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Abstract

A first step in primary disease prevention is identifying
common, modifiable risk factors that contribute to

a significant proportion of disease development. Infant
respiratory viral infection and childhood asthma are the

most common acute and chronic diseases of childhood,
respectively. Common clinical features and links between
these diseases have long been recognized, with early-life
respiratory syncytial virus (RSV) and rhinovirus (RV) lower
respiratory tract infections (LRTIs) being strongly associated
with increased asthma risk. However, there has long

been debate over the role of these respiratory viruses in
asthma inception. In this article, we systematically review

the evidence linking early-life RSV and RV LRTIs with asthma
inception and whether they could therefore be targets for primary
prevention efforts.

An important first step in primary
prevention is identification of risk factors
for disease and establishment of a causal
relationship. This review tackles a long-
standing debate on the role of these viruses
in asthma inception and presents the
currently available evidence to support or
refute the role of infant respiratory syncytial
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At a Glance Commentary

Scientific Knowledge on the Subject: Early-life infections
represent ubiquitous and potentially modifiable exposures
and hold the potential to be important targets for primary and/
or secondary asthma prevention. Evidence from many studies
that has never previously been compiled provides a body
of evidence that links these risk factors with asthma genesis.

What This Study Adds to the Field: This is the first objective
and systematic overview that compiles all available data on the role
of respiratory syncytial virus and rhinovirus in asthma inception,
identifying the remaining knowledge gaps and research opportunities.

virus (RSV) and rhinovirus (RV) infections
as potentially causal and modifiable risk
factors for asthma development. For RSV
and RV we review and discuss the following
evidence: (1) the link between host
determinants of infant RSV and RV
infection severity and asthma risk; (2) the
role of viral determinants of infant infection

severity and asthma risk; (3) the influence
of other environmental factors on
respiratory viral infection and asthma

risk; (4) the data supporting a causal
relationship between infant viral respiratory
infections and asthma risk, including
available mechanistic, observational, and
intervention studies; and (5) identification
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of knowledge gaps and recommendations
for future directions.

Host Genetic and Familial
Determinants Linking Infant
RSV and RV Infection
Severity and Asthma Risk

Whether infant viral lower respiratory
infections are merely the first manifestation
of asthma, whether there is a shared genetic
predisposition to asthma and severe
sequelae of RSV and RV, or whether these
viruses are causal in asthma development
has been long debated. Patients with asthma
have been shown to have an increased
susceptibility to certain viral and bacterial
infections (1-7). Patients with asthma have
an increased risk for colonization with
certain bacteria, increased risk for latent
infections, increased risk for community-
acquired pneumonia (7, 8), increased
morbidity with influenza infection (5),
increased likelihood of persistent rhinovirus
in the airway epithelium (9, 10), and
increased risk of invasive infections, such as
rhinoviremia and invasive pneumococcal
disease (11-13). This increased risk of
colonization, latent infection, infection
morbidity, and infection severity may result
from underlying immune differences that
increase overall susceptibility to infections
and asthma in the infant, thus making
infants more susceptible to acute infections
and to the chronic sequelae of early-life
infection.

Certain heritable factors have been
identified that support a link between these
early-life infections and asthma risk. Among
these are genetic polymorphisms that are
associated with RSV infections and asthma.
We and others have previously compiled the
genes that have been demonstrated to be
associated with RSV and asthma. Among
these are polymorphisms in a number
of immune response genes, suggesting
immune perturbations common to both
diseases: CX3CR1, TLR-4, SP-A, SP-D,
IL-10, CCR5, TLR-10, IL-4, IL-13, IL-10,
IL-8, IL-18, tumor necrosis factor, TLR-4,
MS4A2, VDR, IL-4Ra, RANTES, TGF-f1,
and ADAMS33 (14, 15). In addition, a
recent clinical multicenter cohort study
found that human ILIRL1 gene variants
and nasopharyngeal IL1RL1-a levels
were associated with severe RSV
bronchiolitis. The potential biological
role of IL1IRL1 in the pathogenesis of severe
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RSV bronchiolitis was supported by high
local concentrations of ILIRLI in children
with the most severe disease (16). An
important genetic association linking RV
with asthma has been identified between
host 17q21 locus variants and RV wheezing
illness (17). The association between the
17921 locus, in particular ORMDL3
and childhood-onset asthma, has been
replicated in several different cohorts (18).
Studies using familial asthma,
atopy, and allergic sensitization to assess
the hereditable link between infant
viral infection and asthma have also
demonstrated an increase in the relative
odds of RV acute respiratory infection (ARI)
and more severe infant RV ARI among
infants born to mothers with atopic asthma.
This suggests that a familial predisposition
to asthma increases the risk of severe
RV ARIs before the onset of asthma (19).
Previous studies have also shown that
children with atopic asthma have more
frequent and more severe RV illnesses
compared with patients with nonatopic
asthma (4, 6, 20).

