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Abstract

Signaling pathways function as information-passing mechanisms of the cell. A number of 

extensively manually curated databases maintain the current knowledge-base for signaling 

pathways, inviting computational approaches for prediction and analysis. Such methods require an 

accurate and computable representation of signaling pathways. Pathways are often described as 

sets of proteins or as pairwise interactions between proteins. However, many signaling 

mechanisms cannot be described using these representations. In this opinion, we highlight an 

underutilized representation for signaling pathways: the hypergraph. We demonstrate the 

usefulness of hypergraphs in this context and discuss challenges and opportunities for the 

scientific community.
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Signaling Pathways and their Representations

Signaling pathways mediate a cell’s response to its environment, starting with the 

recognition of an external stimulus at receptors, proceeding through intra-cellular protein 

interactions and activation of transcription factors, and culminating in the perturbation of the 

expression of target genes. Due to their importance in cellular communication, signaling 

pathways are often perturbed in diseases. Numerous publicly-available and often manually-

curated databases store information about signaling pathways [1–6]. Despite the growing 

knowledge of signaling pathways from experimental data, these databases face a number of 

obstacles when storing and conveying this information. Databases that constitute signaling 

pathways from manual curation of the literature produce high-quality interactions, but are 

time-consuming to construct, are often incomplete or outdated, and might be biased based 
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on the curators’ expertise [7–10]. Databases that use automated methods for literature 

searching, such as predictive text mining, are relatively easy to maintain but tend to have 

many erroneous entries [11]. Different databases may represent the same biological event in 

different ways, making them difficult to standardize for computational use.

In this opinion, we lay out the common representations that have been used in computational 

analyses of signaling pathways. After examining the limitations of these representations, we 

encourage the use of hypergraphs as models that better capture the complex relationships in 

the underlying biological mechanisms. We describe three applications to motivate the need 

for more powerful representations of signaling pathways. Pathway enrichment assesses 

whether discovered proteins are significantly enriched for proteins/interactions in a pathway 

of interest. Pathway reconstruction aims to explicitly reconstruct and discover missing 

proteins and interactions in a pathway of interest. Finally, pathway crosstalk tries to capture 

how the stimulation of one pathway may result in alternate downstream responses.

Current Representations of Signaling Pathways

Signaling Pathways as Sets of Proteins

The simplest representation of a pathway is a list of its members, i.e., the set of proteins that 

are involved in the pathway (Figure 1). Catalogs such as the Gene Ontology [1] and the 

Molecular Signatures Database [12] provide signaling pathways in this format. With this 

representation, pathway enrichment identifies pathways whose members occur surprisingly 

often in a set of experimentally-identified proteins (e.g., from differential gene expression 

analysis) [13]. However, such set-based approaches ignore the relationships between 

proteins within a pathway, thereby providing no clues as to how interactions may alter gene 

expression [8]. These methods can correct and adjust for proteins shared among multiple 

pathways [14, 15], thus accounting for crosstalk to some extent. By definition, purely set-

based methods can reconstruct only the proteins in a pathway and not its interactions [16].

Signaling Pathways as Directed Graphs

Signaling pathways are also conceptualized as graphs, where nodes represent proteins and 

edges represent pairwise interactions between proteins (Figure 1 and Glossary). The edges 

are often directed in signaling pathways, such as when a kinase phosphorylates a substrate. 

Recent enrichment methods make use of pathway topology in their scoring metrics by taking 

the interaction among member proteins into account [8]. This class of approaches continues 

to be in active development. Pathway reconstruction algorithms on graphs typically use a 

large background interactome (such as a protein-protein interaction network) and identify 

pathways as subgraphs of proteins and interactions within the interactome. These 

approaches often try to find connections between signaling initiators (membrane receptors) 

and downstream regulators (transcription factors). Pathway reconstruction algorithms 

leverage many well-known concepts from graph theory [17–21]. Graph-based approaches to 

assess pathway crosstalk rely on the notion that two crosstalking pathways (each represented 

as a set of genes) will have statistically more interactions connecting their members than 

expected in a random network [22, 23]. However, these approaches fail to compute the 

specific paths of signaling interactions that contribute to crosstalk.
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Graph representations of signaling pathways are an improvement from the “set of proteins” 

representation because they capture pairwise relationships between proteins. However, 

signaling pathways contain more complicated relationships that are problematic for graph 

representations. For example, graphs often represent a complex by connecting all its 

members, which can artificially increase the number of edges (Box 1, panel a) [24]. More 

importantly, graphs do not accurately represent several types of molecular reactions, 

including protein complex assembly and dis-assembly or regulation (e.g., activation and 

inhibition) (Box 1, panel b). Finally, graphs do not typically distinguish between inactive 

and active forms of a protein or complex (Box 1, panel c).

