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Abstract

Here we present a method for extracting candidate cancer pathways from tumor ‘omics data while 

explicitly accounting for diverse consequences of mutations for protein interactions. Disease-

causing mutations are frequently observed at either core or interface residues mediating protein 

interactions. Mutations at core residues frequently destabilize protein structure while mutations at 

interface residues can specifically affect the binding energies of protein-protein interactions. As a 

result, mutations in a protein may result in distinct interaction profiles and thus have different 

phenotypic consequences. We describe a protein structure-guided pipeline for extracting 

interacting protein sets specific to a particular mutation. Of 59 cancer genes with 3D co-

complexed structures in the Protein Data Bank, 43 showed evidence of mutations with different 

functional consequences. Literature survey reciprocated functional predictions specific to distinct 

mutations on APC, ATRX, BRCA1, CBL and HRAS. Our analysis suggests that accounting for 

mutation-specific perturbations to cancer pathways will be essential for personalized cancer 

therapy.

1. Introduction

Cancer is a complex genetic disease in which the genomes of normal cells accumulate 

somatic mutations. A subset of these mutations confer neoplastic behaviors to cells through 

disregulation of a small number of common pathways1. Identifying the genes that participate 
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in these pathways is an important objective in cancer genomics. However, linking 

somatically altered genes to perturbed pathways remains an open problem2.

Individual proteins rarely mediate cellular behaviors; instead molecular machines 

comprising multiple proteins arbitrate various intracellular processes. As a result, proteins 

that interact physically within the cell are frequently involved in the same biological 

activities. This phenomenon, sometimes called guilt-by-association, has motivated the 

development of a variety of computational methods to identify disease-specific regions on 

the human Protein-Protein Interaction (PPI) network from molecular measurement data. 

Ideker et al.3 integrate PPIs with mRNA expression data to detect differentially expressed 

sub-networks of genes, while, NIMMI4 combines PPI networks with GWAS data to produce 

sub-networks that are functionally related and enriched for genetic variants linked with a 

trait. HotNet5 maps mutation data onto PPI networks to identify sub-networks significantly 

enriched with cancer causing mutations, and NetBox6 detects oncogenic network modules 

from DNA Copy Number Variants (CNVs), PPIs and signaling pathways. Additionally, 

Hofree et al.7 combine patient mutation profiles, gene interaction networks and PPIs to find 

network regions that are specific to subtypes of cancer.

Missense mutations, a class of non-synonymous single nucleotide variants (nsSNVs), cause 

an amino acid substitution, resulting in a subtly different protein sequence. These sequence 

changes can alter protein structure. The resulting consequences for protein activity span the 

spectrum from neutral to completely disruptive. To date, methods for automated pathway 

extraction have treated missense mutations either as disruptive or neutral to protein activity, 

however it is well established that distinct amino acid sites within a protein mediate different 

functions. Simply modeling proteins as active or not may detract from the biological 

relevance of extracted pathways.

Recently, several groups have published high-resolution three-dimensional (3D) PPI 

networks8–10 that include the molecular details of binding interfaces. Applications of these 

to investigate inherited disease mutations11–15 have suggested that a) nsSNVs located at 

protein interfaces result in distinct phenotypes from those located in the protein core9,10, b) 

known disease associated variants outside of the core are enriched at residues participating 

in protein interaction interfaces10 c) in particular, in-frame disease mutations are enriched at 

interface regions of interacting proteins9 and d) disease mutations at distinct interfaces of the 

same protein can be associated with distinct disease phenotypes9. In cancer, 3D location of 

mutations at an interface has served as evidence that protein interactions may be important 

for metastasis site determination.11 These observations suggest that distinct changes to the 

network topology of protein interaction networks will result in different phenotypes. Thus 

efforts to identify disease-associated pathways may need to account for mutation-specific 

effects to the PPI network.

