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Abstract

Complex mechanisms involving genomic aberrations in numerous proteins and pathways are 

believed to be a key cause of many diseases such as cancer. With recent advances in genomics, 

elucidating the molecular basis of cancer at a patient level is now feasible, and has led to 

personalized treatment strategies whereby a patient is treated according to his or her genomic 

profile. However, there is growing recognition that existing treatment modalities are overly 

simplistic, and do not fully account for the deep genomic complexity associated with sensitivity or 

resistance to cancer therapies. To overcome these limitations, large-scale pharmacogenomic 

screens of cancer cell lines – in conjunction with modern statistical learning approaches - have 

been used to explore the genetic underpinnings of drug response. While these analyses have 

demonstrated the ability to infer genetic predictors of compound sensitivity, to date most modeling 

approaches have been data-driven, i.e. they do not explicitly incorporate domain-specific 

knowledge (priors) in the process of learning a model. While a purely data-driven approach offers 

an unbiased perspective of the data – and may yield unexpected or novel insights - this strategy 

introduces challenges for both model interpretability and accuracy. In this study, we propose a 

novel prior-incorporated sparse regression model in which the choice of informative predictor sets 

is carried out by knowledge-driven priors (gene sets) in a stepwise fashion. Under regularization in 

a linear regression model, our algorithm is able to incorporate prior biological knowledge across 

the predictive variables thereby improving the interpretability of the final model with no loss – and 

often an improvement - in predictive performance. We evaluate the performance of our algorithm 

compared to well-known regularization methods such as LASSO, Ridge and Elastic net regression 

*This work is supported by grant U54CA149237 from the Integrative Cancer Biology Program and by grant U01CA176303 from the 
Cancer Target Discovery and Development of the National Cancer Institute
† Corresponding authors. margolin@ohsu.edu, justin.guinney@sagebase.org. 

NIH Public Access
Author Manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.

Published in final edited form as:
Pac Symp Biocomput. 2015 ; 20: 32–43.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer 

(Sanger) pharmacogenomics datasets, demonstrating that incorporation of the biological priors 

selected by our model confers improved predictability and interpretability, despite much fewer 

predictors, over existing state-of-the-art methods.

1. Introduction

High-throughput technologies such as microarray and deep sequencing have been 

extensively used to reveal that cancer subtypes can be molecularly defined based on their 

corresponding genomic alterations [1-4]. Moreover, two large-scale pharmacogenomics cell 

line screens have become available with genomic profiles and drug response of hundreds of 

clinical and preclinical anti-cancer compounds: the Cancer Cell Line Encyclopedia (CCLE) 

[5, 6] and the Genomics of Drug Sensitivity (Sanger) projects [7-9]. Both studies 

demonstrated that genomic features identified by modern machine learning algorithm could 

be a viable preclinical tool for identifying potential drug sensitivity or resistance markers, 

with the potential for guiding precision medicine applications and clinical trial design.

In contrast to data-driven pharmacogenomic modeling, decades of experimental molecular 

biology has produced a detailed (albeit incomplete) knowledge of gene-gene regulatory 

networks and pathways. The Kyoto Encyclopedia for Genes and Genomes (KEGG), for 

example, is a collection of comprehensive pathway information derived from experimental 

analyses and literature curation [10]. Pathway Commons is another rich resource that 

integrates biological pathway and molecular interaction information from many publicly 

available databases [11]. Importantly, pathway databases represent only the static regulatory 

relationships between genes or gene products and are typically context independent [12]. In 

addition, it is well known that pathways are not functionally independent but are highly 

coupled processes, with constitutive pathway genes playing multiple roles within different 

biological processes.

As computational approaches for modeling therapeutic response are being increasingly used 

in research and translational applications, systematic analyses and best practices 

recommendations have been recently published [13, 14]. However, these studies have 

primarily focused on computational or algorithmic improvements. Integrating prior 

knowledge in predictive algorithms may increase the biological interpretability of these 

models, and potentially mitigate issues of data over-fitting. Several analytical studies have 

already incorporated pathways or network information in the variable selection framework 

[15-21] or used network knowledge to identify differentially expressed genes [22, 23]. 