Other Representations of Signaling Pathways

While directed graphs have been useful for representing signaling pathways, their 

limitations are widely-recognized. A number of approaches have modified and extended 

graph representations. Compound graphs [25] and metagraphs [26] represent a complex as a 

single entity, and allow a nested structure. Factor graphs [27] and Petri nets [28] introduce 

different types of nodes into the directed graph in order to represent events involving sets of 

proteins. Multimodal networks [29] associate four entities with each edge: a head, a tail, a 

regulator, and a mode. The head, tail, and regulator can each be a set of proteins, and the 

mode specifies how the regulator controls the transition from head to tail, e.g., activation or 

repression.

These models of signaling pathways seek to address the shortcomings of directed graphs. 

However, each approach has drawbacks, including an inability to comprehensively model 

the complexity of signaling pathways, applicability to a limited range of computational 

problems, or under-utilization in systems biology. Nodes from compound graphs and 

metagraphs focus on protein complexes. Multimodal networks do not support the 

hierarchical structure of signaling networks. Factor graphs and Petri nets are not ideal for 

generalizations of common graph-theoretic operations such as paths, connectivity, and 

random walks. In the next section, we seek to unify these models under the umbrella of 

signaling hypergraphs.

Signaling Pathways as Hypergraphs

Hypergraphs are a generalization of graphs which are capable of representing relationships 

among two or more proteins (Figure 1). Typically, directed hypergraphs consist of a set of 

nodes and a set of directed hyperedges, where each hyperedge connects two sets of nodes 

(see Glossary). Directed hypergraphs are an attractive alternative to directed graphs for 

representing complex facets of cellular processes, especially for metabolic networks [29–

33]. They have also been shown to be advantageous for signaling networks [30, 34, 35]; 

however, they still remain an under-utilized tool.

In our definition, a signaling hypergraph consists of a set of hypernodes, directed 

hyperedges, and regulated hyperedges. Each hypernode represents an individual protein or a 

set of proteins, each directed hyperedge connects one set of hypernodes to another, and each 

regulated hyperedge is a directed hyperedge with one or more hypernodes that act as 

regulators (see Glossary). In Box 1, we motivate this definition of signaling hypergraphs by 
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describing three biological events in the canonical Wnt signaling pathway. These biological 

events (protein complexes, the assembly of protein complexes, and the regulation of proteins 

and complexes) commonly occur in signaling pathways. Each event may be represented as a 

graph consisting of multiple edges (Figure I left), or as a single hyperedge in a signaling 

hypergraph (Figure I right). Thus, each of these biological events has a more direct 

interpretation when represented as a signaling hypergraph rather than as a directed graph.

When these biological events are considered as components of the larger Wnt signaling 

pathway, it becomes clear that a typical graph-based representation simply does not have the 

power to accurately model sequences of signaling events (Figure 2). The first five 

hyperedges in Figure 2 represent the canonical Wnt signaling pathway (we discuss 

hyperedges 6 and 7 in the context of pathway crosstalk in the next section). The primary 

function of Wnt signaling is to control the activity status of β-catenin (hyperedge 1); active 

β-catenin regulates the transcription of target genes, and inactive β-catenin is degraded by 

the proteasome. The maintainance of active β-catenin starts with WNT3A binding to the 

FZD5/LRP6 complex (hyperedge 2). Next, DVL binds to the FZD5/LRP6/WNT3A complex 

to form FZD5/LRP6/WNT3A/DVL (hyperedge 3), which the small molecule PIP 

subsequently activates (hyperedge 4). Activated FZD5/LRP6/WNT3A/DVL interferes with 

the destruction complex (Axin1/APC/GSK3) by sequestering Axin1 and GSK3, and 

releasing APC (hyperedge 5). However, in the absence of Wnt signaling, the activated 

destruction complex persists, and marks β-catenin for degradation by phosphorylation 

(hyperedge 1).

These examples indicate that signaling hypergraphs offer a more accurate representation 

than directed graphs of the underlying biological events that occur in signaling pathways. 

Moving to a hypergraph-based representation brings with it several computational 

challenges and opportunities. From what datasets can we build signaling hypergraphs? 

Which algorithmic questions need to be solved for signaling hypergraphs? How exactly can 

problems in computational systems biology such as pathway enrichment, extension, and 

crosstalk benefit from this representation? We turn our attention to these questions below.

