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Abstract

Gene expression and disease-associated variants are often used to prioritize candidate genes for 

target validation. However, the success of these gene features alone or in combination in the 

discovery of therapeutic targets is uncertain. Here we evaluated the effectiveness of the differential 

expression (DE), the disease-associated single nucleotide polymorphisms (SNPs) and the 

combination of the two in recovering and predicting known therapeutic targets across 56 human 

diseases. We demonstrate that the performance of each feature varies across diseases and generally 

the features have more recovery power than predictive power. The combination of the two 

features, however, has significantly higher predictive power than each feature alone. Our study 

provides a systematic evaluation of two common gene features, DE and SNPs, for prioritization of 

candidate targets and identified an improved predictive power of coupling these two features.

1. Introduction

A major goal of biomedical research is to identify disease genes to guide drug discovery that 

aims to improve the disease outcomes (1). Genes are defined as disease genes when they 
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carry disease-causing aberrations (2). To identify an aberration of a gene, or a gene feature, 

and prove it as a causal link between the gene and a disease involves experimental testing 

and is time consuming. The advancement in high-throughput experimental techniques has 

facilitated this process by enabling rapid generation of vast amount of data for disease-

associated gene features. Those techniques include the gene expression microarray, which 

allows the study of differential gene expression (DE) between disease and control samples; 

and high-throughput genotyping and next generation sequencing, which allows the study of 

disease-associated single nucleotide polymorphisms (SNPs) by comparing disease and 

control populations. However, these disease-associated features could be assigned to 

thousands of candidate genes. Prioritizing genes by incorporating these features for further 

experimental testing of causal relation is therefore necessary to narrow down the search 

space and increase the effectiveness of translating these candidates (3).

DE is often considered when prioritizing candidate genes, largely because it has been widely 

used to discover differentially regulated genes and deregulated molecular mechanisms (4). 

However, it has also been shown that DE genes might not perform well for specific diseases, 

where highly differentiated genes were not directly related to diseases (5). Yet, whether it 

can be generalized for all diseases is not clear and most researchers still use DE genes as 

their primary choice for seeking molecular explanations of biological phenotypes. SNPs to 

phenotype associations from genome-wide association studies provide unbiased screens of 

common variant associations. Using disease-associated SNPs to prioritize candidate genes 

are on the rise, especially as the sequencing technology is getting cheaper and more 

comprehensive computational tools have been developed to facilitate the process of the raw 

sequencing data. However, disease-associated SNPs derived from a defined population 

could fail in a larger or different population (6) and how SNPs perform across different 

disease conditions is largely unknown.

Increasing effort has been put to link different types of gene features from different sources 

to improve the performance of each individual feature. As an example, highly differentially 

expressed genes were found more likely to harbor disease-associated SNPs (7). However, 

how this feature combination would affect the candidacy of the gene for target validation 

has not been studied. More comprehensive integration of genetic variants with other types of 

genomic and biological data has been performed in individual disease condition (8). 

Although it showed great promise of using genetics to guide drug discovery, whether this 

can be generalized for other disease conditions is not clear.

An objective assessment of the performance of DE genes and disease-associated SNPs alone 

or in combination in different disease conditions will help understand the utility of these 

features and provide guidance to the application of them for target prioritization. However, 

that type of assessment is currently lacking, mainly because it will require multiplex data 

collection and incorporation between features across disease conditions.

In this study, we integrated gene expression with disease-associated SNPs and therapeutic 

target data sets across a diverse set of 56 diseases in 12 disease categories (Figure 1). We 

systematically evaluated how successful DE genes, disease-associated SNPs or the 

combination of both can recover known disease targets, and how well they can predict the 
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known targets by comparing with random sampling of these features. We demonstrate that 

the performance of DE genes, disease-associated SNPs or the combination of both varies 

across diseases. We observe that both DE genes and disease-associated SNPs have more 

recovery power than predictive power. The combination of the two features, however, has 

more predictive power than each feature alone. This suggests linking DE genes with disease-

associated SNPs improves the accuracy of prioritizing candidate targets.

2. Methods

2.1 Selection of diseases

To examine the relation between gene expression and disease targets, we focused our study 

on diseases that have at least one gene expression microarray study and one known target.

To identify diseases and their associated microarray data, we utilized a text mining approach 

using previously published methods (9,10). Briefly, Gene Expression Omnibus (GEO) 

experiments that are relevant to human diseases and measure both normal and disease states 

were collected by an automated annotation and mapping between the Medical Subject 

Heading (MeSH) terms of the experiment associated publications and the disease concepts 

in the Unified Medical Language System (UMLS). Disease annotations and the associated 

microarray datasets were manually reviewed in a post-processing step to ensure accuracy. 

The resulting datasets included 238 disease concepts and 8,435 microarray samples.