However, most of these studies considered only pre-selected pathways as “prior 

knowledge”, impeding an unbiased assessment of how each pathway is individually 

associated with model performance. In addition, group lasso algorithms [24-26] were 

proposed for solving the group sparsity problem. However, biological priors such as 

pathways are highly coupled and overlapping, and therefore do not optimally match the 

conditions required for group lasso.

In this study, we present the Stepwise Group Sparse Regression (SGSR) model, developed 

to leverage prior knowledge in order to improve predictive power and interpretability in the 
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context of modeling drug response with genomic data. Specifically, we embedded a prior 

selection procedure into sparse regression, such that it could specify preferences for 

particular combination of priors in the model. The rationale is derived from forward 

stepwise selection, in which selection of gene-set-coherent features are encouraged through 

regularization, while the best combination of feature sets is determined by forward stepwise 

method. We first explored the effectiveness of the SGSR as compared to LASSO, Ridge and 

Elastic Net regression on the CCLE and Sanger cell line studies [5-7, 9, 13, 14], and then 

analyzed whether informative pathway priors improved the selection of previously validated 

drug-targets in our model, e.g. MAPK pathway genes for MEK inhibitors. We also 

demonstrated and compared the effectiveness and power of SGSR using different genomic 

features as input variables, e.g. gene-expression (EXP) vs. copy-number alterations (COPY). 

For the public accessibility, we provide an R package at https://github.com/Sage-

Bionetworks/SGSR, and share all results through https://www.synapse.org/#!

Synapse:syn2600070.

2. Material and Methods

2.1. Materials: Datasets and Prior knowledge databases Datasets

The CCLE and Sanger datasets contain anti-cancer compound screening data performed on 

large panels of molecularly characterized cancer cell lines. Both datasets contain high-

throughput gene expression and copy number alterations, as well as mutation status on a 

subset of genes, summarized to gene-level features. Here, we utilize either EXP or COPY 

dataset to predict drug responses.

In Sanger we have 664 cell lines with EXP measurements on 12,024 genes (643 cell lines 

with COPY data on 12,082 genes), whereas CCLE has 491 cell lines with EXP 

measurements on 18,897 genes (488 cell lines with COPY data on 21,217 genes). All data 

was normalized as described in the original papers [5, 7]. Both studies provided multiple 

drug dose statistics such as IC50 and ActArea (or AUC) to summarize dose-response curves 

to compound sensitivity values for each cell line. We chose ActArea with CCLE and IC50 

with Sanger, respectively, based on our previous analyses showing their predictive benefit 

[13]. In addition, we chose 28 out of 138 compounds in Sanger and all 24 compounds in 

CCLE: 14 overlapping drugs in both cell line studies, selected for cross-comparison. One of 

the main objectives of the proposed model is to improve interpretability by taking advantage 

of prior knowledge on pathways that may be implicated in sensitivity/resistance patterns to 

anti-cancer compounds. Sanger has drug response data to many agents that are not being 

investigated as anti-neoplastic drugs or that have multiple - and overlapping - targets, 

making interpretation of the results difficult. We decided to select for downstream analyses 

Sanger compounds for which there is substantial level of evidence in the literature in terms 

of preclinical or clinical oncological translation, making sure that we had at least one drug 

that inhibits relevant targets (known cancer drivers) included in the final list.

Prior knowledge databases—Curated pathway databases represent a valuable resource 

for scientists studying biological processes in cancer. We take advantage of this information 

accumulated over years of biomedical research and define a knowledge-driven prior as a set 
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of genes that are mapped to a curated pathway. We anticipate that our model selects a set of 

pathways – and corresponding genes – that are most likely functionally important for drug 

sensitivity patterns, therefore increasing biological interpretability of the final set of features. 

Thus, our prior incorporated predictive model goes beyond traditional analyses by learning 

the complex structure of input variables and their functional relationships with response. As 

input to the SGSR model we used the GRAPH Interaction from pathway Topological 

Environment (graphite: R package built in Bioconductor [27]), providing access to publicly 

available canonical pathway databases such as KEGG (n=232), Biocarta (n=254), NCI/

Nature (n=177) and gene ontology (GO) Biological Processes (n=825) and Molecular 

Functions (n=396) in MSigDB 3.0 [28]).

