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Abstract

Feature selection is used extensively in biomedical research for biomarker identification and 

patient classification, both of which are essential steps in developing personalized medicine 

strategies. However, the structured nature of the biological datasets and high correlation of 

variables frequently yield multiple equally optimal signatures, thus making traditional feature 

selection methods unstable. Features selected based on one cohort of patients, may not work as 

well in another cohort. In addition, biologically important features may be missed due to selection 

of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection 

(T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive 

stability while maintains the same level of accuracy. T-ReCS does not require an a priori 

knowledge of the clusters like group-lasso and also can handle “orphan” features (not belonging to 

a cluster). T-ReCS can be used with categorical or survival target variables. Tested on simulated 

and real expression data from breast cancer and lung diseases and survival data, T-ReCS selected 

stable cluster features without significant loss in classification accuracy.

1. introduction

Identifying a minimal gene signature that is maximally predictive of a clinical variable or 

outcome is of paramount importance for disease diagnosis and prognosis of individual 

patient outcome and survival. However, biomedical datasets frequently contain highly 

correlated variables, which generate multiple, equally predictive (and frequently 
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overlapping) signatures. This problem is particularly evident when sample size is small and 

distinguishing between necessary and redundant variables becomes hard. This raises the 

issue of signature stability, which is a measure of a method’s sensitivity to variations in the 

training set. Lack of stability reduces confidence to the selected features. Traditional feature 

selection algorithms applied on high-dimensional, noisy systems are known to lack stability 

(2).

In this paper we propose a new feature selection algorithm, named Tree-guided Recursive 

Cluster Selection (T-ReCS), which addresses the problem of stability by performing feature 

selection at the cluster level. Clusters are determined dynamically as part of the predictive 

signature selection by exploiting a hierarchical tree structure. Formed clusters are of varying 

sizes depending on user-defined p-value thresholds. Selecting clusters of variables provides 

an additional potential benefit. Biologically meaningful biomarkers may not be maximally 

discriminative, but could be correlated with strongly discriminative features that lack 

biological interpretation. T-ReCS was tested on simulated and real data with categorical and 

survival outcome variables. T-ReCS can efficiently process large datasets with tens of 

thousands of variables, thus making it ideal for selecting predictive signatures for patient 

stratification and for development of personalized medicine strategies.

1.1. Related work

To our knowledge, this is the first method for group variable selection with dynamic 

formation of the groups as part of the feature selection procedure. Group-lasso (3) is the 

closest method to T-ReCS, but it requires prior knowledge of the groups, while ideally one 

wants to be able to determine clusters dynamically and the cluster formation to be part of the 

feature selection process. Localzo and colleagues used subsampling of the training set to 

identify consensus feature groups, and then perform feature selection on these groups (4). 

This method is valuable but the determination of clusters precedes the feature selection as 

well. Ensemble methods have been proposed to address the problem of stability by 

agreegating the results of different runs of conventional feature selection algorithms. Haury 

et al. (1) conducted a comprehensive comparative study of many of those methods. Jacob et 

al. (5) have presented a method on enforcing clustering structure on multi-task regression 

problems and these techniques can be adapted to cluster features. Another problem that is 

somewhat related to feature selection stability (but T-ReCS does not address it) is the 

selection of multiple signatures (6, 7), because in some cases the members of the signatures 

may belong to the same clusters.

2. Methods

2.1. Description of T-ReCS

T-ReCS is a modular procedure, which selects group variables in a multi-step process by 

combining elements of hierarchical clustering with traditional feature selection algorithms. 

First, the algorithm performs an initial standard feature selection. Suppose the single 

variables selected are {A,B,C}. Next, it constructs a hierarchical tree structure from the data 

that represents the similarity associations between variables. Leafs, at the bottom of the tree, 

are the single variables. Each internal node in the tree represents a group of variables 
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(genes). The lower in the tree a node is, the more similar the patterns of its members are. 

Next, the algorithm climbs the tree up one level at a time per selected variable. If, for 

example, {A,D,E} are clustered together it creates a new feature A′ representing the cluster. 

