% of the

total absolute weight of these classification models can be attributed

to the abundance differences of only the four most discriminative

species: two Fusobacterium species, Porphyromonas asaccharolytica

and Peptostreptococcus stomatis, all of which are enriched in CRC

(Fig 1A). Although it is not yet clear whether and which gut micro-

biota are causally involved in CRC, recent evidence suggests

Fusobacterium species (in particular F. nucleatum) to be prevalent

CRC-associated microbes (Castellarin et al, 2012; Kostic et al, 2012)
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and to accelerate tumorigenesis (Kostic et al, 2013; Rubinstein et al,

2013). Here, we further refine this association to the two subspecies

F. nucleatum vincentii and F. nucleatum animalis, both of which

are distinct enough from F. nucleatum subsp. nucleatum and from

each other to qualify as independent species (Supplementary Fig

S4A) (Mende et al, 2013). While Fusobacterium is a promising

candidate for a causal agent, only classification models with addi-

tional species resulted in precise CRC detection (Supplementary Figs

S1G–K, S3 and S4). When cross-validating the metagenomic classifi-

ers on study population F, an AUC of 0.84 was achieved (Fig 1B).

Whereas cases and controls in this study population were charac-

terized by a similar distribution of gender and body mass index (BMI),

CRC patients were significantly older on average (Supplementary

Table S1 and Supplementary Fig S5A–D). To investigate this potential

source of confounding, we trained a CRC classifier based on patient

characteristics (gender, age, and BMI) alone and found it to have a

cross-validation accuracy of 0.63, significantly less than the metage-

nomic classifier (Supplementary Fig S5E). Additionally, we tested

whether the metagenomic classifier exploits potential correlations of

microbial abundances with host age rather than with CRC, which

would result in spurious CRC predictions for older subjects. However,

the classifier showed an increase neither in false-positive rate nor in

sensitivity for older patients (Supplementary Fig S5F and G).

In our study population, the accuracy of the metagenomic classi-

fier was slightly better than that of the Hemoccult FOBT (Fig 1B);

this test, basically detecting traces of blood in feces, is routinely used

in mass screening for CRC (Allison et al, 1996; Faivre et al, 2004;

Zavoral et al, 2009) and was also applied to participants prior to

colonoscopy. The accuracy of another experimental screening assay

based on a different readout, namely the level of gene methylation of

the Wnt signaling pathway member, wif-1 (Lee et al, 2009; Mansour

& Sobhani, 2009), was also matched by the metagenomic test

(Fig 1B). As the features captured by FOBT and the metagenome

appeared to be partially independent (Fig 1A), we also evaluated a

combination test. This significantly improved accuracy to an AUC of

0.87, corresponding to a considerable relative gain in sensitivity (i.e.,

TPR) of > 45% over the FOBT alone (Fig 1B).

Validation of the CRC classifier using patients and controls from
different countries

The broad utility of gut microbial markers might be limited by

geographical or ethnical particularities or by technical variations in

experimental procedures (Sunagawa et al, 2013; de Vos & Nieuw-

dorp, 2013), as illustrated by distinct microbial associations with

type 2 diabetes in Chinese and Swedish studies (Qin et al, 2012;

Karlsson et al, 2013). We therefore sought to validate the metage-

nomic CRC classifier in an independent group of individuals from

different countries (see Materials and Methods). To assess whether

it maintains high specificity in a large control population, we

applied the classifier to five samples from healthy individuals living

in Germany and 292 published fecal metagenomes from Danish and

Spanish individuals who were diagnosed with neither CRC nor

inflammatory bowel disease (IBD) (Qin et al, 2010; Le Chatelier

et al, 2013) (study population H, see Table 1, Supplementary Table S1

and Supplementary Dataset S1). At a decision boundary of 0.275

(i.e., the value above which the classifier predicts CRC, Fig 1), the

resulting false-positive rate (i.e., 1 − specificity) varied slightly from

8.0 to 7.7% between cross-validation on study population F and

independent validation on study population H (Supplementary Fig

S6A). In these validation populations, the true error rate might be

slightly overestimated, because absence of CRC has not been

confirmed by colonoscopy. To also independently validate the sensi-

tivity of the classifier, we sequenced an additional 38 fecal metage-

nomes from individuals who were diagnosed with CRC by

colonoscopy in a German hospital (study population G, see Table 1,

Supplementary Table S1 and Supplementary Dataset S1). On this

dataset, the sensitivity (i.e., true-positive rate) of the metagenomic

CRC classifier was 52.6% compared to 58.5% observed in cross-

validation (Supplementary Fig S6B). On the combined validation set

of study populations F and H, the metagenomic CRC classifier

achieved an accuracy of 0.85 AUC, virtually the same value

obtained in cross-validation of population F (Fig 1B and C). Taken

together, these results indicate that, despite differences between

study populations in nationality and demographics, metagenomic

CRC detection is possible with high accuracy, broadly applicable

and robust to technical variation.

In order to assess the potential improvement of classification

accuracy with a larger study population, we included the 38 CRC

patients from study population G into study population F and

applied the same modeling approach to train and cross-validate a

more comprehensive classifier (see Materials and Methods). Its

cross-validation accuracy increased to 0.90 AUC (Supplementary Fig

S6C and G), which illustrates the future promise of large, multi-

center cohort studies investigating the role of the microbiota in this

disease.

Table 1. Summary of study population F, G, and H.

Study population Healthy

Adenoma Colorectal cancer

Country of residenceSmall (< 1 cm) Large (≥ 1 cm)

Early stagesc Late stagec

0 I II III IV

F (N = 156)a 61 27 15 0 15 7 10 21 France

G (N = 38)a 0 0 0 25 13 Germany

H (N = 297)b 297 0 0 0 0 Denmarkd, Spaine, Germany

aDisease status confirmed by colonoscopy.
bAbsence of neoplasias not assessed by colonoscopy.
cAJCC staging.
dPublished in Qin et al (2010) and Le Chatelier et al (2013).
ePublished in Qin et al (2010).
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Detection of CRC in different stages of tumor progression

As an instrument for reducing CRC mortality, patient screening is

most effective if cancer is diagnosed early, before the tumor has

metastasized to nearby lymph nodes or distant tissues (O’Connell

et al, 2004). To rule out that our metagenomic classifier is biased

toward late-stage carcinomas, for which changes in the colon envi-

ronment and its microbiota might be more pronounced than in

earlier stages of tumor development, we compared the sensitivity

for localized early-stage CRC (AJCC stages 0, I, and II) to that for

metastasized late-stage tumors (AJCC stages III and IV). We found

that early-stage CRC was detected with a sensitivity comparable to

metastasized tumors in both study populations F and G (Fig 1D),

confirming the potential of microbial markers for early detection of

CRC. Additionally, we explored how the abundances of the four

most discriminative CRC markers correlated with CRC progression

from early neoplastic growth to late-stage metastasizing tumors

(with samples stratified into four groups of neoplasia-free

participants, participants with adenomas, stage 0/I/II, and stage III/IV

CRC patients) (Fig 1D). All of these markers showed a significant

correlation (all Spearman P-values < 0.001), and a strong enrich-

ment in early-stage CRC patients compared to controls was evident

for both Fusobacterium species and Peptostreptococcus stomatis

(Fig 1E). Likewise, depletion of some microbes in cancer patients

(i.e., negatively associated with CRC), such as Eubacterium spp.

rectale and eligens and Streptococcus salivarius, was already notice-

able in early stages (Supplementary Fig S7).