Host Immune Response to
Infant RSV and RV Infection

The airway epithelium is an important
component of host defense because airway
epithelial cells (ECs) are the interface
between the environment and the host.
The airway epithelium is a major target of
respiratory viral infections. ECs have surface
receptors (Toll-like receptors and other
pattern recognition receptors) that can
recognize specific patterns on pathogen
molecules (pathogen-associated molecular
patterns). Once these ECs recognize
pathogen-associated molecular patterns,
they become activated, release cytokines and
antimicrobial peptides, increase expression
of chemokines, and activate the adaptive
immune system. In the short- and long
term, this leads to increased inflammation,
Th2 cell activation, and alternative
macrophage activation. These Th2 and
alternative macrophages can then regulate
EC production of growth factors, such as
TGF-B and VEGF, that lead to airway
remodeling (21). ECs also help to regulate
the acute response to viral infections
through production of cytokines such

as type I, II, and III IFNs. However, in
the setting of high virus replication or other
determinants of severe infection, IFN

produced by ECs may not be sufficient
to control the viral infection, and
severe sequelae of infection may result.
Infants, who have an immature immune
system, and individuals who are genetically
predisposed to asthma might also manifest
immune responses to RSV and RV,
predisposing them to more severe
infant infection and possibly the chronic
consequences of these infections. Increasing
evidence suggests that infant and adult
responses to infection are not identical,
with infants demonstrating a bias
away from type 1 and toward type 2
immunity (22). This bias could have
ramifications for the development of allergic
disease after early-life viral infection.
Patients with established asthma have
increased morbidity from certain infections
compared with persons without asthma
(12). There are known immune and organ-
specific differences characteristic of asthma
that predispose patients to more severe
infection. These include altered EC
response to viral infection, increased
mucus production, impaired mucociliary
clearance, impaired alveolar macrophage
function, altered IFN response, and
increased Th2 activation (23-29). A
deficiency of IFN production in patients
with asthma may also contribute to
impaired immunity (23, 24, 29) by
causing a shift from Thl responses to
Th2 responses (27). Infants who develop
asthma are born with lower lung function,
perhaps also predisposing them to more
severe infections (30-34).

Viral Strain Determinants of
Infant Infection Severity and
Asthma Risk

RSV is an enveloped, nonsegmented,
negative-sense, single-stranded RNA virus
of the Paramyxoviridae family. RSV is the
leading cause of severe lower respiratory
tract infection (LRTI) in the pediatric
population. Almost all children are infected
by their second or third year of life. RSV
infection is estimated to cause 33 million
LRTIs in children under 5 years of age
worldwide, among whom 3.4 million are
hospitalized and 66,000 to 199,000 die
annually (35). RSV has one serotype and
two antigenic subgroups, A and B (36).
Within the antigenic subgroups, RSV can
be further classified into clades according
to the nucleotide sequence of the variable
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attachment glycoprotein (G) genes.
Subgroup A strains can be divided into

at least seven clades (GA1-GA?7), and
subgroup B strains can be divided into

at least four clades (GB1-GB4) (37). The
emergence of a new RSV-B genotype with
a 60-nucleotide duplication in the G-protein
gene (G gene) has also been reported (38).
Strains of A and B subgroups cocirculate,
but one strain or a low number of strains
usually predominate within a single
outbreak, with replacement of dominant
genotypes in subsequent years (39).