If the representative of A′ is informationally equivalent for predicting T, then A is replaced 

by A′ in the set of selected variables which becomes {A′, B, C}. Essentially, the set of 

selected variables is now {{A,D,E},B,C}. The procedure continues for all selected variables 

until no informationally equivalent features can be constructed by climbing up the tree. 

Stability increases since a small perturbation of the data may lead to different initial features 

to be selected (e.g., {D,B,C}), but cluster-based selection will still be {{A,D,E},B,C}.

Any appropriate algorithm can in principle be employed for these steps. In our case, for the 

initial feature selection, we adopt the causal structure finding algorithm Max-Min Parents 

Children (MMPC) (8). MMPC assumes that the data distribution can be faithfully 

represented by a Bayesian Network where each variable and the target T serve as nodes. 

MMPC identifies the parents and children of T (i.e., the adjacencies with T), PC(T), in that 

network efficiently, without fully reconstructing the network. The output of the MMPC is an 

approximation (subset) of the Markov Blanket of T, i.e., a minimal subset of variables that 

renders all other variables conditionally independent and thus can optimally predict T. It was 

shown that under certain broad conditions, the Markov Blanket is the solution to the variable 

selection problem (8). Furthermore, Tsamardinos and colleagues have sown that the PC(T) 

set, in practice, leads to models that are close to optimal for predicting T, while it is 

significantly less computationally expensive than the full Markov Blanket (9). Therefore, 

primary feature selection here is equivalent to discovering the PC(T). For generating the tree 

structure we use ReKS (Recursive K-means Spectral Clustering), which was shown to 

outperform other methods in terms of speed or efficiency and outputs more balanced trees 

when applied to heterogeneous clinical data (10). Finally, to create the representative 

features of a cluster we tested the first Principal Component of the cluster, the medoid, and 

the centroid of the clustered variables.

MatLab was used for implementation of T-ReCS and comparison to other methods. The 

complexity of T-ReCS is roughly O(|φ |2). Specifically, ReKS is O(|φ |2) (10), MMPC is O(|

φ |•|PC(T)|•k), and conditional independence tests for ascending the tree is O(log |φ |•|

PC(T)|). We note, however, that selection of different methods for single feature selection 

and tree construction can alter this complexity.

2.2. Deciding informational equivalence

A key innovation of the algorithm is how to determine whether a cluster representative X′ at 

level k of the tree is informationally equivalent to X at a lower level k+1. Intuitively, we test 

whether X should be substituted with X′, a representative of a cluster of variables while 

maintaining predictive accuracy. We require two conditions to be satisfied: Condition (C1) 

Dep(X′ ; T | S), for every S ⊆ {PC(T)\{X}}, where Dep(X ; T | S) denotes the conditional 

dependence of X with T given variables S. This condition needs to be satisfied by MMPC to 

select a variable in the output. Thus, if (C1) is satisfied MMPC could have selected X′ 

instead of X in the original set of variables if it was available. Intuitively, the test determines 

that X′ carries unique information for predicting T in any context (subset) of the other 
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selected variables. This is justified by Bayesian Network theory: if the data distribution is 

faithful to some Bayesian Network, then this condition is satisfied by the parents and 

children of T. This condition dictates that in the absence of X, a representative X′ of a cluster 

of variables should be selected, which increases stability. Thus, this condition is responsible 

for increasing stability. Condition (C2) is Ind(X ; T | X′), denoting the conditional 

independence of X with T given X′. This second condition implies that the original variable 

X is rendered superfluous (redundant) once X′ is selected. Thus, X and X′ are informationally 

equivalent for predicting T (at least, when no other variables are considered). Thus, this 

condition aims at ensuring that predictive performance is maintained when replacing X with 

X′.