2.2. Baseline regularized regression methods

A major challenge in the development of predictive models utilizing high-dimensional, 

genomic data is finding the optimal trade-off between predictive performance and model 

sparsity (often associated with model interpretability). In the context of drug sensitivity 

modeling, this trade-off is particularly acute as the selection of biomarkers for patient 

stratification is a primary goal. Simultaneously, model performance is used to evaluate the 

ultimate feasibility of drug prediction, and robustness of the biomarkers. Moreover, the 

incorporation of prior knowledge into data-driven models is a non-trivial task. Biological 

priors are highly coupled and oftentimes redundant, thereby complicating the process by 

which they might be included in model building.

To resolve these problems, we have implemented a predictive modeling framework that 

systematically incorporates prior biological knowledge. Here we present the prior 

incorporated sparse regression model and its internal prior selection procedure in terms of 

forward-stepwise selection. Throughout the text we consider the linear regression model y = 

Xβ + ε, where y represents the (n × 1) vector of responses X, corresponds to the (n × p) 

matrix of features, β corresponds to the (p × 1) vector of regression coefficients, and ε 

represents a (n×1) noise vector. The original problem is to estimate vector of coefficients 

 with least square criteria. In the “large p (features), small n 

(samples)” paradigm, the solution to the least-squared problem is undetermined and requires 

constraining the model space. Recent studies have shown that regularized regression can 

lead to practical solutions for modeling high-dimensional genomic data [13, 29-33]. 

Specifically, the LASSO model imposes an L1 penalty on 

 and typically results in sparse solutions where most 

coefficients are exactly zero. Conversely, the Ridge model imposes an L2 penalty on its 

model parameters  and often produces a model where 

most coefficients are non-zero. However, in practice the use of these penalty functions have 

several limitations: the LASSO selects at most n variables before it saturates and if there is a 

group of highly correlated variables the LASSO tends to select one representative from a 

group and ignore the other components in the group. Meanwhile, models based on Ridge 

regression tend to perform well [13], but are hard to interpret due to lack of feature 

selection. To address these problems, Elastic Net regression linearly combines the L1 and 
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L2 penalties of the LASSO and Ridge methods and optimizes two hyper-parameters ( λ1 and 

λ2) . Even though the Elastic Net regression method is 

able to select features that are not identified by LASSO because of high pairwise correlation 

– while still remaining parsimonious – there are intrinsic limitations of data-driven models: 

biological insights of model features can only be extracted after extensive post processing 

steps, including pathway enrichment analyses.

2.3. Stepwise Group Sparse Regression (SGSR)

The SGSR model is based on a stepwise forward “prior” selection procedure (see Figure 1 

describing the workflow of the SGSR algorithm). We first define the following terms: , 

Gi, and  correspond to the set of model features, genes in a gene set, and Mean 

Squared Error (MSE), respectively, corresponding to the i-th gene set and k-th round of the 

algorithm. We define L as the total number of pathways (gene sets) in the database. In the 

initialization step, we train a standard LASSO model without utilization of gene set priors, 

optimizing the LASSO's single hyper-parameter using 5-fold cross-validation. We define the 

set of selected features in this model as M0 and its MSE as MSE0. The stepwise forward 

prior selection process begins by evaluating the addition of each gene set to the previous 

model  and the model that results in the largest reduction of MSE is 

selected as the model input for the next round (see Figure 1). Of note, the newly added genes 

from each gene set are unpenalized in the LASSO model, allowing them to enter into the 

model as a group. If none of the L models produces a lower MSE than the previous optimal 

model, then the iteration terminates and the previous Mk−1 is returned.

More specifically, we have  and 

 in the k-th round, where ,  are the coefficients trained 

by incorporating i-th prior's genes in its LASSO model, β∉i are the coefficients for the 

predictors which do not belong to i-th prior's genes so that they should be penalized, β∈i are 

the coefficients that correspond to i-th prior's genes and should be always unpenalized in the 

model training, and  is the set of all L models in the k-th round of the stepwise selection 

procedure. When  is satisfied, we select the k-th best prior by 

 Finally, the algorithm's iteration is terminated either when no 

further MSE gain is achieved or when all pathways of given database are selected.