Clinical studies have demonstrated an
association of RSV genotype with severity
of illness. Group A RSV infection results
in greater disease severity than group B
infection among hospitalized infants (40).
The GA3 clade has been associated with
greater severity of illness compared with
clades GA2 and GA4 (41). Differential
pathogenesis of RSV A subgroup strains
has been reported in an animal model
of infection of BALB/cJ mice with RSV
A2001/2-20 (2-20). A subgroup strain
resulted in greater disease severity, higher
lung IL-13 levels, and higher lung gob-5
levels and induced airway mucin
expression, supporting differential
pathogenicity dependent on strain in
these genetically identical mice (42).

RVs are positive-sense, single-stranded
RNA viruses belonging to the family
Picornaviridae and the genus Enterovirus.
RVs are classified into RV-A, -B, and -C
based on phylogenetic sequence criteria
(43). Previously, 99 serotypes were known,
and these were divided into two species:
RV-A (containing 74 serotypes) and RV-B
(containing 25 serotypes) (44). RV-C was
identified in 2009 (45). Currently, at least
50 different types of RV-C have been
identified (46). RV-C and RV-A were
shown to cause moderate to severe illness
in young children compared with milder
infection with RV-B (47, 48).

Influence of Other
Environmental Exposures
on Infant Viral Infection
Severity and Asthma Risk

Infant viral infections do not act in isolation
in asthma development. There are likely
multiple known and unknown risk

factors that, acting independently or

in conjunction, contribute to the overall
inception of asthma. Currently recognized

environmental factors associated with
severity of infant infection and asthma
risk include second-hand smoke exposure,
diet, and exposures that alter the infant
microbiome. These risk factors for asthma
may act through influencing the infant’s
developing immune system and/or altering
infant responses to viral infections. Second-
hand smoke exposure has been well
established to be associated with increased
risk of more severe respiratory morbidity
and with asthma and atopy among children
(49-52). Maternal smoking has also been
shown to alter the neonate’s innate immune
response with higher neonatal Th2 responses,
higher cord blood IgE levels, and decreased
innate TLR responses compared with infants
of nonsmokers (53-55). These alterations in
the infant’s immune response may predispose
these infants to more severe infection.

The maternal and infant diet also plays
an important role in the response to viral
infection and asthma. In the prenatal stage,
diet likely modifies asthma risk in part
through epigenetic modifications. Excessive
folate supplementation, for example, has
been demonstrated to increase DNA CG
methylation of the Runx3 gene, decreasing
its expression and increasing the risk of an
asthma-like phenotype in an animal model of
asthma (56, 57). In humans, infants have been
shown to have greater risk of bronchiolitis
if they were born to mothers who received
folic acid supplementation in the first
trimester compared with those who did not
receive folic acid supplementation (58).

Vitamin D is also involved in epigenetic
modifications and in the regulation of
several genes involved in inflammation and
immunity. Vitamin D deficiency may lead
to increased inflammation, increased risk
of viral infections, and the development
of asthma (59-63).

Selenium deficiency has been shown to
modify respiratory epithelium and to alter
the immune response to viral infection
in mice. Selenium-deficient mice have
decreased GPX1, decreased catalase activity,
increased mucus production, and increased
Muc5AC mRNA levels. These mice had
more severe influenza infection and
increased IL-6 production, decreased IP-10
production, and increased influenza-
induced apoptosis (64).

Acetaminophen and ibuprofen use
during infancy have also been implicated
in asthma inception (65). These drugs are
likely used during infant respiratory viral
illnesses. The current evidence suggests that

acetaminophen use in combination with
a genetic polymorphism in TLR4 may be
associated with asthma (66).