Building Signaling Hypergraphs

Although hypergraphs are not widely utilized for the analysis of signaling pathways, the 

increasing popularity of standardized data exchange formats such as BioPAX [36] and 

SBML [37] can accelerate their adoption. These file formats explicitly support reaction 

networks [2, 36, 37], which are in essence hypergraphs. As a result, we can directly build 

signaling hypergraphs from these representations. In addition, algorithms that operate on 

signaling hypergraphs can take advantage of the rich information embedded in BioPAX and 

similar formats.

BioPAX is a format that aims to enable the integration and exchange of reactions and 

biological pathways. It has facilities for representing the diversity of interactions within a 

signaling pathway, including notions such as complex assembly, biochemical reactions and 

control mechanisms. In essence, BioPAX represents each of these notions as a hypergraph, 

although the notion of a hypergraph is not explicit in BioPAX. Figure 3 illustrates the 

scheme of a generic reaction in BioPAX. For example, a complex is simply a set of proteins 
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that we call a hypernode. Complexes in BioPAX can be nested within each other, and be 

members of reactions. The representation of a reaction such as complex assembly explicitly 

specifies the reactants and products, each of which can be a set of complexes, proteins, or 

small molecules, called a directed hyperedge in our nomenclature. BioPAX takes regulation 

into account as well: a reaction may have a controller, which can be a complex, protein, 

small molecule, or even another pathway (regulated hyperedge). Thus, it should not be 

difficult to convert BioPAX-like formats into signaling hypergraphs. In addition to 

representing various elements in a signaling pathway, BioPAX makes explicit the notion 

that all members of a complex must be present (and bound to each other) before 

participating in or regulating a reaction. Since graphs model only pairwise representations, 

they cannot represent such requirements conveniently.

Applications of Signaling Hypergraphs

While hypergraphs have been an established area of mathematics since the 1960s [38], their 

application to systems biology may have been hampered by the lack of powerful algorithms. 

Since graphs are a \special case" of signaling hypergraphs (where each hypernode contains 

exactly one node and each hyperedge contains exactly two nodes), computational problems 

on hypergraphs are likely to be at least as hard as the corresponding problems for graphs 

[30]. In fact, many problems that can be solved in polynomial time in graphs become 

computationally difficult ( -Complete) when posed on hypergraphs, e.g., computing 

shortest paths in directed hypergraphs [39]. Nevertheless, as we discuss below, hypergraphs 

are a promising representation for the pathway enrichment, reconstruction, and crosstalk 

applications. We motivate these applications with examples from the Wnt signaling 

pathway.

Pathway Enrichment—Using the signaling hypergraph in Figure 2, consider the scenario 

where only WNT3A and DVL are differentially expressed. Set-based methods may not 

identify Wnt signaling as significantly enriched because WNT3A and DVL are the only two 

proteins used to compute enrichment. A hypergraphical approach may observe that WNT3A 

or DVL participate in seven hypernodes and five hyperedges, and may conclude that Wnt 

signaling is perturbed. IfWNT3A and DVL were down-regulated, then the method may 

conclude that Wnt signaling would not occur, the destruction complex would maintain 

integrity, and the degradation of β-catenin would ensue. Signaling hypergraphs impose an 

added layer of complexity since they can represent the formation of a complex, both the 

active and inactive forms of a complex, and the regulation of reactions. We expect that ideas 

borrowed from factor graphs [40] and pathway enrichment techniques that consider-edge 

structure [8, 41] will be useful for developing hypergraph-based approaches for pathway 

enrichment.

Pathway Reconstruction—Existing methods have relied on well-known graph 

algorithms, but the corresponding theory for hypergraphs is considerably less well 

developed [42]. However, pathway reconstruction is an excellent application to motivate the 

development of new mathematical, statistical, and algorithmic research on hypergraphs. 

Suppose we are given the hypergraph representation in Figure 2 where the FZD5/LRP6 

complex represents a signal initiator and the active form of β-catenin represents a 
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transcriptional regulator. Hypergraph-based pathway reconstruction seeks to determine a 

series of hyperedges that links the FZD5/LRP6 complex with the active form of β-catenin, 

as shown by hyperedges 1–5 in Figure 2. By using the hyperedges and hypernodes as the 

units of connection in the pathway reconstruction problem, we can preserve the integrity of 

complexes and reactions, whereas graph-based methods will struggle to discern these 

entities.