2.4. Assessment of model performance

For SGSR model running, we randomly split the input dataset into five non-overlapping 

sample groups: 4/5ths of the samples are used for training, whereas 1/5th of the samples are 

used for testing. The 5-fold cross validation scheme is once again applied within the 4/5ths 

training samples so that we can tune the parameters and have an optimized set of priors. 

Afterwards, we apply the model in the remaining 1/5th test samples and assess the final 

performance by summarizing the 5 sets of predicted drug responses with the Weighted Root 
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Mean Squared Error (WRMSE) metric. The key reason for dividing the RMSE by the 

average of variance from observed and predicted values is that we can give proper weights 

to check whether or not the training procedure is successful. In the present analysis we 

discarded genomic features that have missing data in samples or that have a variance smaller 

than 0.02. At each split we obtained a prediction vector , where j ∈ {1,2,...,5}, and we 

computed a single WRMSE between the concatenated predicted vector, , 

and the full observed response, 

3. Results

3.1. Model assessment with fixed sparsity

Using the SGSR framework, we are interested in generating models that are simultaneously 

sparse (i.e. have a minimal set of features in the model) and optimally predictive. As the 

Elastic Net regression framework was developed to optimize this tradeoff, we compare the 

SGSR method with the Elastic Net model to determine whether incorporation of pathway 

knowledge can improve performance. Specifically, we compared overall model performance 

of SGSR and Elastic Net at comparable levels of model sparsity. Results using the CCLE 

and Sanger data sets are shown in Figure 2.

In general, we observed an overall improvement in predictive performance using the SGSR 

model over Elastic Net regression, in which the latter is constrained to have the same 

number of features as SGSR. This pattern is consistent, regardless of the pathway database 

selected, with the exception of the GO_BP pathways applied on the Sanger data set. 

Consistent with our previous work [13], we observed that models utilizing EXP data are 

more accurate. Interestingly, knowledge-driven priors significantly improved model 

performance when using COPY as input data, particularly in CCLE (P<0.0001 for all 

models, Wilcox rank sum test with all 5 corresponding pathway databases) while the 

performance improvement in Sanger with COPY depended on the type of pathway database 

that was utilized (see Table 1 (A)). Due to marginal gains of predictive performance with 

EXP, not all SGSR models were statistically significant. Overall, SGSR improved predictive 

accuracy over Elastic Net in the majority of comparisons (see “performance gain ratio” in 

Table 1(A)).

3.2 Assessment of data-driven model vs. knowledge-driven model

We also investigated the performance of the data-driven models and the SGSR knowledge-

driven model, independent of sparsity constraints. Figures 3 and 4 summarize the results of 

the two data-driven models (Ridge & LASSO) with SGSR using several pathway databases. 

In general, we observed that Ridge outperforms LASSO, consistent with previous work [13]. 

The improvement of SGSR over LASSO was generally higher than what we observed with 

Ridge over LASSO. Using the CCLE data set, SGSR with COPY markedly outperformed 

the data-driven models while SGSR with EXP produced marginally better performance 

results (see Figure 3 and Table 1 (left orange panels of B and C)). Similarly, with the Sanger 

data, differences in favor of the SGSR algorithm showed consistent trends for both the 
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COPY and EXP models (see Figure 4 and Table 1 (right light green panels of B and C)). Of 

note, the final number of predictors in SGSR models was on average only marginally 

increased as compared with the LASSO models (91.7%, 94.2%, 87.9% and 79.3% in CCLE 

EXP, CCLE COPY, Sanger EXP and Sanger COPY, respectively).

3.3. Assessment of additional features identified by SGSR model

We next defined 2 tests to assess whether the improved performance by SGSR can be 

explained by factors other than the information contained in the gene-set priors. First, in 

order to check whether SGSR improves performance simply by adding additional features, 

we constructed a null distribution of predictive performance by generating 50 random 

models that had the same number of features added by SGSR. To do this, we preserved the 

original model fit by LASSO (M0) and then randomly added genes until we had a model 

with the same number of features as the SGSR model to which we are comparing. Second, 

to test whether similar performance could be obtained by incorporation of non-informative 

gene sets, we trained SGSR models using randomly permuted gene-set priors. Specifically, 

we preserved the input pathway database structure (i.e. maintained the same number of 

genes per gene set) but randomly shuffled the genes within each gene set. Figure 5 

summarizes the predictive performance of SGSR models compared to the randomized 

models. In general, the WRMSE of SGSR models is significantly lower than that of both 

null models.