Not much is known about the infant
microbiome in relation to respiratory
infections. However, we do know that the
type or pattern of bacterial colonization
of the airways of infants is associated
with asthma risk, and it seems likely that
bacteria and viruses interact in maintaining
health and in influencing disease. Infants
colonized with Streptococcus pneumoniae,
Haemophilus influenzae, or Moraxella
catarrhalis in their airway are at an
increased risk for asthma (67). In
another recent study, M. catarrhalis and
S. pneumoniae detected during rhinovirus
infection were associated with increased
moderate asthma exacerbations and asthma
symptoms (68). A recent randomized
controlled trial of pre- and probiotic
supplements showed prevention of RV
infection in preterm infants (69). Thus,
modification of the infant microbiome
could be a mechanism through which RV
wheezing illnesses might be prevented, in
turn preventing later asthma. These studies
suggest that either the infant immune
system among children who will develop
asthma results in differential colonization
and/or that the airway microbiome
influences the immune system and
subsequently the type and severity of
viral infection an infant develops. These
environmental factors may therefore act
through independent mechanisms but
likely also interact with early-life RSV and
RV infections by altering the microbiome
and developing immune system and thus
may increase risk and severity of these
infant infections and later asthma.

In summary, a combination of
environmental factors acting at critical time
periods during gestation and early life likely
interact with early-life viral infections in
the development of childhood asthma.

Causal Evidence for
Early-Life RSV, RV
Infection, and Asthma Risk

Although early-life RSV and RV are
associated with asthma development,

this does not establish causality. We will
review the evidence that supports a causal
relationship between infection with infant
RSV and RV and asthma, asking the
following questions (Table 1): (I) Does
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Table 1. Summary of the Available Evidence in Support of, against, or Lacking a Link between Respiratory Syncytial Virus and
Rhinovirus Lower Respiratory Tract Infection with Asthma Inception

Association with asthma

Precedes asthma onset

Dose-response relationship
demonstrated

Contributes to a substantial
proportion of asthma

Defined risk groups

Host genetic and viral genetic
determinants of disease risk and
severity

Biologic mechanisms through which
these viruses may cause asthma

RSV LRTI

RV LRTI

Evidence*

+

Data Summary

Among infants with RSV LRTI, the
estimated risk of later developing
asthma ranges from OR 2.07 to
12.7 (95% ClI, 1.2-47.1) (13,
30-32, 48, 76, 79-82).

Longitudinal studies demonstrate
that RSV LRTI precedes atopic
sensitization and asthma onset
(76, 77).

RSV LRTI severity is associated in
a dose-dependent fashion with
both increasing asthma risk and
increasing asthma severity (34, 76).

A dose-response relationship with
no infection, mild infection, and
infection with wheezing has been
demonstrated for RSV (73).

A majority of infant LRTIs are
attributable to RSV infection (111,
112).

Infant RSV LRTIs therefore
contribute to a higher proportion
of asthma in the population.

Family history of asthma (12, 77)
Premature birth (77, 116, 118)
Male sex (77)

White race (77)

Seasonality of birth (118, 120)

Genetic polymorphisms commonly
in immune response genes (1, 9)

Host: Several genes are associated
with both RSV infection and
asthma, suggesting a genetic
susceptibility to both (1, 9, 10).

Virus: RSV strain differences have
been shown in mouse and
human studies to affect the
pathogenicity, which await
demonstration as to whether they
are associated with asthma risk
after infant infection (41, 43).

Pathology: RSV in animal models
causes acute and chronic lung
changes similar to asthma (80,
90, 98).

Physiology: RSV infection is
associated with prolonged airway
hyperresponsiveness (90, 99, 101).

Immune development: In animal
models RSV infection results in
long-term immunomodulatory
changes and impairs regulatory
T cells (88, 103, 107-110).

Epithelial barrier function: In a cell
culture model, RSV degrades
epithelial barrier function,
which could increase allergen
sensitization through the
airways (96).

Evidence*

+

+/-

0/+

Data Summary

Among infants with RV LRTI, the
estimated risk of later developing
asthma ranges from OR 1.99 to 10
(95% ClI, 1.04-23) (13, 30-32, 48,
76, 81).

RV is a frequent cause of asthma
exacerbations (119)

Longitudinal studies demonstrate that
RV LRTI precedes asthma onset
(76, 77).

Allergic sensitization precedes RV
wheezing in some infants (12, 78).
A dose-response relationship has not
yet been demonstrated with RV

LRTI.

A dose-response relationship with no
infection, mild infection, and
infection with wheezing has been
demonstrated for RV (73).