Pathway Crosstalk—Crosstalking pathways are frequently identified by the activation of 

genes downstream of one pathway after a stimulus for another pathway. Extant methods for 

computationally estimating crosstalk use the intuition that it results from proteins shared by 

both pathways [15, 43]. Hypergraph-based approaches have the potential to unveil 

connected sequences of interactions that contribute to crosstalk between pathways. Figure 2 

shows crosstalk of the Wnt signaling pathway with the TGF-β (hyperedge 6) and Notch 

pathways (hyperedge 7). SMAD7, a negative regulator of the TGF-β signaling pathway, 

mediates the crosstalk with the Wnt pathway. Specifically, SMAD7 catalyzes the 

dissociation of the destruction complex by binding with Axin1 and releasing APC and 

GSK3. This event results in increased transcriptional regulation by β-catenin as well as 

increased TGF-β signaling [44]. Crosstalk between the Notch and Wnt signaling pathways 

occurs through an interaction between NICD (NOTCH intracellular domain) and DVL [45]. 

Once DVL is bound to NICD, Wnt signaling cannot proceed, allowing the destruction 

complex to mark β-catenin for degradation. Thus, activation of Notch signaling down-

regulates Wnt signaling. Computationally discovering these sequences of events that lead to 

crosstalk is an outstanding problem in both graph and hypergraph representations.

Outstanding Challenges

Several issues confront both graph- and hypergraph-based approaches for the analysis of 

signaling pathways. Current interaction datasets remain highly incomplete and/or contain 

many false positive interactions. The same pathway can have considerably different 

representation in different databases, sometimes resulting from the focus of the curator. 

Estimating the reliability of interactions (from the type of experiment or the curation 

method) continues to be an important challenge. While most signaling pathways in 

databases are organism specific, interactomes established by combining multiple databases 

are not tissue-specific.

Existing graph-based approaches to pathway reconstruction often analyze the entire 

interactome (i.e., all pairs of proteins known to interact). The interactome is often 

constructed from a combination of signaling pathway databases, more general protein-

protein interaction databases, and high-throughput experiments. Hence, the quality of 

solutions from pathway reconstruction algorithms depend on the reliability of this 

interactome [43]. To use signaling hypergraphs for pathway reconstruction, we must 

establish a corresponding hypergraph interactome that represents the interactions among 

multiple proteins. As a start, one may construct a hypergraph interactome by beginning with 

a graph built from protein-protein interaction data and add hyperedges as they are 

represented in the signaling pathway databases (e.g. using BioPAX). Constructing a high-
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quality and high-coverage hypergraph interactome is an important research direction, since 

it will ultimately determine the quality of solutions from hypergraph-based algorithms.

For any representation, we can ask how the activity (or inactivity) of signaling pathway 

members affect the rest of the pathway. Boolean networks, for example, allow each node in 

a graph to take two values: 0 (inactive) or 1 (active). Logical models [35, 46] use Boolean 

gates to represent how a set of proteins may inuence another protein. Here, each gate is a 

special case of a directed hyperedge with many nodes in the tail (inputs) and one node in the 

head (output). Developing extensions of logical models that are appropriate for signaling 

hypergraphs is an important direction of research.

Signaling hypergraphs do not include stoichiometric or kinetic information; they focus more 

on capturing pathway structure. In contrast, dynamic models of signaling pathways capture 

both the structure and the stoichiometry of signaling pathways [46, 47]. However, these 

models tend to scale poorly since they require extensive prior experimental knowledge to fit 

parameters. Extensions of logical models on signaling hypergraphs that incorporate 

stochiometric information as well may provide a scalable alternative to dynamic models.

Concluding Remarks

The study of signaling pathways is a cornerstone of modern molecular and cellular biology. 

Unfortunately, their representation in common signaling pathway databases varies widely in 

terms of completeness, quality, and standardization. Furthermore, methods that 

computationally analyze such pathways may often ignore important characteristics of their 

structure. These gaps necessitate the development of a fresh representational approach. We 

have introduced signaling hypergraphs, an under-utilized representation in systems biology, 

to overcome these limitations.

Our goal is not to replace graph-based approaches in systems biology. Rather, our intent is 

to stimulate and encourage the use of hypergraph-based methods in contexts such as 

signaling pathways where their unique capabilities will have considerable impact. In the 

future, we hope that hypergraph-based analyses can encompass other types of cellular 

processes in conjunction with methods that infer hypergraphs directly from systems biology 

datasets [48–51].