2.3. Statistical tests of conditional independence

T-ReCS, like MMPC, uses conditional independence tests to determine inclusion in the final 

output, based on a corresponding p-value, denoted as P(X ; T | S). If this p-value is below a 

user-defined threshold (typically, 10−2 to 10−4; see below) we accept dependence, and if it is 

larger than a threshold (not necessarily the same) we accept independence. The pseudo-code 

of the algorithm is presented in Suppl Fig S1. We emphasize that the procedure constructs 

new features, corresponding to clusters of variables, adaptively and dynamically. It may or 

may not decide to substitute a variable in the output of MMPC with a representative of a 

larger cluster. A common framework for constructing hypothesis tests is the framework of a 

Likelihood Ratio test (11). The Likelihood Ratio computes the deviance D = −2 · ln(P0/P1), 

where P0 and P1 are the null and the alternative model, respectively. D asymptotically 

follows the chi-square distribution with degrees of freedom equal to the difference in the 

number of parameters between the two models. From this distribution we can obtain the p-

value of the test. For testing the hypothesis Ind(X;T | Z) the null model is a predictive model 

for T given Z and the alternative model is a predictive model for T given Z and X. Thus, the 

ratio tests whether the likelihood for T when X is added is statistically significantly different 

compared to when X is not given. If yes, then indeed X provides additional information for T 

given Z and the null hypothesis of independence is rejected. In the following experiments, 

when T is continuous, we employ linear models (equivalent to testing the partial correlation 

of X and T given Z); when T is discrete, we employ logistic models; and when T is a right-

censored survival variable, we employ the proportional Hazard Cox Regression model) as 

we did before (12, 13).

2.4. Group variable representation

There are many ways to construct a group variable X' from its members. In this paper, we 

tested the centroid, medoid and the first component of the principal component analysis 

(PCA) as cluster representatives since they have been successfully applied on gene 

expression data before (14–16).Other latent variable representations can be used instead.

2.5. Methods for measuring predictive performance

In this paper, we measured the predictive quality of the sets of selected features either 

directly (when the network was known, i.e., synthetic data) or indirectly by using the 

selected features in a regression or classification method.
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For binary target variables, we used Support Vector Machine (SVM) (17), which takes 

continuous predictors as input and outputs a label assignment. SVMs are practical, scalable, 

and have competitive performance for this type of data (9). We evaluated the performance in 

terms of (1) classification accuracy rate defined as the sum of number of true positives and 

true negatives over total number instances and (2) stability as it is defined below.

For time-to-event target variables (a.k.a. survival data) we used the Cox regression (Cox 

Proportional Hazards Model) (18), which relates the predictor variables to the time that 

passes before an event of interest occurs. Time-to-event data are typically right-censored, 

i.e., for some patients we do not know the time of occurrence of the event, but only know 

that they were event-free up to a time point. Measuring the predictive performance of a 

survival regression model is also not straightforward as the prediction error can be computed 

exactly only for the uncensored cases (i.e. when the time to event is known). Several 

measures have been proposed to measure performance for survival analysis (19–22). We 

select the Concordance Index (CI) (19) as it is one of the most commonly used measures for 

survival models. Intuitively, the CI measures the fraction of all pairs of patients, whose 

predicted survival time is correctly ordered by the regression model. Scenarios in which the 

order of observed survival cannot be determined due to censorship are excluded from the 

calculation.

2.6. Methods for measuring stability

For this paper, stability is a measure of how consistently the same variables are selected 

across different cross validation runs. Typically, a measure like Tanimoto set-similarity (23) 

is used to characterize the agreement or percentage of overlap between two sets of features. 

In our case, however, each set of features can contain single- or group-variables, and the 

Tanimoto setsimilarity alone would not suffice. For example, Fi = {{A,B,C}, {D,E}} may be 

selected in cross-validation fold i and Fj = {{A,C}, {B,D}} may be the selection at fold j. 

Before computing set-similarities between elements of Fi and Fj, the elements of these sets 

need to be matched. In this example, one question is whether {A,B,C} in Fi should be 

matched with {B,D} or {A,C} in Fj? To find the best matching, we use maximum weight 

matching (24) to build a bipartite graph between elements of Fi, and Fj. The weights on the 

edges correspond to the Tanimoto set-similarity S(s, w) = |s ∩ w| / |s ∪ w|, where s ∈ Fi and 

w ∈ Fj. In this example, {A,B,C}i is matched to {A,C}j, and {D,E}i to {B,D}j where the 

indexes denote membership in Fi and Fi respectively. After the optimal matching is found, 

the weights normalized to a total sum of 1, and we take the sum of normalized weights of 

the selected edges of this matching as a metric of stability between the selected variables in 

each pair of folds. The overall stability is the average pair-wise stability over all pairs of 

cross-validation folds and ranges between zero (no stability) and one (absolute stability). 