CRC marker species in inflammatory bowel disease

The observed associations of microbiota with CRC alone do not

reveal how specific they are to this particular disease. To exclude

that there might be a more general dysbiosis common to multiple

disease conditions (e.g., due to inflammation), we applied our clas-

sifier to 25 recently published metagenomes from inflammatory

bowel disease (IBD) patients (21 ulcerative colitis (UC) and four
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Crohn’s disease (CD) patients, see Supplementary Dataset S1) (Qin

et al, 2010). Although small sample size precludes precise esti-

mates, our results indicate a moderate increase of false-positive

predictions to 24% in these patients, about three times the rate seen

in other controls (Fig 2A). This may reflect common alterations in

the microbiota in these diseases, which is consistent with IBD

patients being at greater risk of developing CRC (Bernstein et al,

2001). To explore this further, we monitored the four most discrimi-

native CRC marker species for significant changes in abundance in

IBD patients relative to controls (Fig 2B). Although higher preva-

lence of Fusobacterium species in IBD patients has been reported

(Strauss et al, 2011), we did not observe a significant increase for

the two CRC marker species from this genus in IBD patients, which

is consistent with a recent study that showed an increase of Fuso-

bacterium abundance in IBD patients’ mucosal tissue, but did not

detect an enrichment in stool (Gevers et al, 2014). For the most

discriminative marker species that our model positively associated

with CRC, we found significantly higher levels in CRC compared to

IBD patients, indicating that these markers are specific to CRC

(Fig 2B). Generally, stronger associations were observed with CRC

than with IBD for most marker species (Supplementary Fig S8),

suggesting that the metagenomic classifier is specific for CRC and is

only modestly influenced by changes in the microbiota that are due

to inflammation. However, to broadly compare changes in the gut

microbiome across gastrointestinal disorders, larger studies on IBD

and other inflammatory diseases will be needed.

Fecal CRC markers reflect enrichments in tumor biopsies

In order to make use of functional data extracted from the metage-

nome, fecal samples would need to reflect, at least partially, the

microbial composition in the tumor environment. However, profil-

ing colonic tissue samples with shotgun metagenomic sequencing is

still ineffective due to excessive contamination with human DNA

(Castellarin et al, 2012; Kostic et al, 2012). As an alternative,

targeted sequencing of prokaryotic 16S rRNA gene (16S) fragments

from tumor biopsies allows for taxonomic abundance estimation

and identification of enriched microbes compared to nearby intact

mucosa. For this, we newly sequenced 48 tumor–normal tissue pairs

(13 from patients that were also part of study population G) and

reanalyzed 79 such deeply sequenced pairs from a published study

with US American, Vietnamese, and Spanish patients (Kostic et al,

2012) (see Supplementary Dataset S2 and Materials and Methods).

To be able to distinguish relevant differences between the microbial

communities at the tumor site and in stool from technical disparities

due to different sample processing methods, we generated a third

dataset of 116 fecal samples (part of study population F, see Supple-

mentary Dataset S2) that were subjected to 16S amplicon sequenc-

ing. To profile the taxonomic composition of 16S samples, we

constructed operational taxonomic units (OTUs, 98% sequence

identity) from comprehensive databases of published 16S sequences

(see Materials and Methods) and mapped 16S reads against these.

To facilitate comparisons across datasets, OTUs were further

matched to the marker species from the fecal metagenomic signa-

ture of study population F (using a best-hit approach based on the

respective 16S fragments, see Materials and Methods). When

comparing relative abundances between datasets (Fig 3), both fecal

CRC marker species from the Fusobacterium genus showed a consis-

tent enrichment at the tumor site, as was expected from previous

studies (Castellarin et al, 2012; Kostic et al, 2012; Warren et al,

2013). Higher detection rates were observed in the tumor microenvi-

ronment compared to feces (Fig 3), suggesting a dilution effect that

◀ Figure 1. Signature of CRC-associated gut microbial species.

A Relative abundances of 22 gut microbial species, collectively associated with CRC, are displayed as heatmap in the left panel as fold change over the median relative
abundance observed in controls (indicated to the right); the control group included neoplasia-free and small adenoma patients. The mean contribution of each
marker species to the classification is shown to the right (bars correspond to log-odds ratio in logistic regression; numbers indicate percentage of absolute total
weight, see Materials and Methods). Different cancer stages are color-coded below the heatmap (see Table 1, Supplementary Table S1 and Supplementary Dataset S1
for patient data). Below, the classification score of the microbial signature (from cross-validation) is shown as gray scale (see key) with the decision boundary and
resulting false positives and true positives indicated in red (using colonoscopy results as a ground truth). Displayed alongside are the results of the standard
Hemoccult FOBT routinely applied for CRC screening and an experimental CRC screening test based on methylation of the wif-1 gene, a Wnt pathway member
(Lee et al, 2009; Mansour & Sobhani, 2009) (see main text for details).

B Test accuracy of the metagenomic classifier is depicted as ROC curve summarizing mean test predictions made in ten times resampled tenfold cross-validation on
study population F (N = 141, 95% confidence intervals of true-positive rate are shaded, see Materials and Methods and Table 1). Additionally, the accuracy of the
wif-1 methylation test (Lee et al, 2009; Mansour & Sobhani, 2009) as well as of the FOBT is shown (as assessed for the same patients). A combination test, in which
the FOBT results and microbial abundance profiles were jointly used as predictors, resulted in significantly enhanced accuracy over both the metagenomic classifier
and the FOBT alone, compared to which the relative gain in sensitivity is > 45% at the same specificity (*denotes one-sided bootstrapping P-values < 0.05 of TPR
improvement over FOBT and of difference in the whole ROC curve to the metagenomic test, respectively, see Materials and Methods). All screening tests are
evaluated relative to colonoscopy findings (see key and main text for details; see also Supplementary Figs S4, S5 and S6 for additional details on the classifier, and
Table 1, Supplementary Table S1 and Supplementary Dataset S1 for patient data).

C When applied to the larger study populations G and H (335 metagenomes from several countries including 38 from German CRC patients) for external validation, the
metagenomic classifier achieved very similar accuracy as in cross-validation, as measured by the area under the ROC curve (AUC) of mean test prediction scores (ROC
curve and confidence intervals as in (A); see also Supplementary Figs S5 and S6 and Table 1, Supplementary Table S1 and Supplementary Dataset S1).

D Sensitivity (TPR) of the metagenomic classifier for carcinomas in early stages (AJCC stages 0, I, and II) was similar as for late-stage, metastasizing CRC (AJCC stages III
and IV) in both study populations F and G highlighting its potential utility for early detection (see also Table 1, Supplementary Table S1 and Supplementary
Dataset S1).

E Although the classifier associated species with a binary grouping into cancer and non-cancer patients, several of them exhibited gradual abundance changes over the
progression from neoplasia-free participants over adenoma to early- and late-stage cancer patients (see key below A); displayed are the 4 most discriminative CRC
marker species, each of which shows a Spearman correlation (rho) with cancer progression (grouped as in A) that is stronger than 0.2 with P-values < 0.001.
Significant changes in early-stage CRC patients compared to neoplasia-free controls are marked (*P < 0.05, **P < 1E-5, Wilcoxon test). Vertical black lines indicate
median relative abundance with gray boxes denoting the inter-quartile range; gray whiskers extend to the 5th and 95th percentile (see also Supplementary Fig S7).

Source data are available online for this figure.
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can, however, be overcome by deep sequencing of fecal material.

Despite this, most of the abundance differences in feces between

CRC patients and tumor-free controls were at least as significant as

between tumor and normal tissue in the datasets compared here.

We further observed increased abundance of the third CRC marker

species, Peptostreptococcus stomatis, in CRC consistent with biop-

sies, but this trend was only significant in the published dataset

(Kostic et al, 2012). Where comparability could be established

across sequencing technologies, most metagenomic marker species

with significantly decreased abundance in CRC patients from study

population F also showed similar abundance changes in normal

tissue compared to tumor, as it was the case for Eubacterium spp.

and Streptococcus salivarius (Fig 3 and Supplementary Fig S9A).