Here, we investigate the extent to which distinct somatic mutations observed in known 

cancer genes have distinct phenotypic consequences. We present a structure-guided sub-

network extraction pipeline (Figure 1) that identifies protein sets associated with specific 

missense mutations. We divide mutations observed in tumor exome sequencing data from 

The Cancer Genome Atlas (TCGA) into two categories: core and interface, then use 
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structurally resolved protein interaction data to model the effects of mutations on PPI 

network topology. Then using a diffusion-based approach, we identify distinct sets of 

interacting proteins in the global interaction network associated with different residue 

alterations of the same cancer gene and show that in many cases, these protein sets are 

implicated in distinct biological activities.

2. Materials and Methods

2.1 Sources of Protein Interaction Data

We assembled a highly reliable set of human PPIs from STRING16, HINT17 and the Protein 

Data Bank (PDB)18 (Figure 1a). The respective contributions were 57985 interactions 

among 10211 proteins from STRING v.9.1 with experimental support and a confidence 

score higher than 0.4, 24523 interactions involving 8126 proteins from HINT, and 11583 

physical interactions between 1653 proteins from the PDB. After eliminating self-

interactions, our network comprises of 74699 interactions among 11951 proteins.

2.2 Cancer Genes

We investigated mutations in 125 genes implicated by Vogelstein et al.’s1 as driving 

tumorigenesis. Of these genes, 123 were present in our human PPI, participating in 7503 

interactions. Ninety-seven of the encoded proteins had structural entries in the PDB, and 59 

had PDB structures in complex with one or more binding partners, resulting in a total of 169 

structurally resolved interaction interfaces (Figure 1a).

2.3 Source of Mutation Data

The TCGA mutation data (merged results of MutSig v2.0 and MutSigCV v0.9) was 

downloaded from the 01/15/2014 Firehose release (http://gdac.broadinstitue.org). Only 

missense mutations were considered in this analysis.

2.4 Mapping Mutations to Protein Structure

2.4.1 From DNA Sequence Position to Structural Position—In order to determine 

the three-dimensional location of mutated residues, chromosomal coordinates of nsSNVs 

were mapped onto to PDB coordinates. Chromosomal coordinates were mapped to 

transcripts in Gencode1919 using psl format files downloaded from the UCSC Genome 

Browser20. UniProt proteins were aligned to transcripts in Gencode19 using tblastn21 

software. Lastly, we performed the Uniprot to PDB mapping with the PDBSWS22 server.

2.4.2 Designating Interface and Core Residues—We classified nsSNVs into two 

groups depending on their structural location: core or interface. To designate a residue as 

participating in a protein interaction interface, we used the consensus of interface predictions 

made by the HotPoint23 and KFC224 servers to identify residues in physical contact. We 

removed incomplete interfaces by discarding interactions with fewer than 5 residues in at 

least one of the interacting chains. We used NACCESS25 to calculate the accessible surface 

area (ASA) of all protein residues. Residues with an ASA of 0 were classified as core.
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2.4.3 Positioning Mutation Data on Protein Structure—We obtained core residue 

positions for 97 of the proteins encoded by cancer genes and positions at interfaces for 169 

interactions between these proteins and their partners. In total there were 398 mutations 

located at either core or interface residues of cancer genes (Figure 1b). We made the 

simplifying assumption that mutations mapping to the same interface are likely to affect it in 

the same way. Thus we select a single representative mutated residue for each interface. 

Because we are interested in differential functional consequences of mutations in the same 

protein, we focused on genes with at least 2 mutations in different locations (i.e. different 

interfaces or core and interface mutations). This reduced our list to 137 distinct events in 43 

cancer genes (Supplementary Table 1).

2.5 Network Perturbation

If a mutation occurs in the protein core we assume that all of the protein’s interactions are 

affected (Figure 2b), and if it occurs at an interface, only the interactions mediated by the 

interface are affected (Figure 2c). To implement these perturbations, we removed edges 

from our structurally resolved PPI network corresponding to the affected interactions 

(Figure 1c).