To identify diseases that have at least one known target, we used the Therapeutic Target 

Database (TTD) (11), which provides manually annotated information about known 

therapeutic targets, their targeted disease conditions and corresponding drugs. It had 897 

disease conditions and 2,071 therapeutic targets (accessed in Aug. 2013), which include 

targets that are successful, in clinical trials, in pre-clinical research or discontinued. We 

extracted the UniProt IDs of the targets and mapped them to human Gene IDs. Then we 

converted the disease conditions of successfully mapped targets to UMLS concept IDs using 

the MetaMap (12). The maximum confidence score of 1000 was used as a cutoff for the 

successful mapping. The resulting dataset consists of disease-known target pairs that are 

represented by the disease concept ID and the target gene ID across 859 diseases and 2,071 

therapeutic targets.

Next, we mapped the disease concept IDs between the disease-microarray and the disease-

target datasets, which resulted in 122 diseases (Figure 1). These diseases that have at least 

one known therapeutic target and one gene expression microarray study were further 

analyzed for their DE genes.

2.2 Determination of DE genes and disease-associated SNPs

We used the method of significance analysis of microarray (SAM) (13) and its Bioconductor 

R package (siggenes) to identify DE genes for each of the 122 diseases. For diseases that 

have multiple associated studies, the study that has the largest sample size was chosen. For 

genes with multiple probes, the expression level of the probe that had the highest absolute 

value was used. The raw data of the microarrays were processed and normalized as 

described in our previous publication (14). With a false discovery rate (FDR) < 0.05, 56 
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diseases were found to have at least one DE gene, which includes a total of 17,409 unique 

DE genes across all the diseases.

To identify the associated SNPs of these 56 diseases, we utilized a human disease-SNP 

association database (VARIMED) (15,16). In a recent release (Sep. 2013), we have 

manually-curated over 466,000 disease-associated SNPs across about 6,600 associated 

diseases and related phenotypes from 17,088 publications. To evaluate the performance of 

using SNPs for recovering known targets, we used a cutoff p<10−6 and obtained 46,644 

disease-associated SNPs from VARIMED. The SNP associated disease names were then 

mapped to concept IDs of the 56 diseases that have at least one DE genes and at least one 

known target. Thirty-eight diseases were assigned with at lease one SNPs. Unassigned 

diseases were marked as having 0 SNPs in Table 1. SNPs associated genes were obtained 

from the dbSNP138 database. Linkage disequilibrium (LD) effect was not counted for 

selecting disease-associated SNPs to obtain a general pool of SNPs.

By combining the disease-DE genes dataset with the disease-SNPs dataset, we built 129,905 

triples between the 56 diseases, their DE genes and associated SNPs. The resulted dataset 

was mapped with the gold standard of disease targets, which allowed us to examine how 

often DE genes and associated SNPs alone or in combination can recover and predict the 

known targets of each disease.

2.3 Determination of the gold standard for disease targets

Targets of the 56 diseases that have at least one DE genes were extracted from the disease-

target dataset derived from TTD. Total 520 targets were selected and used as the gold 

standard for the evaluation. These targets are primary targets, which are directly responsible 

for the efficacies of the corresponding drugs that were confirmed by strong experimental 

evidence (11).

2.4 Evaluation

To evaluate how often the DE genes and disease-associated SNPs can recover and predict 

the known targets in each disease, we calculated the percentage of targets that have each 

feature (recall) and the percentage of each feature that are associated with targets 

(precision). We also calculated the percentage of targets that have both features and the 

percentage of having both features and being targets for each disease. This allowed us to 

evaluate the combinatory effect of differential expression and genetic variants on recovering 

and predicting known targets. To obtain the expectation of the performance of these 

features, we randomly sampled (1,000 times) the same amount of genes and SNPs against 

the total gene sets in the microarray and the whole dbSNP138 pool, respectively. The 

precision and recall of the random samples were then calculated the same way as above. The 

q value was calculated as the percentage of the precision or recall of random sampling that is 

better than the original. The known targets of each disease were used as the gold standards. 

For comparing the performance between features, the precision and recall of each feature for 

all diseases were plotted (Figure 3).
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2.4.1 Precision—For each disease, the precision of DE genes, disease-associated SNPs 

and both are calculated using the following formulas:

(1)

(2)

(3)

2.4.2 Recall—For each disease, the recall of DE genes, disease-associated SNPs and both 

are calculated using the following formulas:

(4)

(5)

(6)

3. Results

3.1 Statistics of the diseases studied

Overall we studied 56 diseases. According to Human Disease Ontology, they consisted of 16 

cancers, 7 nervous system diseases, 6 metabolic diseases, 5 gastrointestinal system diseases, 