3.4. Biological Interpretability from identified priors for anticancer compounds

One attractive characteristic of SGSR is the ability to perform feature selection with 

increased interpretability compared to state-of-the-art methods. To exemplify this, we 

analyzed the results of EXP-based SGSR models (with prior using NCI/Nature Cancer 

pathway database) of sensitivity/resistance to the MEK inhibitors AZD6244 and 

PD0325901, agents tested in both CCLE and Sanger. We then compared with the matching 

bootstrapped Elastic Net regression models. It is known that response to these agents 

correlates with mutation status of KRAS/NRAS/BRAF genes [5, 7]. However, we wanted to 

assess whether models built on gene expression measurements could give additional 

biologically meaningful information. Overall, predictive performance of SGSR models for 

AZD6244 and PD0325901 in both CCLE and Sanger data sets are comparable to the gold-

standard method. In addition, top features (genes) identified in SGSR models for each agent 

significantly overlap both within and across data sets, underscoring the reproducibility and 

potential biological relevance of the findings. As shown in Table 2, overlapping genes of 

major interest include: (i) MAP2K1 (also known as MEK) and MAPK1 (also known as 

ERK), important downstream effectors of the mitogen-activated protein kinase (MAPK) 

pathway; (ii) RHOA, a small GTPase known to interact with MAPK pathway to promote 

cell invasion [34]; (iii) AURKB, regulated by MAPK pathway to promote cell division [35]; 

(iv) Src family kinases SRC and FYN, which have a critical role in cell migration, 

proliferation and survival via the MAPK pathway [36, 37]; and (v) EDIL3 (EGF-like repeats 

and discoidin I-like domains 3), a stromal factor that is associated with angiogenic switch 

and poor prognosis in many cancers [38, 39]. By contrast, the genes described above were 

not inferred within the top 500 features by the bootstrapped Elastic Net regression models 

based on gene expression data. Although anecdotal, this analysis suggests that incorporating 
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pathway information during the design of predictive models can identify functionally 

relevant biomarkers that would not be detected from a purely data-driven approach.

4. Discussion

The availability of large-scale pharmacogenomic screens on cancer cell line panels has 

begun to illuminate many of the genomic aberrations underlying compound sensitivity/

resistance. The application of machine learning approaches optimized for feature selection 

on high-dimensional genomic data has been a critical tool in this analysis. Even though the 

tractability of penalized regression models has been proposed in earlier studies [5 ,7, 13], the 

resultant models fail to incorporate well-known pathway characteristics that frequently 

underlie drug efficacy in vitro and in patients. In this study, we propose a novel SGSR 

algorithm that allows known pathway relationships to influence feature selection during 

model fitting, thereby enhancing interpretability of the final model without a concomitant 

decrease in model performance.

Our study benchmarks a statistically principled comparison with state-of-the-art machine 

learning algorithms - namely LASSO, ElasticNet and Ridge regression – to predict drug 

sensitivity using input features from gene expression or copy number. In general, we find 

that the SGSR model has better overall accuracy (smaller MSE) at comparable levels of 

model sparsity. Of note, we observed the highest gains in predictive performance in the 

models that originally gave weak predictions, such as those based on COPY data [13]. 

Moreover, we observe that the specific grouping of the pathways (gene sets) contributes 

meaningful information, demonstrated in our comparison of SGSR to randomly constructed 

pathways. This is important, as we might expect that in aggregate the union of all genes 

from all pathways represent the set of genes/proteins that are more frequently studied, and 

therefore alone might explain the improved SGSR performance. However, the relevance of 

the specific gene set composition underscores the complex and pertinent information 

embedded in these gene sets. Finally, we consider the biological insights derived from our 

model (at the gene level) and interpretability of results (at the pathway level) as major 

advantages for cancer researchers.

In summary, SGSR provides a knowledge-incorporated sparse regression framework with 

significantly increased model interpretability without a trade-off of prediction accuracy. 