2.6 Network Propagation Algorithm

We used network propagation26 to implicate protein sets most likely to be affected by each 

mutation (Figure 1d). This method has been applied to the related problem of clustering of 

patients based on somatic mutation profiles by Hofree et al.7, and uses a random walk (with 

restarts) according to the function in Eq.(1).

(1)

F0 is a binary vector with size equal to the number of proteins in the network. Mutated 

cancer genes are set to 1, representing ‘heat sources’, while other proteins are initialized to 

0. The A matrix is the degree normalized adjacency matrix of the PPI network. The α 

parameter affects the distance that the heat signal propagates during the diffusion. The 

distribution of the propagated values was similar for different α values and the choice of this 

parameter had limited impact on the results within the range of [0.4–0.7], as was previously 

reported.26 We used 0.4 as the α parameter.

In order to avoid numerical inaccuracy issues, the propagation algorithm is solved by 

iterative use of equation (1) until convergence (i.e. the sum of absolute differences between 

elements of Ft+1 and Ft is smaller than 10−6). The algorithm returns Ft, which contains a 

value for each node in the network proportional to the expected number of times the node is 

visited during a random walk originating from the heat source, and restarting at the heat 

source with probability α.

2.7 The Differential Heat Profiles

We performed network propagation for each of the 137 representative mutations separately. 

For each mutation, we calculated Ft vectors for the unaltered network and the perturbed 
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network. For subsequent analysis steps (protein module detection and functional 

annotation), we used the differential heat profiles, obtained by subtracting the Ft values for 

each gene in the unaltered and perturbed networks.

As methods used in this analysis are sensitive to differences in scale differential heat profiles 

were aggregated into a mutation x gene matrix and quantile normalized using the 

“preprocessCore” package of Bioconductor27 for R28.

2.8 Sub-network Extraction

We used an approach similar to that used by the HotNet5 method to identify altered sub-

networks in our global PPI from the differential heat profiles for the 137 mutations (Figure 

1e). First, each edge was assigned the minimum heat value of the corresponding protein pair. 

Edges were then sorted by heat value and the top 10th percentile of edges were extracted. 

Next, we executed our pipeline for 1000 random mutations with similar consequences to 

those observed in the TCGA data (390 core and 610 interface affecting 1–10 edges). We 

removed edges that had differential heat scores in the top 10th percentile in over 5% of the 

random runs as these edges likely resulted from the underlying topology of our PPI network 

rather than the perturbation of interest. This procedure resulted in a set of connected 

components for each of the 137 mutations, representing mutation-specific candidate cancer 

pathway genes.

2.9 Functional Annotation

We used David29 to annotate the gene sets in the mutation-specific connected components 

from the GO Biological Process data set30. For each cancer gene, functional annotations 

were divided into those common to all mutations and those specific to particular mutations 

(Figure 1f).

3. Results and Discussions

3.1 A Pipeline to Extract Mutation-Specific Pathways

We constructed a pipeline (Figure 1) for mining and annotating cancer related protein sets 

from somatic mutation data while accounting for mutation-specific network perturbations. 

We applied this pipeline to analyze mutations observed in 125 frequently mutated cancer 

genes, where the vast majority of observed mutations are likely to be cancer causing driver 

mutations. Our pipeline can be applied to mutations in any gene, however for genes not 

known to drive tumorigenesis, efforts should be made to discriminate between causal driver 

and non-causal passenger events.

3.2 Mutational Distribution in Cancer Genes

We investigated the spatial distribution of somatic missense mutations on 125 cancer genes 

using individual crystal structures and co-crystallization of the encoded proteins with 

interaction partners. We then incorporated these structural data into a larger network of 

experimentally validated PPIs. We note that because these 125 genes are well studied, there 

is a positive bias towards data availability relative to other genes in the human interactome. 