These results indicate that similar trends for the relative abundances

of marker species between fecal and biopsy samples from CRC

patients are detectable despite the apparent differences in patient

nationality, sample origin, experimental techniques, and analysis

methodology. We furthermore verified that the similarity between

tumor-associated microbiota and enrichments in fecal samples

from CRC patients is not confined to the marker species only, but

also manifests as a dominant trend in principal component analy-

sis (PCA) (Supplementary Fig S9B). All this suggests that fecal

readouts may also allow for inferences of the metabolic and

functional potential of the colonic microbiome in the tumor

environment.

Functional changes in the CRC-associated fecal microbiome

To characterize microbial gene functions and how these differ

between CRC patients and tumor-free participants, we quantified

the relative abundances of prokaryotic KEGG (Kyoto Encyclopedia

of Genes and Genomes) modules (Kanehisa et al, 2008) in each

metagenome of study population F (see Materials and Methods). To

investigate carbohydrate utilization preferences of the microbiota

(Sonnenburg et al, 2005; Koropatkin et al, 2012; El Kaoutari et al,

2013), we additionally used prokaryotic families of carbohydrate-

active enzymes from the CAZy database (Cantarel et al, 2009) to

annotate metagenomes (see Materials and Methods). As a result, we

found 24 KEGG modules and 20 CAZy families to significantly differ

in abundance in CRC patients (Fig 4).

Analysis of the functions that significantly differed between

healthy participants and cancer patients revealed a global metabolic

shift from predominant utilization of dietary fiber in the tumor-free

colon to more host-derived energy sources in CRC (Fig 4B). In

healthy gut metagenomes, exclusively some fiber-degrading

enzymes and fiber-binding domains were enriched, whereas in CRC

metagenomes, the microbiota appeared to exploit growth substrates

derived from host cells to a much larger extent (fivefold enrichment

of host glycans in CRC, P = 0.01, Fisher test, Fig 4B). Thus, we

hypothesize that an increased degradation of host glycans might be

related to the etiology of CRC. However, because dietary data are

not available for our study populations, we cannot rule out that

differences in eating behavior between CRC patients and controls

might contribute to the observed trends, as the gut metagenome can

be affected by diet (e.g. Claesson et al, 2012; David et al, 2014; Le

Chatelier et al, 2013; Turnbaugh et al, 2009). Host cell wall carbo-

hydrates, such as mucins, whose utilization is enriched in the CRC

metagenomes of study population F, have been established as an

important energy source for commensal microbiota of the healthy

gut (Sonnenburg et al, 2005; Koropatkin et al, 2012; Bergstrom &

Xia, 2013). However, compromised integrity of the inner mucus

layer that functions to shield the epithelium from luminal bacteria

might accelerate the progression of CRC and inflammatory bowel

disease: In animal models, mucin gene defects can lead to intestinal

cancers or microbiota-dependent acute colitis (Velcich et al, 2002;

Fu et al, 2011; Bergstrom & Xia, 2013). In IBD patients, increased

mucolytic activity has been reported for mucus-associated bacteria

(Png et al, 2010). It is therefore conceivable that degrading the

mucus barrier might be a strategy that is adopted by adhesive and/

or invasive pathogens such as Fusobacterium spp. to reach the

epithelial cells (Dharmani et al, 2011; McGuckin et al, 2011;

Rubinstein et al, 2013).
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Figure 2. Comparison of the CRC microbial signature to IBD
microbiomes.

A Ranked predictions of the metagenomic classifier (mean test prediction for
study populations F, G and H) are plotted for each individual (labels on top
indicate grouping) with the percentage of positive CRC predictions
annotated in red. Proportions of true negatives (TN), false positives (FP),
false negatives (FN), and true positives (TP) are shown at the bottom for a
decision boundary of 0.275 (see Fig 1). Application of the CRC classifier to
metagenomes from ulcerative colitis (UC) and Crohn’s disease (CD) patients
indicates a threefold increased false-positive rate for inflammatory bowel
disease (IBD) patients, suggesting some similarities between CRC and IBD.

B Relative abundance distributions of the four most discriminative markers
for CRC classification (see Fig 1A) are plotted for each patient subgroup,
including UC and CD (see key). All markers showed significantly stronger
association with (enrichment in) CRC than with IBD (Wilcoxon test, UC and
CD tested together; see also Supplementary Fig S8). Boxplots are as defined
in Fig 1E.
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Some host cell-derived metabolites are more abundant in the

tumor environment, for instance amino acids, of which elevated

levels have been measured in CRC patients by metabolomics (Weir

et al, 2013). Our data showed an increased capacity of the CRC-

associated microbiota for uptake and metabolism of some amino

acids via the putrefaction pathway (Fig 4A). The degradation

products from this pathway include polyamines (like putrescine),

which at increased intracellular levels promote tumor development

(Gerner & Meyskens, 2004). It was recently shown that enterotoxigenic

Bacteroides fragilis can exploit this by stimulating the endogenous

polyamine catabolism in colonic epithelial cells (Goodwin et al,

2011). Although our functional analysis cannot reveal whether the
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Figure 3. Consistency of CRC marker species abundances in fecal metagenomes and 16S rRNA profiles of tumor biopsies.
Horizontal bars indicate changes in median relative abundance (rel. abundance) of the CRC marker species (as in Fig 1A) that significantly differed between CRC
patients and tumor-free controls (excluding large adenomas; all nominal P-values < 0.005, Wilcoxon test, see also Supplementary Fig S9). These are compared to 16S OTU
abundances from a subset of fecal samples from study population F as well as to two groups of patients in which microbial communities on tumor biopsies and
healthy colonicmucosawere profiled and compared (of the 48 patients in study population G*, 13 are part of study population G, see also Kostic et al (2012)). Boxes denote the
interval between the 10th and 90th percentile of relative abundance. Metagenomic marker species were matched to 16S OTUs using a best-hit approach for the amplified
16S rRNA gene regions (NA, not matched, see Methods), both Fusobacterium species were matched to the same 16S OTUs. Significance was assessed by unpaired and paired
Wilcoxon tests for fecal and biopsy datasets, respectively (*nominal P-value < 0.05, **P-value < 0.005, ***P-value < 0.0005). Note that for the majority
of the species shown, the significance for distinguishing CRC patients from controls is higher (lower P-value) in metagenomic than 16S readouts. Vertical bars display the prevalence
(prev.) of CRC marker species per patient/sample group (percentage of individuals in which these species/OTUs were detected with a relative abundance exceeding 1E-5).
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observed enrichment of putrefaction in the CRC microbiome is a

consequence of tumor metabolism or whether it contributes causally

to tumor progression, it provides additional evidence for the ‘oral

microbiome hypothesis’ (Warren et al, 2013): Previously, it was

noted that several CRC-associated bacteria, for example, Fusobacte-

rium spp., were first described as oral pathogens, and it has been

hypothesized that their invasion of the gut microbiome might cause

or contribute to tumorigenesis (Warren et al, 2013). In line with

this, Peptostreptococcus stomatis (Downes & Wade, 2006) and

Porphyromonas asaccharolytica, which we found to be associated

with CRC, were also described as oral pathogens before (Park et al,

2013). Similarly, putrescine/spermidine metabolism has been

described as a core trait of the oral microbiota (Abubucker et al,

2012; Shafquat et al, 2014).