Although the risk of asthma
associated with RV LRTI is higher in
most studies compared with RSV
LRTI, RV LRTI may contribute to
a smaller proportion of asthma
because infant RV LRTI is less
common (32).

Family history of asthma/atopy (77)

Precedent allergen sensitization (77)

Genetic polymorphisms (17)

Host: 17921 variants are associated
with asthma in children with RV
wheezing illnesses in early life (17).

Virus: RV strain differences may have
an impact on pathogenicity (47, 48).

Pathology: RV in animal models
causes acute and chronic lung
changes similar to asthma (92, 100).

Physiology: RV infection is associated
with prolonged airway
hyperresponsiveness (92, 100).

Immune development: In animal
models RV infection results in
long-term immunomodulatory
changes (92, 93).

Epithelial barrier function: RV
degrades epithelial barrier function
in cell culture and infected mice,
which could lead to increase
allergen sensitization through the
airways (97).
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(Continued)
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Table 1. (Continued)

RV LRTI

RSV LRTI
Evidence* Data Summary
Currently available interventions + Avoidance

Acceptable interventions in pregnant +
women and children

Proof of concept studies available by +
challenging, preventing or
removing

Birth timing (118, 120)
RSV immunoprophylaxis (110-113)
Ribavirin (114)

Most would consider both birth
timing and the currently available
RSV immunoprophylaxis as
acceptable interventions
(110-113).

Randomized controlled trial of RSV
immunoprophylaxis among
premature infants demonstrated
reduced risk of wheezing at 1 yr
(110).

Observational studies of infants
treated with ribavirin or RSV
immunoprophylaxis demonstrated
significantly lower incidence of
asthma or recurrent wheezing
(111-114).

Evidence*

Data Summary

Avoidance

Different classes of RV inhibitors have
been evaluated in clinical trials
but are no longer being developed
(117, 121).

Pre- and probiotics may prevent
rhinovirus infection in premature
infants (69).

There is currently no available vaccine
or preventive treatment other than
avoidance.

No evidence, and there is currently no
available vaccine or preventive
treatment to test.

Definition of abbreviations: Cl = confidence interval; LRTI = lower respiratory tract infection; OR = odds ratio; RSV = respiratory syncytial virus;

RV = rhinovirus.

*+ = evidence in support of a causal relationship; — = evidence against a causal relationship; O = no available evidence or none available.

the factor precede development of
disease? (2) Is there a dose-dependent
relationship? (3) Is there a biological
mechanism(s) through which the causal
factor contributes to disease development?
and (4) Is there an intervention or

proof of concept that demonstrates that
eliminating the risk factor prevents
disease? It is important to recognize

that establishing Koch’s third postulate
(exposure of the host to virus causes
asthma), albeit intended for establishing
causality of infectious diseases, can

never experimentally be done in humans.
In the case of risk factors that result in
significant harm or chronic disease,
randomized controlled trials of early-life
infection in humans are not ethical to
conduct, and we must rely on studies

of prevention of the risk factor

to demonstrate whether these early-life
infections are causal and whether
prevention is an effective primary asthma
prevention strategy. Human, in vitro,
and animal models provide the closest
models we have for demonstrating an
understanding Koch’s third postulate of
how viral infection may lead to asthma
development (23, 70-72).

Numerous longitudinal studies have
demonstrated this first important line
of evidence that RSV and RV LRTIs
precede the development of asthma (33,
73). RSV LRTI also precedes allergic
sensitization; however, allergic sensitization
has been shown to precede wheezing
with RV infection, suggesting that wheezing
with RV may follow or require atopic
sensitization (33, 74). A number of
studies next demonstrate the strength of
the association of early-life RSV and RV
LRTI with later asthma development;
estimates of asthma after RSV LRTI
range from 2- to 12-fold increased risk
(odds ratio, 2.07-12.7; 95% confidence
interval, 1.2-47.1), and estimates after
RV LRTI range from 2- to 10-fold
increased risk (odds ratio, 1.99-10; 95%
confidence interval, 1.04-23) (20, 47, 73,
75-81). Several birth cohort studies
also demonstrate a dose-response
relationship between infant respiratory
viral infection severity and asthma risk,
with increasing infant infection severity
associated with greater childhood asthma
risk and asthma severity (73, 82). It is
important to consider, however, that
prevention of early-life wheezing will