Nonetheless, only 59 of the 125 proteins had structural complexes in the PDB that included 
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an interaction partner. Despite this, co-crystallization of the 59 driver genes with interaction 

partners covered fully 6% of the experimentally validated protein interactions 

(Supplementary Table 2).

In order to assess the extent of structural diversity of missense mutations observed across 

known cancer genes, we mapped mutations to core and interface regions. We observed that 

cancer gene encoded proteins for which co-crystallization structures are available harbor 

mutations at an average of 2.5 distinct sites (Supplementary Table 2). Of core and interface 

sites observed to harbor mutations, 21% demonstrated tissue specificity (Fisher’s Exact test, 

Bonferroni corrected p –value < 0.05) (Supplementary Table 3). In particular, 4 cancer 

genes showed significant differences in mutation counts at distinct sites in different cancer 

types. These observations suggest that the physical location of mutations in known cancer 

genes may have functional significance.

3.3 Determining the Altered Sub-networks and Their Functionality

To identify perturbed network modules in the global network, we applied a HotNet-like 

method (section 2.8) to the differential heat profiles obtained for missense mutations at 

protein core or interface residues. We focused on cancer genes with mutations mapping to 

multiple distinct locations likely to have different functional consequences. Filtering 

redundant mutations (those occurring at residues in the same protein core or interface), we 

retained 137 mutations for 43 cancer genes. These 137 events returned an average of 56 

altered sub-networks derived from an average of 686 proteins (Supplementary Table 4). We 

annotated the resulting sub-networks from the GO Biological Process database, and found 

that all 43 cancer genes harbored events that implicated specific functional consequences. 

Published events were consistent with our functional annotations for sites in APC, ATRX, 

BRCA1, CBL and HRAS via literature search (Section 4 and Supplementary Table 5). For 

this purpose we assumed mutagenesis experiments reported for other residues at the same 

interface or core would be equivalent to the events we modeled.

3.4 HRAS Case Study: Implicated Sub-Networks and Functions

The RAS family oncogenes, KRAS, HRAS and NRAS were among the first discovered 

oncogenes, and are frequently mutated across a variety of human cancers. These genes 

regulate cell proliferation, differentiation and survival31 via interaction with a number of 

different protein targets. Amino acid substitutions occurring on these 3 genes disturb 

signaling through these pathways and lead to tumorigenesis.

In our current network, we have structurally resolved interfaces for HRAS binding to 

RASA1 and SOS1, but not for KRAS and NRAS. Given the high degree of similarity among 

RAS proteins, and various experimental findings that support similar functional 

capabilities32, the model we present here for HRAS likely generalizes to KRAS and NRAS 

as well.

Among TCGA patients we observe four amino acid substitutions localizing to protein-

binding interfaces on RAS proteins (G12 in 6 patients, G13 in 8 patients, A59 in 1 patient 

and Q61 in 21 patients) and no mutations affecting the protein core (Figure 3). By 
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superimposing the RASA1 – HRAS (PDB ID: 1WQ1) and SOS1 – HRAS (PDB ID: 1BKD) 

complexes, we observed that these two interactors utilize the same binding site on HRAS. 

Physical distance between residues in co-crystalized structures implicated three residues in 

interactions with RASA1 (residues 12, 13 and 61) and SOS1 (residues 13, 59 and 61) 

respectively. This suggests that neighboring residues 12–13 and 59–61 participate in 

different interactions. Mutations at residues 12 and 13 have been observed to have 

prognostic and therapeutic differences. For example, KRAS G13 mutated colorectal cancers 

show some response to cetuximab, while G12 mutated cancers do not respond or may even 

progress more rapidly33. We applied our pipeline to each mutated interface, resulting in 

predictions for mutations altering signaling through RASA1(HRAS G12), signaling through 

SOS1 (HRAS A59) or both simultaneously(HRAS G13/Q61).