Concomitant with the metabolic shift in the CRC microbiome, we

observed an expanded repertoire of pro-inflammatory and patho-

genicity processes, most notably an increased potential for lipopoly-

saccharide (LPS) metabolism (Fig 4), which is consistent with a

CRC-associated expansion of gram-negative bacteria that bear LPS

antigens on their outer membranes. Through binding to Toll-like

receptor 4 (TLR4) in epithelial cells, LPS triggers an inflammatory

signaling cascade, which in turn could promote inflammation-

induced carcinogenesis (Cario et al, 2000; Tang et al, 2010) and

even metastasis, as has been demonstrated in mice (Hsu et al,

2011). An enrichment of hemolysin transport, RTX toxin transport,

and type II secretion systems in CRC metagenomes hints at an

increase of pathogenicity processes encoded in the genomes of

gram-negative bacteria. To examine virulence factors and secreted

toxins whose potential roles in the etiology of CRC were discussed

before (Boleij & Tjalsma, 2012), we profiled a manually curated list

of 15 toxin families and virulence factors in our metagenomic data.

However, most of these (including BFT and the pks island) were

either not detectable in fecal metagenomes or not enriched in CRC

patients, except for Fusobacterium adhesin (fadA), which was

recently shown to be required for its invasiveness and tumorigenesis

(Supplementary Table S2; Rubinstein et al, 2013; Strauss et al,

2011).

Analyzed here for the first time, the complex functional altera-

tions in the microbiome of CRC patients appear to occur gradu-

ally during CRC progression from precancerous stages to

metastasized carcinomas (Fig 4). To directly assess this correla-

tion, we applied PCA to significantly altered KEGG modules and

CAZy families (as shown in Fig 4, using the same grouping of

patients by CRC stage as above, see Materials and Methods).

Indeed, the first principal component capturing the dominant

source of functional variation between CRC patients and controls

(PC1, explaining 43% of total variance) strongly correlated with

neoplasia progression (Spearman’s rho > 0.45, P < 1E-8, Fig 5),

indicating that some functional changes in the microbiota are

already detectable in early stages of neoplastic growth.

To explore whether also functional metagenomic profiles

would be useful for CRC detection, we applied the above-

described classification framework to KEGG module and CAZy

family abundance data. Although the resulting models were less

accurate (both AUCs 0.77) than the one based on marker species

(Fig 1) and comparable to models utilizing taxonomic

abundances summarized at higher ranks (Supplementary Fig

S6D), a model based on both functional and taxonomic features

yielded an improvement in accuracy over the best taxonomic

model (AUC of 0.87 compared to 0.84; Supplementary Fig

S6E and G).
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Figure 4. Functional changes derived from the CRC-associated
metagenome.

A Significant changes in relative abundance of genes summarized by KEGG
module annotations between cancer and non-cancer metagenomes are
shown for cases with a > 1.33-fold change and an FDR-adjusted
P-value < 0.01 (see legend and Materials and Methods). General trends in
functional potential, such as enrichment of lipopolysaccharide (LPS)
metabolism, and putrefaction in the CRC microbiome are summarized to
the right of the heatmap.

B Significant relative abundance changes of genes summarized by CAZy
family annotation with a > 1.33-fold change and an FDR-adjusted
P-value < 0.01 (see Materials and Methods). A metabolic switch to
degradation of host carbohydrates, for example, mucins, in CRC
metagenomes is annotated to the right. Moreover, a CRC-associated
increase in metabolism of potentially pro-inflammatory bacterial cell wall
components, such as lipopolysaccharide (LPS), is evident. Together with an
increase of nitrate reduction in CRC metagenomes (A), this is consistent
with a bloom of Proteobacteria (see also Supplementary Figs S2 and S3).
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Discussion

We have shown here that a noninvasive fecal readout allows for

accurate detection of CRC in a preclinical setting based on a multi-

species predictive model derived from metagenomic data. That both

gene and species markers indicate microbiota changes already

during early stages of neoplastic growth (Figs 1E, 4 and 5), suggests

that identification of reliable microbial markers for advanced adeno-

mas as CRC precursors may be possible. Thus, future studies,

ideally in large-scale comparisons to other recently established CRC

screening tools (e.g., immunochemical FOBT and (epi-)genetic tests

(Allison et al, 2007; Hol et al, 2010; Imperiale et al, 2014)), should

systematically explore this possibility because the detection of pre-

cancerous lesions with high sensitivity is still a big challenge.

Our results indicate functional and taxonomic associations with

CRC and conceptually establish the possibility of CRC detection from

fecal microbial markers. Their future application in mass screening

will depend on the development of cost-effective assays. Toward this

goal, we assessed whether 16S sequencing of fecal samples would be

a suitable alternative. A 16S-based classifier for CRC detection,

cross-validated on the subset of study population F for which we had

also generated 16S data (N = 116), achieved almost as good an

accuracy (AUC 0.82; Supplementary Fig S10) as the models based on

metagenomic community profiles (AUC 0.84–0.87; Supplementary

Fig S10). While our work was under review, another study (Zackular

et al, 2014) independently arrived at the conclusion that 16S

sequencing of fecal samples would allow for accurate CRC screening

based on classification models that showed some overlap with our

CRC markers at higher taxonomic ranks. But because these were

trained on a smaller dataset and were neither cross-validated nor

validated in external datasets, it is questionable whether the reported

accuracy would be maintainable in other study populations.

While our results of 16S-based CRC detection underline the

potential of microbiota for cancer screening, for future development

of economic and robust PCR-based assays, it remains to be seen

how the 16S gene compares to metagenomics-derived marker genes

(Mende et al, 2013). Moreover, additional metagenomic data will

enable more detailed investigation of cancer-associated differences

in gene function, gene content, and genomic variation (Schloissnig

et al, 2013), serving as a starting point for proposing testable mech-

anistic hypotheses about the roles of microbiota in cancer onset and

progression. This might not only advance our understanding of CRC

etiology, but also help to fully realize the potential of the gut

microbiome for screening, mortality reduction, and prevention

(Faivre et al, 2004; Assistance Publique - Hôpitaux de Paris, http://

clinicaltrials.gov/ct2/show/study/NCT01270360).

Materials and Methods

Data collection for study population F

Patient recruitment and characterization at the Creteil Henri Mondor

Hospital (France)

Participants of study population F were selected from a cohort of 648

patients recruited with informed consent between 2004 and 2006

from different endoscopy departments at Assistance Publique -

Hôpitaux de Paris (academic hospitals) where they had been referred

for colonoscopy (detailed in Sobhani et al, 2011). The study protocol

was approved by the Comité Consultatif de Protection des Personnes

dans la Recherche Biomédicale (CCPPRB Créteil-Henri Mondor) that

authorized the enrollment of patients in all associated centers and by

the respective institutional review board (EMBL Bioethics Internal

Advisory Board) and is in agreement with the WMA Declaration of

Helsinki and the Department of Health and Human Services Belmont

Report. This study population only included participants without

previous colon or rectal surgery, colorectal cancer, inflammatory or

infectious injuries of the intestine; patients with need for emergency

colonoscopy were also excluded. Participants performed a fecal

occult blood test (FOBT) at home and sent them via mail to the

laboratory (Le centre national de lecture des Hémoccult, Caisse

Primaire d’Assurance Maladie (CPAM), Paris) following the standard

process of FOBT mass screening in France. They also agreed to give

blood for DNA extraction and the wif-1 methylation assay (as

described in Mansour & Sobhani (2009)).