Note that, when only single variables are selected, this definition of stability reduces to the 

average Tanimoto similarity of the selected variables over each pair of folds.

2.7. Datasets used in this paper

2.7.1. Synthetic data—Simulated gene expression data were created using the linear 

Gaussian Bayesian network structure shown in Suppl Fig S2. The network includes the 

target variable T, a set of 25 variables that are ancestors of T, a set of 25 variables that are 
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descendants of T, and 44 variables that do not have a path to T. Parents are nodes 26–28, 

children are nodes 29–31, connected variables are nodes 1–25 and 32–56 and unconnected 

variables are nodes 57–100. The non-immediate relatives to T have an average out-degree of 

2. Each node has continuous values analogous to that of gene expression data. The target 

variable we observe is binary; this is akin to case/control studies or observing two disease 

subtypes in patients. To generate the data, we model the value of each variable as a linear 

function of its parents with equal weights, with a Gaussian noise. In order to simulate the 

effects of co-linearity between variables, for every variable in the dataset we created a total 

of 10 datasets × 1,000 samples each. Each dataset had an increasing amount of Gaussian 

noise, ranging from N(0, 0.05) to N(0, 2.5). In addition, we similarly created one test set 

with 5000 samples.

2.7.2. Biological data

Large scale biomedical datasets: We used three large-scale biomedical datasets. Haury et 

al. (1) study used gene expression data from four metastatic breast cancer cohorts (GEO 

numbers GSE1456, GSE2034, GSE2990, GSE4922)., each with >125 patient samples to a 

total of 819 samples. The second is a breast cancer cell line dataset (25), which contains 

mRNA expression in 60 breast cancer cell lines (24 basal and 36 luminal). The third dataset 

is miRNA expression data from the Lung Genomics Research Consortium (LGRC) (26), 

which includes samples from patients with chronic obstructive pulmonary disease (COPD; 

210 patients) and idiopathic pulmonary fibrosis (IPF; 249 patients). In all these datasets, T-

ReCS was used to identify gene signatures predictive of the particular target variable 

(relapse or not, breast cancer type and COPD or IPF, respectively).

Censored dataset: We used the censored benchmarking datasets from (12) which consisted 

of six publicly available gene expression datasets (27–32). The six sets of censored survival 

data range in size from 86 to 295 cases with 70 to 8,810 variables, and the events of interests 

are either metastasis or survival.

3. Results

We tested T-ReCS on (1) a set of simulated data, (2) a set of six benchmarking gene 

expression datasets, and (3) one set of biological (cell lines) and two of biomedical (clinical) 

data. These datasets were selected to cover cases with either binary or survival target 

variables. We compare T-ReCS performance to a baseline produced by single variable 

selection. We also compare it against ensembles constructed from features selected from 

different folds of cross validation data. We perform 10-fold cross validations when the 

sample size allows. For datasets with sample size less than 200, we perform two repetitions 

of 5-fold cross validation. For a fair comparison, on all instances, the single variable MMPC 

component was run with the same significance threshold a=0.05 and size of maximum 

conditioning set k=5.

3.1. Evaluation of T-ReCS

3.1.1. T-ReCS evaluation on synthetic data and comparison to other methods
—On the synthetic dataset MMPC recovered on average 5.5 out of 6 PC(T) members, with 
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0.8 false positives that are almost always the least significant selected variables. This 

confirms that the single variable MMPC is successfully recovering the planted variables. We 

also note that the spectral clustering method (ReKS) clusters together most of the noisy 

copies of the variables. Non-singleton clusters are often connected by an edge, indicating 

that there is high correlation between them and the clustering is justified. In fact, 75.7% of 

all the unique clusters that were selected under the most lenient parameter combination 

contain copies of a single “seed” variable; while another 18.6% contain “foreign” variables 

seeded from a different variable; and a mere 5.7% of the selected clusters have copies of 

variables from more than one foreign seed variables. This result confirms that ReKS is 

indeed creating valid data partitions for T-ReCS.