likely never negate the possibility of another
later environmental causal factor resulting
in increased asthma risk given the strong
genetic susceptibility to asthma. The
findings of observational longitudinal
studies demonstrate decreased associations
with early-life risk factors as subjects age
(81, 83, 84). A randomized controlled
trial in which there would in theory be
no differences between groups in these
subsequent causal exposures could answer
the question about the duration of effect
of preventing early-life exposures on
asthma risk.

Biologic Mechanisms
through Which Respiratory
Viral Infections Cause
Asthma

Children hospitalized with RSV have
mild airway obstruction and airway
hyperreactivity (27). Is this a sequelae
of the viral infection, an underlying
host characteristic of children destined
to develop asthma, or both? Although
children who develop asthma are

born with lower lung function (30-34),
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severe RSV infection has been shown

to result in long-term impairments in
lung function (31). Acute infection

with RSV causes expression of
proinflammatory cytokines and
chemokines such as IL-1a, IL-1f3, IL-6,
IL-8, IFN-vy, tumor necrosis factor a,
monocyte chemotactic protein 1,
macrophage inflammatory protein
(MIP)-1at, and MIP-1, promoting

a prolonged inflammatory environment
within the lung that could contribute to the
development of asthma (85). Studies of
natural colds, predominantly with RV, have
also shown the release of inflammatory
cytokines (86). In addition, levels of IL-17,
secreted by type 17 helper T cells (Th17),
are consistently elevated in human
infection with RSV and in asthmatic
sputum and bronchoalveolar lavage fluid
(87). Thus, it is possible that elevated
Th17 responses after RSV infection may
contribute to asthma development or
indicate similar host risks for RSV and
asthma (88).

Viruses can also program the immune
response toward a type 2 helper T cell
(Th2) proallergic phenotype. Infection
with RSV has been shown to induce
a Th2 response characterized by production
of IL-4, IL-5, and IL-13 in some but
not all studies. A Th2-biased immune
response is known to contribute to disease
in murine models of allergic airway
inflammation and is characteristic of
human asthma (89). Studies using a
paramyxovirus in an experimental
mouse model resembling asthma
and chronic obstructive pulmonary
disease demonstrated that an innate
NKT cell-macrophage-IL-13 immune
axis may be activated in human disease
conditions, similar to the virus-induced
mouse model of chronic airway
disease, providing another possible
connection between infection and
chronic inflammatory diseases (90).

More recently, epithelial cells have been
shown to produce novel “innate cytokines,”
TSLP, IL-25, and IL-33, which create

a permissive environment for type 2
differentiation of dendritic cells, T cells,
and innate lymphoid cells, leading to
production of the proasthmatic cytokines
IL-4, IL-5, and IL-13. Studies in humans
and mice demonstrate that viruses,
specifically RV and influenza, can

elicit this epithelial cell response (91-94).
RSV infection may also contribute to the

Pulmonary Perspective

development of allergy by breaking
immune tolerance to allergens early in
life. RSV infection induces GATA-3
expression and Th2 cytokine production
in forkhead box P3™ T, cells and
compromises the suppressive function of
pulmonary T, cells, dependent on IL-4
receptor a (IL-4Ra) expression in the host.
Thus, RSV induces a Ty2-like effector
phenotype in T, cells, which attenuates
tolerance to an unrelated antigen (allergen)
(95). RSV and RV may also increase airway
sensitization by altering the epithelial
barrier, another mechanism through
which viruses may lead to the airway
hyperreactivity that characterizes asthma
(96, 97). Finally, rodent models suggest
that respiratory viral infections of immature
and mature animals (90) result in chronic
pathologic changes in the lung, airway
hyperreactivity, and immune system
changes similar to those seen in human
asthma (98-101). In addition, these
early-life infections may alter subsequent
responses to viral infection in adult animals
(102, 103).