Fecal sample collection

Fresh stool samples were collected 2 weeks to 3 days before colo-

noscopy and in all cases prior to bowel cleanse (Sobhani et al,
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Figure 5. Functional changes correlate with CRC progression.
Principal component analysis of (log10-transformed) relative abundances of
CRC-associated functional categories (as in Fig 4) revealed cancer progression as
a dominant source of variation (each dot corresponds to a participant of study
population F, color-coded by patient subgroup). The first principal component
(PC1) accounting for 43% of the variation in CRC-associated functional changes
correlated with cancer progression (Spearman correlation of 0.45, P < 1E-8) and
stratified non-neoplastic, adenoma, and early- and late-stage CRC patients
(color-coded). Shown below are boxplots of each patient’s PC1 value grouped by
cancer progression. Significant differences between groups were established
using pairwise Wilcoxon tests (see bottom right legend). Boxes denote
interquartile ranges (IQR) with themedian as a black line andwhiskers extending
up to the most extreme points within 1.5-fold IQR (see Supplementary Fig S6E for
a CRC classification based on functional features).
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2011). Whole fresh stool was collected in sterile boxes, and 10 g

was frozen at �20°C within 4 h and deposited at the Henri Mondor

Hospital biobank CRB (Biological Resources Center). 156 samples

were then selected for DNA extraction and shotgun sequencing,

among them samples from 53 patients with CRC, 42 adenoma

patients, and 61 randomly chosen controls. Colonic neoplasia status

was determined by colonoscopy (Table 1, Supplementary Table S1

and Supplementary Dataset S1 for participant metadata). For a

subset of 129 patients, 16S rDNA could be amplified from the same

DNA extracts and subjected to 16S amplicon sequencing (see below

and Supplementary Dataset S2).

Data collection for study population G

Patient recruitment at the University Hospital Heidelberg (Germany)

38 colorectal cancer patients without a medical history of inflam-

matory disease were selected from the ColoCare Study (study

population G) (see Supplementary Table S1 and Supplementary

Dataset S1 for patient metadata). ColoCare is an international

prospective cohort study recruiting newly diagnosed colorectal

cancer patients prior to surgery in Germany and the USA. Recruit-

ment sites in Heidelberg are the Department of Surgery at the

University Hospital Heidelberg and the affiliated Hospital Salem.

Written informed consent was obtained from all study participants.

The study protocol was approved by the ethics committee of the

Medical Faculty at the University of Heidelberg and by the respec-

tive institutional review board (EMBL Bioethics Internal Advisory

Board) and is in agreement with the WMA Declaration of Helsinki

and the Department of Health and Human Services Belmont

Report.

Fecal sample collection

Fecal samples were collected between diagnosis of colorectal cancer

and surgery at least 10 days after bowel cleanse and colonoscopy.

Stool samples were stored in RNAlater Solution (Sigma-Aldrich) and

frozen at �80°C upon arrival in the laboratory.

Data collection for study population H

Fecal sample collection from healthy German participants

Informed consent was obtained from five healthy individuals living

in Germany through the my.microbes project (http://my.microbes.eu)

to obtain samples as additional controls. The study protocol was

approved by the respective institutional review board (EMBL

Bioethics Internal Advisory Board) and is in agreement with the

WMA Declaration of Helsinki and the Department of Health and

Human Services Belmont Report. Fecal samples were collected and

conserved under anaerobic conditions in a sealed bag, kept at

�20°C for short-term storage, and stored at �80°C upon arrival in

the laboratory (see Supplementary Table S1 and Supplementary

Dataset S1 for participant metadata).

Inclusion of published fecal metagenomes

Samples from Danish and Spanish individuals not diagnosed with

colorectal cancer were included in study population H as additional

controls (Qin et al, 2010; Le Chatelier et al, 2013). Because they did

not undergo colonoscopy, we cannot rule out the possibility that

some of them have adenomas or carcinomas, but this is expected to

only lead to a slight (conservative) overestimation of false-positive

CRC predictions in study population H.

Fecal metagenomic data from IBD patients

In addition to study population H, we investigated 25 published

fecal metagenomes of patients with an inflammatory bowel disease

(IBD) (Qin et al, 2010) (see Fig 2), but these were not used as

controls for CRC classification in study population H (see Supple-

mentary Dataset S1 for participant metadata).

Data collection for 16S rRNA gene sequencing from colonic tissue

Patient recruitment at the University Hospital Heidelberg (Germany)

Colonic tissue was collected from 48 patients undergoing colorectal

cancer surgery at the Department of Surgery, University Hospital

Heidelberg after obtaining informed consent. Written consent proce-

dure and the study protocol were approved by the ethics committee

of the Medical Faculty at the University of Heidelberg (see Supple-

mentary Dataset S2 for participant metadata).

Tissue samples for 16S rRNA gene sequencing

Matched tissue samples (tumor and nearby morphologically healthy

mucosa) were collected from these 48 patients within ~30 min after

surgical resection, immediately snap-frozen, and stored at �80°C

until DNA extraction and 16S rRNA gene sequencing. Of the 48

patients (study population G*), 13 patients also participated in the

ColoCare study (study population G) and we not only obtained

tissue samples, but also fecal samples in RNALater (Supplementary

Dataset S2).

DNA extraction from stool and tissue samples

Genomic DNA was extracted from frozen or RNAlater-

preserved fecal samples as previously described (Furet et al,

2009) using the GNOME DNA Isolation Kit (MP Biomedicals)

with the following minor modifications: cell lysis/denaturation

was performed (30 min, 55°C) before protease digestion was

carried out overnight (55°C), and RNAse digestion (50 ll,
30 min, 55°C) was performed after mechanical lysis. Tissue

samples were thawed carefully, cleaned from remaining feces

with sterile Dulbecco’s PBS (PAA Laboratories) if necessary,

and the blades were cleaned with Incidin Plus (Ecolab)

between samples. DNA was extracted from the tissue surfaces

using the protocol above. After final precipitation, the DNA

was resuspended in TE buffer and stored at �20°C for further

analysis.

Sequencing and quality control

Library preparation for metagenomic sequencing

Library preparation was automated and adapted on a Biomek

FXp Dual Hybrid, with high-density layout adaptors, orbital

shaker, static peltier, shaking peltier (Beckman Coulter, Brea,

USA), and a robotic PCR cycler (Biometra, Göttingen, Germany).

Magnetic beads were separated on a 96-ring magnet. PCRs were

performed in full-skirted plates and sealed with arched auto-

sealing lids (Bio Rad, Hercules, USA). Library quality was

analyzed on a Fragment Analyzer (Advanced Analytics Technol-

ogies, Ames, USA). One-milliliter 96-well microtiter plates were
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used as cooling reservoirs for stock solutions containing the

enzymes. Bead processing was performed in Abgene 1.2-ml square

well u-bottomed plates (Thermo Scientific, Waltham, USA).

Sequencing libraries were generated with SPRIworks HT chemi-

cals (Beckman Coulter) according to the supplier’s recommendation

with the following modifications: 150 ng DNA starting amount,

adaptor dilution 1:25, kit chemical dilution 1:1 in process. Purifica-

tion steps until PCR were performed according to the protocol

(Fisher et al, 2011). Using a double size selection we enriched for

250 base fragments, subsequently beads were washed twice with

70% ethanol, and process mixing was performed on the orbital

shaker. All additions of reactants were done with span 8 head and

sample processing with the 96 tip head. Dead volume and pipetting

profile corrections were set with respect to the tip types and solu-

tions used.

Metagenomic sequencing

Whole-genome shotgun sequencing of fecal samples collected in

France and Germany was carried out on the Illumina HiSeq 2000/

2500 (Illumina, San Diego, USA) platform. All samples were paired-

end sequenced with 100-bp read length at the Genomics Core Facil-

ity, European Molecular Biology Laboratory, Heidelberg, to a

targeted sequencing depth of 5 Gbp (see Supplementary Dataset S1

for sequencing results).