The average cross validation accuracy, stability, and cluster size for different thresholds are 

plotted in Fig 1 for three methods for cluster definition. As expected, we see a trend of 

increasing stability and cluster size toward the top of the tree (left to right), with the 

accuracy displaying more subtle variations with a slight spike in the middle region. We plot 

the baseline stability and accuracy in dotted lines in corresponding colors. These are the 

average performance of single variable MMPC across the cross validation runs. Both T-

ReCS accuracy and stability are improved over the corresponding baselines. For comparison 

purposes, we plot the baseline of the ensemble consisting of the union of single variables 

selected from all the 10 cross validation runs, which we use to train SVM models across the 

10 training sets. The average test accuracy is plotted in purple dotted line, and we can see 

that in the more permissive half of the parameter range, T-ReCS performs the same or better 

than simple ensemble average. Lastly, we observe that centroid and PCA methods produce 

very similar results, while medoid allows for larger clusters to be formed, possibly because 

the same member continues to be the “medoid” of the cluster as it advances up the tree, 

masking the “noise” that other cluster members may otherwise introduce.

T-ReCS run on 10 subsets of the synthetic dataset and it identified a total of 66 group 

features, 58 of which contained representatives of at least one of the six members of the 

PC(T) (nodes 26–31). Three others contained only distantly connected nodes and five 

contained unconnecred nodes. Out of the ten testing sets, T-ReCS recovered all 6 PC(T) 

nodes in six, 5 PC(T) nodes in three and 4 PC(T) nodes in one. The results were the same 

regardless of the method used for representing the cluster. We compare T-RECS to SVM 

Recursive Feature Elimination (RFE), lasso and Elastic Net (E-Net) methods on 10 subsets. 

For comparison, we retained the top seven features of each run (total: 70 features for each 

method). SVM RFE recovered instances of nodes 27, 29, 30, 31 only two times and 

representatives of nodes 29, 30, 31 eight times. Lasso recovered instances of nodes 27, 29, 

30, 31 four times and instances of nodes 27, 29, 31 six times. E-Net only recovered 

instances of nodes 29, 31 on all runs. The detailed results are presented in Suppl Table S1.

3.1.2. Comparison of T-ReCS to other feature selection methods on biological 
datasets—Haury et al. (1) performed a comprehensive study on the influence of feature 

selection on accuracy and stability of molecular signatures. They compared eight filter and 

wrapper feature selection methods, including E-Net, RFE and Lasso in single run or 

ensemble runs. We also run T-ReCS on the same four public datasets (33–36) and we 

calculated the same measure of accuracy and stability. We found that T-ReCS strikes a very 
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good balance between accuracy and stability compared to these methods (Fig 2). Perhaps 

more importantly, the figure shows that T-ReCS is on the pareto frontier, i.e., it is never 

simultaneously dominated in both stability and accuracy; thus, T-ReCS offers a new trade-

off point of stability vs accuracy not found in any other method.

3.2. Application of T-ReCS to biomedical datasets

3.2.1. T-ReCS on breast cancer cell line data—T-ReCS run on a set of 60 Basal and 

Luminal breast cancer cell lines (25) and identified three groups of genes that differentiate 

the two subtypes (Fig 3). MMPC identified several genes as predictive of basal vs luminal in 

one or more rounds of cross-validation (Fig 3, “MMPC selected genes”, bold cycles), but 

most are not known to be involved with breast cancer. However, their clusters contain 

members such as FOXA1 (known to be involved in ESR-mediated transcription in breast 

cancer cells) and GATA3 (a known marker of luminal breast cancer). Additionally, when we 

examined the local potential regulatory relationships between the selected genes and their 

group variables, we found potential XBP1 and GATA3 transcription factor binding sites in 

other members as evidenced by the fact that these two genes are the two regulatory hubs in 

this network (Fig 3). This observation suggests that a method like T-ReCS that performs 

variable selection on groups of variables and additionally provides contextual information 

around the selected groups could provide more biologically robust and meaningful 

biomarkers.