We acknowledge that computational analysis of signaling hypergraphs will be challenging 

since the theory for hypergraphs is much less well developed than for graphs. Nonetheless, 

the development of pathway enrichment, pathway reconstruction, and pathway crosstalk 

algorithms on hypergraphs show promise of better representing the biological signaling 

pathway. We hope that our advocacy of signaling hypergraphs will stimulate new directions 

of mathematical, statistical, and algorithmic research. These results can power the increased 

use of signaling hypergraphs in computational systems biology.

Glossary

Graph Notation: Nodes and Edges
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*In a directed graph, an undirected edge between nodes u and υ is replaced by two directed 

edges (u, υ) and (υ, u).

Node an element (Protein; Compound)

Undirected edge* an unordered pair of nodes (Physical interaction between two 

proteins)

Directed edge an ordered pair of nodes (Kinase phosphorylates a substrate)

Signaling Hypergraph Notation: Hypernodes and Hyperedges

Hypernode a set of node(s) (Protein; Protein complex)

Directed 
hyperedge

an ordered pair of sets of hypernodes (Complex assembly)

Regulated 
hyperedge

a directed hyperedge regulated by a hypernode (Kinase 

phosphorylates a protein complex, thereby activating it)
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Highlights

• We review common computational representations of signaling pathways.

• These approaches cannot adequately model multi-way molecular reactions that 

are common in pathways.

• We highlight hypergraphs as an under-utilized abstraction for representing such 

interactions.

• We summarize challenges and opportunities presented by signaling hypergraphs
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Box 1: A comparison of representations for events that occur in signaling 
pathways

a. Protein Complexes (Figure I, panel a). A complex is a set of proteins that bind 

together to carry out a biological function. Upon stimulation of FZD5 by the 

WNT3A ligand, a four-protein complex (FZD5/WNT3A/LRP6/DVL) assembles 

at the plasma membrane. In a graph, complexes are commonly represented as 

cliques; as a result it is unclear whether the proteins form a complex or if they 

interact in pairs. A signaling hypergraph represents the complex as a single 

hypernode.

b. Complex Assembly (Figure I, panel b). Many biochemical reactions involve 

complex assembly and disassembly, e.g., the four-protein complex (FZD5/

WNT3A/LRP6/DVL) sequesters GSK3 and Axin1, thereby disassembling the 

destruction complex (GSK3/Axin1/APC). A graph representation connects 

every pair of proteins within each complex; in addition to the ambiguity arising 

from complexes, the exact complex reconstitution is unclear. In a signaling 

hypergraph, complex rearrangement may be represented as a single directed 

hyperedge. Unlike the graph representation, the hyperedge representation 

clarifies the reactants, the products, and the “direction” of the reaction.

c. Regulation (Figure I, panel c). Many cellular reactions are regulated by 

proteins, small molecules, or complexes. For instance, phosphorylation (and 

inactivation) of β-catenin is regulated by the destruction complex (GSK3/Axin1/

APC). A graph may represent this regulation using directed edges from every 

protein in the regulator (in this case, a complex) to β-catenin, creating the 

misleading appearance that each protein in the complex may independently 

regulate β-catenin. Moreover, graphs do not typically distinguish between 

inactive and active forms of a protein. Instead, hypergraphs can represent such a 

reaction as a regulated hyperedge, which indicates that the complex is required 

for the inactivation of β-catenin.
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Figure 1. Signaling Pathway Representations
There are three main ways of representing signaling pathways. A signaling pathway may be 

simply represented as a set of proteins, with no additional information. Graphs encode 

pairwise interactions between proteins; these interactions may be undirected (green) or 

directed (blue). Hypergraphs, the focus of this article, encode multi-way interactions and 

reactions (see Box 1 for examples).
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Figure 2. 
Events following Wnt signaling that lead to release of β-catenin. Black edges denote 

connections to other signaling pathways and biological processes. The inset shows a 

possible graph representation of these events. Green: undirected edge; blue: directed edge; 

purple: hyperedge; dashed purple: regulated component of hyperedge; gray circle: 

hypernode; red outline: active form.
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Figure 3. Example nested organization of BioPAX pathway elements
This shows the nested hierarchy of the BioPAX file formats. Hypernodes may be 

complexes, proteins or small molecules. Reaction elements in BioPAX are equivalent to 

directed hyperedges, and controlled reactions to regulated hyperedges.
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Figure I. Representations of three types of events in signaling pathways
In each panel, the biological representation (middle) can be converted into a graph (left) or a 

hyper- graph (right). Green: undirected edge; blue: directed edge; gray circle: hypernode; 

purple: hyperedge; red outline: active form; dashed purple: regulatory component of 

hyperedge.
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