3.4.1 HRAS G12 alterations—G12 mutations in HRAS returned protein modules 

involved in GTPase activity, cytokine production, vasculogenesis, blood coagulation, 

endothelial cell differentiation/proliferation and smooth muscle cell proliferation/migration 

(Supplementary Table 6). Evidence suggests that these functions may be linked. 

Inappropriate blood coagulation is frequently observed in cancer patients and is closely 

related to tumor growth34. Vasculogenesis, which involves proliferation, migration and 

remodeling of endothelial cells, have been found to be related with tumor recurrence35. 

Chemokines play an important role in the behavior of endothelial cells during vessel 

formation36. Vascular smooth muscle cells provide homeostatic control and protect newly 

formed vessels against rupture and regression via inhibition of endothelial cell proliferation 

and migration37. Oncogenic HRAS G12 is known to stimulate chemokine secretion38, cause 

VGEF activation and endothelial cell apoptosis39, and is thought to be essential for solid 

tumor maintanence37. Furthermore, VEGF (Entrez Gene ID: 7422), one of the prominent 

molecules that control vasculogenesis, is present in the protein set (Supplementary Table 7) 

implicated by the HRAS G12 mutation. Amino acid changes at HRAS G12 have been 

shown to affect the strength of GTPase activity and binding to GTP40.

3.4.2 HRAS G13/Q61 alterations—Residues G13 and Q61, which participate in a 

common binding site on HRAS, mediate interactions with both RASA1 and SOS1 and are 

frequently mutated in cancer. GO analysis of the protein modules implicated by these 

residues found functional enrichment for response to UV light (Supplementary Table 8–9). 

Even though there is an extensive body of evidence supporting the connection between UV 

radiation and melanoma41–43, the exact mechanism remains unclear. Yang et al44 proposed 

a possible mechanism that drives melanoma photocarcinogenesis through KRAS Q61 

mutagenesis. Besides, its shown that UV-radiation has a bias towards targeting pyrimidine 

dimers that more frequently lead to RAS Q61 mutations45.

3.4.3 HRAS A59 alterations—Mutations at HRAS A59 exclusively affect the SOS1 

interaction. When analyzed with our model, the implicated proteins were involved in GPCR 

signaling. (Supplementary Table 10–11). RAS activation is catalyzed by guanine nucleotide 

exchange factors (GEFs) which include GPCRs. On the other hand SOS146 acts as a GEF or 

RAS. SOS1 forms a complex with GRB2 that is obligatory for GPCR-mediated RAS 

activation. Since these proteins are tightly bound to each other, when the interaction between 
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SOS1 and HRAS is hindered, it is not unexpected to see GPCR signaling as an altered 

pathway.

4. Additional Validation

We assessed two mutated residues affecting interactions between APC and KHDRBS1 

(res640) and CTNNB1 (res1527) respectively. Consistent with the published finding that the 

R640G of APC causes exon 14 skipping by disrupting ASF/SF2 binding47, our unctional 

annotations included mRNA splice related activities and the implicated protein set included 

ASF/SF2. In contrast, functional annotations specific to the res1527 perturbation included a 

number of nervous system related activities, such as “neuron apoptosis” and “negative 

regulation of neuron differentiation”. In the literature, mutations at codon 1495 which is also 

at the CTNNB1 interface have been observed in Medulloblastoma48.

Mutated residues at positions 220 and 263 map to the core of ATRX and an interface that 

mediates binding to members of the Histone H3 family, H3F3A and HIST1H3A, 

respectively. ATRX has been implicated in chromatin remodeling and regulation of gene 

expression. The ATRX ADD domain and HP1 are required for ATRX localization to 

heterochromatin. Mutation E218A reduces pericentromeric localization of ATRX without 

disturbing the stability of the ADD domain49. H3 tails bearing tri-methylated Lys9 (H3-K9) 

are also required for ATRX localization via the ADD domain50. Annotations for residue 263 

were specific to histone H4-K acetylation, while the ATRX core mutations, which 

presumably destabilize the protein, returned histone H3-K9 methylation. This is consistent 

with the ADD domain being unaffected by the interface mutations.