3.2.2. T-ReCS on lung patient data—miRNA expression data from LGRC were 

analyzed with respect to disease diagnosis (COPD vs ILD). MMPC, ran on the 210 COPD 

and 249 ILD samples, returned seven miRNAs as maximally predictive of diagnosis, none 

of which was reported as associated with COPD or IPF on a recent comprehensive review 

article (37). When T-ReCS performed cluster selection starting from these seven miRNAs, it 

identified 33 additional miRNAs, (Suppl Fig S3; each miRNA label marks the cluster that 

includes it). Four of the 33 had distinct role in these diseases according to the Sessa et al. 

review (p-value=10−4). miR-1274a, is the most highly induced miRNA in smoker COPD 

patients compared to normal smoker individuals (38). miR-146a is believed to participate in 

a feedback loop with its target, COX2, that limits prostaglandin E2 production and thus 

controls inflammation. In fibroblasts from COPD patients, miR-146a is induced at lower 

levels than in normal fibroblasts (39). miR-21 has been strongly associated to IPF via the 

TGF-β signaling pathway (40). miR-154 is a SMAD3 regulated miRNA, whose expression 

is increased in IPF lung fibroblasts leading to increases in cell proliferation and migration 

(41). Transfection with miR-154 leads to the activation of the WNT pathway in NHLF cells. 

WNT and TGF-β are the two most important pathways involved in IPF (41). Further 

literature search showed that other MMPC/T-ReCS selected miRNAs that have also been 

reportedly associated with COPD or IPF are miR-24 (COPD) (38), miR-135b (COPD) (42) 

and miR-376a (IPF) (43). Interestingly, T-ReCS cluster #7 includes seven of the nine 

miRNAs with confirmed high expression in both IPF lungs and embryonic lungs (41): 

miR-127, miR-299-5p, miR-382, miR-409-3p, miR-410, as well as miR-154, and miR-487b. 

Overall, twelve of the 40 T-ReCS selected miRNAs as diagnostic to COPD or IPF are 

known to be associated with these diseases. The targets of 25 of the 40 miRNAs, as defined 

by the mirConnX (44) prior network, are presented in Suppl Fig S4.
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3.2.3. T-ReCS on survival (censored) data—We evaluated T-ReCS on survival data 

by comparing it with the Survival MMPC (SMMPC) algorithm (13) on the same six clinical 

data sets that were in the 2010 publication (27–32). In general, stability improves from the 

baseline by a substantial margin, while accuracy (in terms of CI) hovers around baseline, 

with small increase or decrease across parameter combinations (Table 1). The size of the 

chosen group variables largely stays within the range of 10 members. This indicates that our 

method gains in stability without severe loss of accuracy, compared to the single variable 

selection baseline.

3.3. Discussion

T-ReCS main novelty is on the dynamic nature of cluster formation, by statistically 

evaluating their predictive equivalence. Compared to other methods it was able to recover 

more of the true parents and children of the target variable. We believe this is because T-

ReCS will cluster together most of the instances of a node. In addition, it was able to 

uncover more biological information than single feature selection methods. A body of work 

has been accumulating on structured sparsity using sparsity-inducing regularizers. Such 

approaches impose a hierarchy of group structure on the variables and penalties apply on the 

groups (45). Typically, the group structure stems from prior knowledge, while in T-ReCS it 

is learned dynamically. But, the main difference between T-ReCS and structured 

regularization methods is that the former is based on statistical tests of independence, while 

the latter on regularization and optimization theory. The former has the advantage of 

theoretically guaranteeing an optimal (and minimal) solution under certain conditions. On 

the other hand, T-ReCS only includes a subset of the variables in each independence test, 

which may lead to sub-optimal solutions if the conditions are not met. Overall, we believe 

T-ReCS addresses an important problem in biomedicine in a robust way. Below we explain 

some details of the algorithm, which we feel require further clarification.