16S rRNA gene sequencing

DNA from 48 tissue sample pairs (tumor and healthy mucosa)

and 129 fecal samples (which are a subset of study population F)

was amplified using primers targeting the V4 region of the

16S rRNA gene (F515 50-GTGCCAGCMGCCGCGGTAA-30, R806

50-GGACTACHVGGGTWTCTAAT-30) (Caporaso et al, 2011). PCR

was carried out according to the manufacturer’s instructions of

the Q5 high-fidelity polymerase (New England BioLabs, Ipswich,

USA) using bar-coded primers (NEXTflexTM 16S V4 Amplicon-

Seq Kit, Bioo Scientific, Austin, Texas, USA) at final concentra-

tions of 0.2 lM and an annealing temperature of 56°C for 35

cycles.

PCR products were cleaned up with Agencourt AMPure

XP-PCR Purification system (Beckman Coulter, Brea, USA),

quantified according to the NEXTflexTM 16S V4 Amplicon-Seq Kit

protocol, and multiplexed at equal concentration. Sequencing

was performed using a 250-bp paired-end sequencing protocol

on the Illumina MiSeq platform (Illumina, San Diego, USA) at

the Genomics Core Facility, European Molecular Biology Labora-

tory, Heidelberg.

Data analysis

Taxonomic profiling of fecal samples

Using MOCAT (option screen with alignment length cutoff 45 and

minimum 97% sequence identity), taxonomic relative abundance

profiles were generated by mapping screened high-quality reads

(see below for details) from each metagenome to a database consist-

ing of 10 universal single-copy marker genes extracted from 3,496

NCBI reference genomes (Mende et al, 2013; Sunagawa et al, 2013).

Quantification proceeded in two steps, by first estimating taxonomic

abundances from all sequenced DNA fragments (nucleotide counts;

each read contributing number of counts equal to its length) that

mapped uniquely, and in a second step, nucleotide counts from

reads mapping to multiple taxa with the same alignment score were

distributed among them proportionally to nucleotide counts origi-

nating from reads uniquely mapped to these taxa. Finally, base

counts were gene length-normalized (option profiling). Abundance

estimates at species level were made based on a recently proposed

consistent species-level clustering (Mende et al, 2013), while abun-

dance summarization at higher taxonomic levels was based on the

NCBI Taxonomy (Supplementary Figs S2 and S3).

Taxonomic profiling of tissue and fecal samples using 16S rRNA

gene sequences

Raw sequencing data were quality-controlled as described below for

the generation of the metagenomic gene catalog (minimum read

length = 45 bp; minimum base quality score = 20). Paired-end

reads were merged using the SeqPrep software (https://github.com/

jstjohn/SeqPrep) requiring perfect overlap between the high-quality

paired-end reads.

After excluding reads shorter than 200 nt or with more than five

ambiguous bases, we aligned them to the SILVA 16S reference data-

base of bacterial and archaeal 16S rRNA sequences. These align-

ments were cropped to only retain the region spanning V3 to V4

using mothur, version 1.30.2 (Schloss et al, 2009). With the same

screening and alignment routines, we reanalyzed 16S rRNA

sequencing reads from Kostic et al (2012) to facilitate comparisons

across datasets. For further analysis, we only retained sample pairs

with at least 1,000 reads aligned in the tumor as well as the normal

tissue sample (a requirement met by 79 sample pairs from Kostic

et al (2012)). The boundaries of this core alignment were adjusted

to accommodate both the pyrosequencing reads from (Kostic et al,

2012) and ours from the MiSeq platform, by first separately deter-

mining the region spanned by 90% of the reads from each sequenc-

ing platform and second by interval merging to cover both of these

regions.

For high-resolution taxonomic profiling, we built OTUs from

large collections of published 16S rRNA genes. We included 436,028

sequences from the SILVA database (version 115 (Pruesse et al,

2007)) and 5,224 extracted from the prokaryotic genome sequences

used for taxonomic profiling of metagenomic reads (see above).

These were aligned with the same protocol as the 16S reads and

cropped to the core alignment region using mothur. Subsequently,

we removed redundancy by dereplication (mothur’s unique.seqs)

and clustering at 98% sequence identity using UCLUST (version

6.0.307 with the option -maxrejects 1000 for more accurate match-

ing) (Edgar, 2010). As an initial quantification and ordering for the

heuristic UCLUST algorithm, we mapped 10,000 reads from each

sample against the reference sequences and sorted them according

to the number of mapped reads using USEARCH routines (98% ID,

best-hit).

After we had clustered reference sequences into 2,460 OTUs

(with a minimum size of 10), we mapped all 16S Illumina and

pyrosequencing reads against these taking a best-hit approach with

a minimum of 98% sequence identity between matches (using

USEARCH with default settings).

Generation of the metagenomic gene catalog

Raw paired-end Illumina FastQ files from metagenomic samples

were processed using MOCAT (version 1.2) (Kultima et al, 2012),
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by first removing low-quality reads (option read_trim_filter with

length cutoff 45 and quality cutoff 20). Retained high-quality (HQ)

reads were screened against a custom-made fasta file containing

Illumina adapters (option screen_fastafile with e-value 0.00001

using USEARCH (Edgar, 2010) version 5). Adapter-screened reads

were screened against the human genome version 19 (option screen

with alignment length cutoff 45 and minimum 90% sequence

identity). Screened HQ reads were assembled (option assembly

with SOAP (version 1.06) (Li et al, 2008) and minimum length 500)

and the assemblies revised (option assembly_revision with

minimum length 500). Genes were predicted on the revised scaftigs

(option gene_prediction using MetaGeneMark (Zhu et al, 2010)

version 2.8).

To obtain a comprehensive metagenomic gene catalog of the

human gut microbiome, the predicted genes from this study were

pooled with predicted genes from other published human metage-

nome studies (Qin et al, 2010, 2012; Human Microbiome Project

Consortium, 2012) and clustered at 95% sequence identity using

CD-HIT (Li & Godzik, 2006) (version 4.6.1) (parameters: -c 0.95, -M 0,

-G 0 -aS 0.9, -g 1, -r 1, -d 0). The representative genes of each

cluster were selected and extended up to 100 bp (‘padded region’)

at each end of the gene by using the sequence information from

the assembled scaftigs (Sunagawa et al, 2013).

Functional annotation of the metagenomic gene catalog

The metagenomic gene catalog was annotated by aligning the trans-

lated amino acid sequence of each gene to the KEGG (Kanehisa

et al, 2008) (version 62) ortholog database using BLAST (Altschul

et al, 1990) (version 2.2.24) (max. e-value 0.01) and then annotat-

ing the genes using SmashCommunity (Arumugam et al, 2010) (ver-

sion 1.6). CAZy (Cantarel et al, 2009) annotations were made using

the dbCAN pipeline (Yin et al, 2012) with the recommended default

settings; additional substrate information for CAZy families was

obtained from CAZypedia (http://www.cazypedia.org/index.php?

title=Carbohydrate-binding_modules&oldid=9411, assessed 28

October 2013) and from Cantarel et al (2012).

Functional profiling

Gene abundance profiles were calculated using MOCAT (Kultima

et al, 2012) by first mapping screened HQ reads from each metage-

nome to the metagenomic gene catalog (option screen with align-

ment length cutoff 45 and minimum 95% sequence identity). Each

gene’s abundance was estimated as gene length-normalized nucleo-

tide counts of all reads that matched the protein-coding region of

this gene. For each functional feature, its abundance in the metage-

nomic gene pool was estimated as the sum of the relative abun-

dances of all genes belonging to this family (Fig 4).

Relative abundance transformations and abundance filtering

For all subsequent analyses, read counts were transformed into rela-

tive abundances (by dividing through the total number of reads per

sample, including high-quality reads that could not be mapped to

reference databases or annotated).

For display purposes and fold change calculations, we applied a

logarithmic transformation to relative abundances using the func-

tion log10(x + x0), where x are the original relative abundances and

x0 a small constant (1E-6 for taxonomic and 1E-8 for functional

features).