Rhinovirus has also been demonstrated
to result in immunologic changes and
in the induction of factors and airway
changes that could result in chronically
altered lung and immune function. Certain
strains of RV have been demonstrated to
have the unique ability to bypass antigen
presentation and directly infect and activate
CD4" and CD8™ T cells. This could
explain the strong association of rhinovirus
with exacerbation of airway diseases and
may have relevance to early-life altered
immune response to RV that could be
strain specific rather than illness severity
specific (104). RV infection has also been
shown to increase deposition of the
extracellular matrix proteins collagen and
endothelial growth factor in cultured
human bronchial ECs possibly mediated
through TLRs. Furthermore, gene
expression was increased in lung
homogenates of mice infected with RV-1b
(105). In RV neonatal mouse models,
infection has been demonstrated to result
in prolonged asthma-like responses (airway
responsiveness and mucous metaplasia)
that were dependent on IL-13, IL-25, and
type 2 innate lymphoid cells (92, 100).
These could be mechanisms through which
early-life RSV and RV infections of the
lower airways might permanently alter
lung development, airway physiology,
and immune development.

Although animal models are
important, in addition to findings in
mice not always translating to humans,
there are several limitations of the mouse
models of RSV and RV infection. First,
RSV infection does not result in extensive
epithelial damage and desquamation in
the mouse as it does in humans. As a result,
the epithelial barrier remains more
intact in the mouse and prevents greater
subepithelial exposure to antigens than
likely occurs in humans after infection.

A second shortcoming is that the airway
epithelium of the mouse is not as permissive
for RSV or RV infection, and the
epithelial replication in the mouse is

not as robust as it is in humans. A third
shortcoming is the difficulty in quantifying
airway physiologic changes to early-life
infection in mice because the measurement
tools are made for older and larger
animals. Fourth, only the transgenic, human
ICAM-1 receptor mouse used to study

RV infection is susceptible to major

group RV infection, although similar
results were obtained in wild-type mice
infected with minor group virus (106).
Finally, interpretation of animal models
should consider whether neonatal or

adult mice were studied. Given the
differences in the developing lung and
immune system of neonatal and adult
mice and of humans, inferences as to

the long-lasting impact of early-life viral
infection are best extrapolated from
neonatal mouse models.

Despite the limitations of the types of
studies that can be conducted in young
infants and the available animal models,
taken together the available studies provide
biological mechanisms through which
RSV and RV could lead to physiologic,
pathologic, and immunologic changes that
characterize asthma.

The Contribution of Early-Life
Infection to Asthma

The next important consideration is

the population-level contribution of

RSV and RV LRTIs to the burden of
asthma. First, as risk factors, RSV

and RV are common, nearly universal
early-life infections. An important
distinction is that current studies of

RSV LRTI illness have been predominantly
in hospitalized children because RSV

LRTI is a more common cause of severe

39



LRTI during early infancy, whereas RV
illnesses tend to be less severe and are more
commonly outpatient illnesses. With
advancing age, there is reversal of the
predominant viral etiology of LRTIs, with
RV becoming more common and RSV
becoming less common. Second, RSV

and RV are strongly associated with
childhood asthma. However, association
does not establish causality or establish
whether these viruses contribute to

a significant proportion of resultant
asthma. This is best demonstrated by the
population-attributable risk for asthma after
these early-life LRTIs. Among infants,

the prevalence of LRTI is approximately
18 to 32% in the first year of life and
approximately 9 to 17% in the second
year of life (33). Among infants with
LRTI, the prevalence of RSV can be as high
as 80%, especially in the first 3 months
of life (107, 108). The prevalence of RV
in infants with LRTI is approximately

20 to 30% (77). Although the odds of
developing asthma after RV LRTI are
higher in most studies than for RSV
LRTI, RSV LRTI in the first year of life

is significantly more common and
therefore, if causal, may be responsible
for a greater proportion of asthma that
develops in children with RSV compared
with RV (73, 82, 109). Thus, the phenotype
of asthma after infant RSV LRTI accounts
for up to 31% of early childhood asthma,
with a population-attributable risk
estimated at about 13% in several diverse
populations (80, 109). No available
estimates exist for RV, but one would
estimate that RV LRTI, if causal, becomes
more important as a risk factor with
advancing age, where RV LRTI becomes
more common and RSV LRTI becomes
less common.