3.3.1. Group vs single variable selection—We demonstrated the stability 

improvement of the algorithm over single variable selection and ensemble baseline on 

simulated data. Significant improvement of stability was achieved with minimum change in 

accuracy. This is somewhat expected, but this is the first time that the cluster structure is 

determined dynamically as part of the search process. T-ReCS uses two conditions to 

achieve this. One condition is designed to enhance stability by substituting single or group 

variables with larger group variables. The other condition is designed to maintain the 

predictive accuracy of the initial variables as they are substituted by group variables. 

Besides improved stability T-ReCS selected group variables contained more biological 

information than the single ones as we showed in the breast cancer and the biomedical 

datasets.

3.3.2. Selection of p-value threshold—Varying the thresholds of the two conditions 

affects the output cluster sizes and subsequently the accuracy and stability of the algorithm. 

A stringent set of thresholds would prevent the procedure from advancing far beyond the 

initial set of single variables (reducing stability), while moderate thresholds allow larger 

group variables to be selected (possibly, at the expense of accuracy). As we relax the 

parameters the expected gain in stability was observed, but the loss in accuracy was minimal 
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at the p-value threshold range of 10−2 to 10−4, suggesting that this may be a parameter 

region that is more suitable for biological data. The accuracy reflects a tradeoff between 

overfitting (from the more stringent range of the parameters) and loss of predictive signals 

(in the more relaxed range of the parameters). A closer look in the distribution of p-values of 

these two tests also confirms that this parameter range is most effective in thresholding the 

clusters in the bottom portion of the tree. Alternatively, cross validation can be performed on 

all input datasets and the parameters selected based on best combined accuracy and stability.

3.3.3. Group variable representation methods—We also investigated its 

performance over a range of parameter combinations using three distinctive cluster 

representation methods. Similar performance was observed between centroid and PCA, 

while medoid tends to produce slightly more dissimilar behaviors. We suspect that this is 

because a medoid does not represent an “average” behavior of a cluster; it is merely a 

member of the cluster that is most similar to everyone else. As the cluster size increases, the 

identity of this member could remain unchanged, in which case the cluster may be allowed 

to grow very large without affecting the predictive performance, and too many noisy 

members could be erroneously recruited. On the other hand, medoid could also be 

susceptible to fluctuations of the member composition in the scenario that a current cluster 

joins with a larger, dissimilar cluster and the identity of medoid switches all of a sudden. For 

this reason, we recommend centroid as the preferred collapsing method since it produces 

more gradual change in stability across many parameter ranges, but unlike PCA it has also a 

straightforward interpretation.

3.3.4. Future work—We have also begun systematically applying our method on a 

number of large-scale studies (e.g., TCGA datasets, METABRIC (46), LGRC (26)). While 

our method was tested only on gene expression datasets in this study, it can be easily 

adapted to other high-dimensional systems such as methylation and SNP data to provide 

predictive models as well as biological intuition. Additionally, the modular structure of the 

algorithms paves the way for a novel group feature selection framework in which alternative 

clustering step, hypothesis tests, and different variants of the causal discovery algorithm can 

be employed. The results presented here are promising both in terms of computational 

performance as well as biological implications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. T-ReCS performance on synthetic data
Accuracy (blue), Stability (green) and Cluster size (red) across 10 parameter combinations 

(left to right, most stringent to most permissive) for three different cluster representation 

methods applied on simulated data. Plotted in dotted lines in corresponding colors are single 

variable selection baseline results. The purple dotted line is the ensemble baseline accuracy.
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Fig. 2. Comparison of T-ReCS with other feature selection methods
Accuracy and stability tradeoff is calculated as in Haury et al. (1) from which the other 

results are obtained. RFE: recursive feature elimination; GFS: greedy forward selection; E-

Net: elastic network.
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Fig. 3. T-ReCS applied on breast cancel cell line expression data
Selected gene groups predictive of Basal vs. Luminal subtypes are presented.
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