Notably, our modeling approach highlights the value of existing knowledge databases and 

their relevance in modeling disease phenotypes. Future directions might consider 

incorporation of even finer-grained relationships (dependence) embedded in these pathway 

databases, such as the protein interactions encoded in the Reactome pathways. We believe 

that SGSR advances current state-of-the art approaches for inferring molecular predictors of 

compound sensitivity, and may be used to identify functionally relevant gene sets used to 

guide translation of preclinical screens into precision medicine trials.
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Figure 1. 

Workflow describing the SGSR algorithm. We define , Gi, and  as the set of 

model features, genes in a gene set, and Mean Squared Error (MSE), respectively, 

corresponding to the i-th gene set and k-th round of the algorithm.
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Figure 2. 
Comparison of model performance (weighted RMSE) between ElasticNet and the Ridge, 

LASSO, and SGSR algorithms. ElasticNet models are constrained to have a comparable 

number of features to the SGSR model. Each point corresponds to a single drug model. (A) 

CCLE with EXP (B) CCLE with COPY (C) Sanger with EXP (D) Sanger with COPY are 

applied for SGSR with 5 distinctive available pathway databases such as KEGG, 

BIOCARTA, Nature/NCI, GO_BP and GO_MF.
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Figure 3. 
Performance comparison for CCLE pharmacogenomics data. (A) Predictability score with 

WRMSE metric of LASSO, Ridge, SGSR with KEGG, Biocarta, NCI/Nature, GO-BP and 

GO-MF pathways using EXP data across the 24 CCLE drugs, (B) Performance discrepancy 

between benchmarked LASSO, Ridge, and SGSR models with five available pathway 

databases with EXP; (C) Predictability score with WRMSE metric of LASSO, Ridge, SGSR 

with KEGG, Biocarta, NCI/Nature, GO-BP and GO-MF pathways with COPY across the 24 

CCLE drugs, (D) Performance discrepancy between benchmarked LASSO, Ridge and 

SGSR models with five available pathway databases using COPY data.
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Figure 4. 
Performance comparison for Sanger pharmacogenomics data. (A) Predictability score with 

WRMSE metric of LASSO, Ridge, SGSR with KEGG, Biocarta, NCI/Nature, GO-BP and 

GO-MF pathways using EXP data across the preselected 28 Sanger drugs; (B) Performance 

discrepancy between benchmarked LASSO, Ridge and SGSR models with five available 

pathway databases with EXP (C) Predictability score with WRMSE metric of LASSO, 

Ridge, SGSR with KEGG, Biocarta, NCI/Nature, GO-BP and GO-MF pathways using 

COPY data across the preselected 28 Sanger drugs, (D) Performance discrepancy between 

benchmarked LASSO and Ridge and SGSR models with five available pathway databases 

with COPY.
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Figure 5. 
Model assessments per drug (WRMSE) including SGSR with BIOCARTA (blue); SGSR 

using random genes (purple, left distribution using 50 random models); SGSR using random 

pathways (yellow, right distribution using 50 random models); LASSO (red); RIDGE 

(green). (A) CCLE with EXP (B) Sanger with EXP (C) CCLE with COPY and (D) Sanger 

with COPY
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Table 2

For the SGSR model, the top 7 predictive features are displayed for AZD6244 (AZD) and PD0325901(PD). 

Cells higlighted in orange correspond to features with evidence of being functionally related to MEK inhibitor 

compounds, as described in the text. For comparison, the ranks of corresponding predictive features inferred 

by bootstrapped Elastic Net are displayed (18,897 and 12,024 features are considered in model building with 

CCLE and Sanger, respectively).

Biomarker SGSR Bootstrapped Elastic Net regression

CCLE Sanger CCLE Sanger

AZD PD AZD PD AZD PD AZD PD

EDIL3 Y Y Y Y 7260 11170 5109 4361

RHOA Y Y Y Y 16833 18775 1335 5022

FYN NA NA Y Y 11962 9574 7932 10345

MAPK1 Y Y NA Y 618 815 8914 10352

MAP2K1 Y Y NA Y 10133 11896 11924 8338

AURKB Y Y Y Y 12979 16464 6772 8464

SRC NA NA Y Y 10820 16675 6501 8516
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