As an unsupervised feature reduction technique (that is indepen-

dent of any participant metadata), we applied a low-abundance

filter, which discarded functional and taxonomic features whose

relative abundance did not exceed 0.0001 and 0.001, respectively, in

any sample (for combined taxonomic and functional features, we

used an abundance cutoff of 0.0001).

Analysis of diversity and community structure

Species abundances (using the species delineation from Mende et al

(2013)) were used to calculate Shannon diversity index and species

richness for each sample in study population F using the diversity

and specnumber functions, respectively, of the vegan R package

(http://cran.r-project.org/web/packages/vegan/index.html). Differ-

ences between tumor-free and CRC patients were assessed by the

Kruskal–Wallis test (Supplementary Fig S1D and E).

Gene richness (the number of genes from the metagenomic gene

catalog with nonzero abundance) was calculated for each sample

from study population F after rarefying to 3 million reads per

sample; differences were evaluated using the Kruskal–Wallis test

(Supplementary Fig S1F).

As an additional high-level descriptor of gut microbial commu-

nity composition, we analyzed the abundance ratio between the

phyla of Bacteroidetes and Firmicutes (Turnbaugh et al, 2006) with

respect to separation of the three groups of participants using the

Kruskal–Wallis test (Supplementary Fig S1C).

Enterotypes were determined on a reference set of the 292

healthy individuals from study population H (Qin et al, 2010; Le

Chatelier et al, 2013) using the original computational protocol and

PCoA visualization (Supplementary Fig S1A) (for details, see

Arumugam et al (2014, 2011)). We projected the 156 samples from

study population F into this PCoA space (Trosset & Priebe, 2006)

and assigned enterotypes by minimal JSD distance to the medoid of

each enterotype (i.e., to the nearest cluster center). Differences in

enterotype composition between CRC patients (all stages) and

tumor-free controls (some with adenomas) of study population F

were assessed using the Fisher test (Supplementary Fig S1B).

Additionally, we subjected study population F to a PCoA inde-

pendently of other datasets and investigated the separation of CRC

cases from controls (neoplasia-free participants and patients with

small adenomas) along principal coordinates; significance was

assessed using the Wilcoxon test (Supplementary Fig S1G–J).

To assess whether differences in such high-level descriptors of

microbial community structure are useful for CRC detection, we

built a logistic regression model with the ten first principal coordi-

nates (from Supplementary Fig S1G) and the Bacteroidetes to Firmi-

cutes ratio (Supplementary Fig S1C) as predictors. Its accuracy was

determined using tenfold cross-validation on study population F and

ROC analysis (Supplementary Fig S1K).

Confounder assessment

We assessed differences in patient metadata, such as age, gender,

and body mass index (BMI), as well as in sequencing depth between

CRC cases and tumor-free controls using the Wilcoxon test. While

patient age significantly differed between groups, the other variables

assessed are unlikely to confound our analyses (Supplementary Fig

S5A–D). To determine how predictive the age bias and other varia-

tions in patient characteristics are of CRC in our study populations,

we built a logistic regression model with patient gender, age, and
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BMI as predictors. Its accuracy was assessed in tenfold cross-

validation on study population F and in external validation on study

populations G and H and compared to the metagenomic model with

significance assessed using one-sided DeLong tests (see below and

Supplementary Fig S5E). See also below for robustness analysis of

the metagenomic classifier against age bias.

Statistical analysis of differentially abundant taxa and gene functions

To detect significant differences in relative abundances of metage-

nomic features, we applied the nonparametric Wilcoxon test (or the

Kruskal–Wallis test which is its generalization to > 2 groups) as it

makes only minimal assumptions about data distributions, which

are not well understood for metagenomic data.

We applied this test to compare taxonomic abundance profiles

(after abundance filtering, see above) between CRC patients (all

stages) adenoma patients and neoplasia-free participants. After false

discovery rate correction, features with an adjusted P-value < 0.1

were deemed significant (see Supplementary Fig S2).

We additionally compared taxonomic abundances between CRC

patients and a control group consisting of neoplasia-free participants

and patients with small adenomas using the same approach

(Supplementary Fig S3).

For functional analysis, we only included features with an

adjusted P-value < 0.01 and additionally applied a minimum abso-

lute fold change criterion (> 1.33) to focus on larger, likely more

biologically meaningful effects (Fig 4). Here, fold change was

defined as the difference between groupwise medians of log-

transformed relative abundances (Fig 4).

Statistical modeling and marker extraction

To distinguish CRC patients from tumor-free controls based on

the taxonomic composition of their fecal metagenomes by means

of a classifier that extracts the most discriminative features

(microbial markers) and to obtain an unbiased measure of its

accuracy, we developed a custom pipeline in R (http://www.

R-project.org, version 2.12.0). Here, we used the LASSO logistic

regression classifier (Tibshirani, 1996) implemented in LIBLINEAR

(Fan et al, 2008), because it generates a parsimonious classifica-

tion model, which selects only few features out of a potentially

very large set, and because model interpretation and marker

extraction is easy due to its linearity, an advantage over, for

example, random forests (c.f. Knights et al, 2011; Papa et al,

2012). Since the feature selection process is built into the LASSO

classifier, it is straightforward to obtain not only a parsimonious

model, but also a realistic estimate of its generalization error in

cross-validation (avoiding a common mistake of dubious

two-stage approaches, where supervised feature selection is done

before, and independent of, cross-validation, which can lead

to dramatically overoptimistic accuracy estimates (see e.g.,

Smialowski et al, 2010).

Our pipeline proceeds as follows:

1 Unsupervised feature abundance filtering to remove extremely

low abundant taxa (see above).

2 Feature transformation: We applied the above-described log-

transform and subsequently standardized features (by centering

to mean 0 and dividing by each features standard deviation to

which we added the 10th percentile of standard deviations across

all features).

3 Partitioning data for tenfold stratified cross-validation (we

resampled dataset partitions ten times to obtain more stable

accuracy estimates).

4 Fitting a LASSO model on the training data of each cross-valida-

tion fold: The LASSO hyperparameter was optimized for each

model in a nested fivefold cross-validation on the training

subset using the area under the precision–recall curve as model

selection criterion and also enforcing at least five nonzero

coefficients. To obtain high-precision models, we reweighted

examples by assigning the controls five times as much weight as

the cases.

5 Application of the trained LASSO models to obtain the corre-

sponding cross-validation test predictions (Fig 1A shows mean

predictions from the ten respective test subsets of each sample).

Due to the resampled cross-validation (and also in external vali-

dation), there are several test predictions for each test examples.

To get a single prediction score per example (e.g., as shown in

Fig 1A and D and Fig 2A), we averaged all test predictions (from

ten or 100 models in cross-validation or external validation,

respectively).

6 Model evaluation using ROC analysis: From ten times resam-

pled tenfold cross-validation, we obtained mean test prediction

scores, which we subjected to ROC analysis (see Fig 1B

and C).

7 Model interpretation and marker extraction: Features (bacterial

species) with potential as CRC biomarkers were extracted as

nonzero coefficients from all 100 LASSO models (trained in ten

times resampled tenfold cross-validation). Fig 1A displays all

features that have a nonzero coefficient in at least 50% of the

LASSO models in the order of their mean percentage of total

absolute coefficient weight across all models. Bar lengths in

Fig 1A directly correspond to mean log-odds ratios across LASSO

models.

This procedure was used to train and cross-validate the CRC clas-

sifier on study population F (Fig 1B) with patients grouped into CRC

cases (all stages) and tumor-free controls (including patients with

small, but not large adenomas) as label.