The strongest data supporting a causal
relationship of RSV LRTI with recurrent
wheezing comes from a recent randomized,
controlled trial of a highly specific
monoclonal IgG antibody directed
against the RSV fusion (F) glycoprotein
(palivizumab) (110). In this trial of
late preterm infants (33-35 wk), RSV
immunoprophylaxis resulted in a nearly
50% reduction of recurrent wheezing
(11 vs. 21%) in the first year of life.

This study was not powered to determine
whether RSV immunoprophylaxis results
in a reduction of asthma at 6 years of

age. However, observational studies of
premature infants eligible to receive
palivizumab immunoprophylaxis have
reported comparable risk reduction for
recurrent wheezing during the first 3.5
years of life (110-113). A study of children
who received antiviral treatment (ribavirin)
for RSV during infancy also demonstrated
significantly lower incidence of asthma

or recurrent wheezing (114). Maternally
derived RSV antibodies measured in

cord blood, presumably representing
passive immunization, have also been
associated with a decrease in infant

RSV hospitalization. However, very high
RSV cord blood antibody titers were
associated with an increased risk of
recurrent wheeze in children with and
without RSV LRTT hospitalization (115).
This could represent a more severe
infection, including in utero RSV infection,
that may alter infant airway structure

and immune function, predisposing the
infant to an increased risk of asthma, as
Piedimonte and colleagues showed in
their murine model of vertical RSV
transmission (116). High RSV titers may
also indicate a genetic predisposition to
severe respiratory infections and asthma.
This evidence supports the hypothesis
that preventing at least early-life RSV
LRTI may help to prevent wheezing or
asthma. Although there is a strong evidence
base to support the role of RSV infection
in asthma development, there are
insufficient data at this time to support

a causal role of infant RV infection with
asthma inception. The later age of first
wheezing with RV and precedent allergic
sensitization in some children before
wheezing with RV supports the well-known
association of RV with exacerbation

of prevalent asthma but could certainly

be consistent with the contribution of

RV as a causal factor during a later
susceptibility period during childhood

or one that alters the natural history

of asthma, analogous to infectious
exacerbations in COPD.

Future Directions and
Recommendations

Infant viral lower respiratory tract infections
with RSV and RV have been strongly
associated with childhood asthma. Whether

this is from a shared inherited risk for
asthma and enhanced susceptibility to these
viruses, a result of these viruses’ capacity
to cause asthma through alteration of the
host’s immune response and lung function,
or both is not known. What is clear is
that these viruses represent ubiquitous,
potentially modifiable early-life exposures
that are well established to be associated
with disease and hold promise for primary
or secondary prevention strategies for
asthma. The strongest body of current
evidence supports testing prevention of
RSV LRTI in primary prevention trials
(birth timing and RSV immunoprophylaxis
have been demonstrated to decrease risk
in observational studies) and shorter-term
intervention studies on the outcome

of recurrent wheezing. Important in

these considerations is the selection of
interventions that would be of acceptable
risk in vulnerable populations of infants
and pregnant women. For RV, the lack of
a preventive intervention is an obstacle

to advancing the field and should be

a research priority for this ubiquitous early-
life risk factor (117). Because not all infants
who develop RSV or RV LRTI develop
asthma, future studies will also need to
focus on the genetics of both the host and
the virus to better understand the host
response to infection and if “asthmagenic”
strains of RSV and RV exist that might

be targets for vaccine or targeted small
molecule development. In addition, further
understanding the human immune
response differences to early-life infection
that predispose infants to developing
asthma or aid in resolving early-life
infection will be important. Altering the
host immune response could be another
potential early-life intervention preventing
morbidity from early-life infection as well
as recurrent wheezing and virally induced
asthma exacerbations. Finally, because

RV is most strongly associated with asthma
exacerbations in children, continued
efforts to advance our understanding of the
altered immune response to viruses across
the entire age continuum in patients with
asthma and in atopic patients will aide in
secondary prevention strategies and will
likely provide insights into infant host
susceptibility (118).
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