We evaluated residues affecting BRCA1’s interactions with BRIP1 (res1813,res1699) and 

BARD1 (res96). The BRCA1–BRIP1–TOPBP1 complex is associated with DNA repair 

during replication and is essential for the S-phase checkpoint in response to collapsed 

replication forks.51 The mutated residues affecting BRCA1 and BRIP1 interactions returned 

related terms including “DNA repair”, “maintenance of fidelity during DNA-dependent 

DNA replication”, and “DNA replication checkpoint and replication fork protection”. 

Weakening of the BRCA1–BARD1 interaction due to ionizing radiation leads to the 

induction of p21 and initiation of the G1/S checkpoint52. Our annotations for this included 

“DNA damage response, signal transduction by p53 class mediator resulting in transcription 

of p21 class mediator”. In addition, of 10 BRCA1 mutations found to be functional by 

Carvalho et al.53, 7 mapped to interface or core residues with our pipeline.

CBL’s interfaces with UBE2D2 (res418, res417, res384) and EGFR (res322) were observed 

to harbor mutations in TCGA samples. CBL residue R420 is involved in ubiquitination54 

and the G298E mutation was shown to abolish NFAT activation55. Consistent with these 

findings, our annotations specific to the UBE2D2 interface included terms related to 

unbiquitination, while annotations specific to the EGFR interaction included T-cell 

activation and, NFAT activation molecule 1 was present in the protein set.
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5. Conclusions

We describe here our efforts to incorporate information about the differential consequences 

of somatic mutations in the same protein for extracting cancer pathways from large tumor 

‘omics data sets. Although there is limited structural knowledge available for PPIs, what 

exists provides strong evidence for specific functional consequences of mutations at distinct 

sites within the same protein. Among 59 proteins with sufficient structural data, 43 had 

mutations with specific functional annotations. Despite the paucity of functionally 

characterized missense mutations in databases and literature, we were able to find 

supporting evidence in the literature for mutated sites on 6 genes of the 43 genes. A case 

study investigating the mutation consequences for distinct interactions of HRAS further 

highlights that biological processes associated with each event can be specific and may have 

phenotypic relevance to the patient. For more systematic validation, experimental assays 

could be designed to validate predictions of our method, guided by the implicated protein 

sub-networks and the associated annotations. In aggregate, our findings suggest that 

perturbation to cancer pathways may in fact be mutation-specific and point to the need for 

analysis methods aware of tumor-specific network topologies.
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Figure 1. 
A pipeline for mining molecular cancer related sub-networks accounting for different effects 

of distinct mutations. Steps include network assembly (a), mapping of mutations to interface 

versus core residues of cancer genes (b), removal of affected edges (c), extraction of 

associated protein sets (d & e) and functional annotation (f).
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Figure 2. 
Modeling mutations as network perturbations. a) The unaltered protein-protein interactions 

of a wild type protein, b) a core mutation has the tendency to destabilize the protein. We 

depict this phenomenon by removing all edges involving the protein c) an interface mutation 

may affect some of the interactions of a protein. In this case we remove the potentially 

affected edges of the protein from the network.
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Figure 3. 
The RASA1–HRAS complex (a) and the SOS1–HRAS complex (b) show that both 

interactors utilize the same binding site on HRAS. Residues 12, 13, 59 and 61 on HRAS that 

participate in the interface region of these interactions are highlighted in blue. Residue 12 

mediates the HRAS-RASA1, residue 59 mediates the HRAS-SOS1 interaction, and 13 and 

61 participate in both interactions. The small network (c) provides a schematic of the 

residues mediating particular interactions. The grey nodes represent the residues. Their sizes 

are proportional to the frequency with which they are mutated in the TCGA cohort. 

Functions predicted to be specifically altered by mutations at each interface are listed on the 

edges.
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