A second classifier was trained on the combined study popu-

lations F and G (Supplementary Fig S6C), resulting in a more

comprehensive and accurate model (see Supplementary Fig S5G

for markers present in both models). As a combination test with

the FOBT, we trained a third classifier (on study population F)

which did not only use microbial species abundance features

but also the FOBT results (standardized 0/1 values) as an addi-

tional predictor (see Fig 1B; Supplementary Fig S5G for accuracy

and feature overlap with the metagenomic classifier).

To assess the effect of taxonomic resolution on CRC detection

accuracy in study population F, we reran the described classification

pipeline for taxonomic abundance profiles summarized at the genus

and phylum level (Supplementary Fig S6D).

Similarly, the predictivity of functional metagenomic features

(relative abundances of KEGG modules and CAZy gene families for

study population F) was assessed using the same modeling pipeline

(Supplementary Fig S6E). Finally, we also built and cross-validated

such a model based on a combination of species, KEGG modules

and CAZy families as input features on study population F

(Supplementary Fig S6E and G).
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To explore the effect of sequencing method on the ability to

detect CRC, we also applied the classification pipeline to 16S OTU

abundance profiles from the subset of study population F for which

we had obtained fecal 16S sequencing data (41 CRC cases and 75

controls with small adenomas or without any neoplasia; Supple-

mentary Fig S10).

External model validation, model comparison and confounder analysis

Independent (holdout/external) validation consisted of two steps:

(1) application of the feature filtering and normalization using the

same parameters as for cross-validation data (i.e., discarding

features according to the cross-validation low-abundance filter and

applying the log-standardization with mean and standard deviation

values as estimated in cross-validation, see above) and (2) applica-

tion of the trained LASSO models to make predictions on the valida-

tion data.

As an independent validation of the metagenomic CRC classifier,

we applied the models trained on study population F to study popu-

lation G and H (fitted in cross-validation, see above). From their

mean test prediction scores, we determined the ROC curve (Fig 1C).

Additionally, we assessed its sensitivity and specificity separately on

study populations G and H, respectively (see Supplementary Fig

S6A and B).

Confidence intervals for ROC curves (Fig 1B and C) were calcu-

lated using the pROC R package (Robin et al, 2011). Statistical

significance of differences in ROC curves was also assessed using

the roc.test(. . ., method=‘delong’) from this package (Fig 1B,

Supplementary Figs S5E, S6D and E). The significance of differences

in TPR at the same FPR cutoff was determined using the bootstrap-

ping subroutine from the same function (Fig 1B).

To rule out that the metagenomic CRC classifier exploits patient

age (or BMI) as an indirect predictor of CRC in study population F

(in which CRC patients are on average older than controls, see

Supplementary Fig S5B), we assessed whether its prediction scores

were biased. In case the classifier was confounded by age, one

would expect higher prediction scores for samples from older partic-

ipants. However, we could neither observe an enrichment of old

participants among false-positive predictions compared to true nega-

tives, nor among true positives compared to false negatives in any

of the study populations F, G, and H (Supplementary Fig S5F). Note

that the latter two were not included in the classifier’s cross-valida-

tion set. Likewise, we ruled out potential confounding by BMI

(Supplementary Fig S5G).

Comparison between fecal metagenomes and 16S biopsy samples

To establish correspondence between species profiled in fecal

metagenomes and OTUs of the 16S rRNA genes from fecal and

tissue samples, we first collected genomic 16S rRNA genes for the

metagenomic CRC marker species. For each marker species, frag-

ments of the 16S genes corresponding to the 16S read alignments

were then extracted and compared to the 16S OTUs using

USEARCH (Edgar, 2010) to find the best-matching OTUs within

≥ 97% sequence identity (Note that this approach did not yield a

match for marker species for which we could not identify a

genomic 16S sequence, or whose 16S gene fragments were too

dissimilar from OTU centroids, i.e., more than 3% diverged). The

relative abundance and prevalence (defined here as the proportion

of samples in which the relative abundance of a species or OTU

exceeded 1E-5) of these OTUs in fecal, tumor, and normal tissue

samples was then compared to the relative abundance and

prevalence of the corresponding metagenomic fecal marker species

in CRC patients and tumor-free controls (Fig 3, Supplementary

Fig S9A).

To more globally assess similarities between microbiota at the

tumor relative to nearby normal tissue and fecal taxonomic profiles

of CRC patients relative to those of tumor-free controls, we

compared microbial composition at the genus level. For 16S

samples, the genus identity of each OTU was inferred using the RDP

classifier (Wang et al, 2007), while for metagenomic stool samples,

a reference-based approach was taken (see above) (Kultima et al,

2012). Genera (after low-abundance filtering, see above) with signif-

icant differential abundance between tumor and normal tissue or

CRC patients and controls (FDR-corrected P < 0.1 and abundance

fold change > 5) were determined separately for each datasets (141

fecal metagenomics samples from study population F, 116 fecal 16S

samples, which are part of study population F, 48 16S biopsy

sample pairs from this study, and 79 16S biopsy sample pairs from

Kostic et al (2012); see Table 1, Supplementary Table S1 and

Supplementary Dataset S1) using unpaired and paired Wilcoxon

tests for fecal samples and tumor–normal tissue pairs, respectively.

Based on the log-transformed relative abundances of the union set

of differentially abundant genera from any of the datasets, we

conducted a joint PCA of all samples (Supplementary Fig S9B).

Although sample origin and technical differences between 16S and

shotgun metagenomic sequencing were detectable in this PCA, it

revealed a separation between tumor and control samples along the

first principal component that was common to all the datasets

analyzed (Supplementary Fig S9B).

Cancer progression analysis using PCA of CRC-associated

functional features

To reveal dominant trends in functional alterations between CRC

patients and tumor-free participants of study population F, we

carried out PCA using as input the relative abundances of signifi-

cantly changing functional features (Fig 5). Correlation between the

first principal component (PC1) and cancer progression encoded as

four ordered groups of participants with: (1) no neoplasia, (2)

adenoma(s), (3) CRC of AJCC stage 0 to II, and (4) CRC of stage III

and IV was established by Spearman’s rank correlation test and

significant differences of PC1 values between these groups by pair-

wise Wilcoxon tests (Fig 5).

Targeted analysis of cancer-related gene functions and toxins

To explore whether genes encoding known bacterial toxins might be

enriched in the metagenomes from CRC patients, we collected

protein sequences of toxins that have previously been implicated in

intestinal diseases, mainly colorectal cancer, from the literature

(Fasano, 2002; Dutilh et al, 2013). With these, we performed BLAST

(Altschul et al, 1990) searches against NCBI nr as well as an in-

house database of 3,496 high-quality bacterial reference genome

sequences and manually selected additional bona fide members for

each toxin gene family. Subsequently, we aligned the sequences

from each toxin family using Clustal Omega (Sievers et al, 2011)

and built HMM sequence profiles from these alignments using

HMMer 3.0 (Eddy, 2011). E-value cutoffs for HMM prediction were

optimized on protein sequences from the in-house database of
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reference genomes. Afterward we searched the metagenomic gene

catalog (see above) with the profile HMM for each toxin and quanti-

fied the abundance of matching sequences in participants of study

population F (using the above-described MOCAT routines).

Statistical significance was established using the Wilcoxon test

(Supplementary Table S2).

Data availability

The shotgun metagenomic sequencing data and the 16S rRNA

amplicon sequencing data from this study are available from the

European Nucleotide Archive (ENA) database (http://www.e-

bi.ac.uk/ena): accession number ERP005534. Taxonomic abun-

dance profiles derived from metagenomics data are provided as

Supplementary Dataset S3.

Published metagenomics datasets analyzed here are available

from ENA: accession number ERA000116 (Qin et al, 2010) and

ERP003612 (Le Chatelier et al, 2013). Patient data are provided in

Supplementary Datasets S1 and S2.

Supplementary information for this article is available online:

http://msb.embopress.org
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