5 infectious diseases, 4 cardiovascular system diseases, 4 respiratory system diseases, 3 

musculoskeletal system diseases, 3 autosomal recessive diseases, 2 reproductive system 

diseases, 1 mental disease, and 1 syndrome (Figure 2A). These diseases had total 520 unique 

known targets, 17,409 unique DE genes and 8,235 unique disease-associated SNPs. About 

2/3 of them had fewer than 10 targets; 2/3 of them had under 2,000 DE genes; and about 

80% of them had fewer than 200 associated SNPs (Figure 2B-C). On average, these diseases 

had 13.6 known targets, with obesity (64), prostate cancer (59) and breast cancer (51) having 

the largest number of known targets (Table 1). With a FDR<0.05, the average DE genes 

these diseases had was 2320. Spinal muscular atrophy and breast cancer had the largest 

number of DE genes, which were 12,648 and 10,314 respectively. Given the 10−6 p-value 

cutoff, the average number of disease-associated SNPs was 163. Rheumatoid arthritis (RA) 

and type 1 diabetes mellitus had the largest number of disease-associated SNPs, which were 

1,826 and 1,456 respectively. However, 18 out of the 56 diseases did not have any disease-

associated SNPs with p<10−6 (i.e. # of dis. SNPs=0, Table 1).
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3.2 Recovering known targets by DE genes and disease-associated SNPs

Next, we asked for each disease how often the known targets were differentially expressed, 

harbored disease-associated SNPs or had both gene features. Those are essentially the true 

positive rates (recall) of using DE genes, disease-associated SNPs or both to recover known 

targets. We also calculated how often DE genes, disease-associated SNPs or both were 

associated with known targets, which are the positive predictive values (precision) of using 

these gene features to predict targets (Table 1).

The average recall by DE genes was 20.7%. Thirty-two of the 56 diseases (57.1%) had no 

targets that were DE genes, or 0% recall. Four diseases (urothelial carcinoma, spinal 

muscular atrophy, sickle cell anemia and dilated cardiomyopathy) had 100% recall, because 

they had only one known target and that target was a DE gene. Compared to random 

sampling, DE genes did not perform better in most of the diseases, except for prostate 

cancer, breast cancer, multiple sclerosis, and inflammatory bowel disease (q < 0.1 or q < 

0.05). The average recall by disease-associated SNPs was 1.3% and 44 of them (78.6%) 

were 0%, where no targets of those diseases harbored disease-associated SNPs. HIV and 

type 2 diabetes mellitus had the highest recalls, 16.7% and 9.8% respectively. For diseases 

with non-zero recall, SNPs of most of them performed better than random sampling, except 

prostate cancer, breast cancer, asthma, and multiple sclerosis. The average recall by both DE 

genes and disease-associated SNPs was 0.3% and 52 of them (92.9%) were 0%. Only 4 

diseases (malignant melanoma, rheumatoid arthritis, multiple sclerosis and breast cancer) 

had targets that were DE genes and harbored disease-associated SNPs, which had a recall of 

5.9%, 4.7%, 4.6% and 2%, respectively. Compared to random sampling, the combination 

performed better in all four diseases, except breast cancer.

On the other hand, the average precision by DE genes was 0.1%, where 39 diseases (69.6%) 

had no DE genes that were targets, or 0% precision. Multiple sclerosis and prostate cancer 

had the best precision, 1.5% and 1.4% respectively. Similarly, DE genes did not predict 

better than random sampling in most of the diseases. Since 18 of the 56 diseases had no 

associated SNPs (NA in the second to the last column, Table 1), the precision by disease-

associated SNPs was calculated for 38 diseases. The average precision by disease-associated 

SNPs was 0.3% and 26 of them (68.4%) were 0%, where no SNPs of those diseases 

occurred in targets. Malignant melanoma and Alzheimer's disease had the best precision, 

3.9% and 2.2% respectively. For most of the diseases, SNPs also predicted better than 

random sampling. Thirty-five diseases had no DE genes that also harbored disease-

associated SNPs (NA in the last column, Table 1), thus the precision by DE genes and SNPs 

were calculated for 21 diseases. The average precision by both DE genes and disease-

associated SNPs is 2.4% and 17 of them (80.9%) were 0%, where no DE genes that 

harbored SNPs were targets. The four diseases that had DE genes that harbored disease-

associated SNPs and were targets were multiple sclerosis, rheumatoid arthritis, malignant 

melanoma, and breast cancer, with a precision of 25%, 15.4%, 6.2% and 3.6% respectively. 

The combined features of all four diseases predicted better than random sampling (q < 0.05).

To compare the performance between features, we plotted the precision and recall of each 

feature for all diseases (Figure 3). Although it was not the common precision and recall 
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curve for evaluating the performance of a classifier, it showed how the performance of each 

feature varied in different diseases and allowed the comparison of performance between 

features. The performance of each feature varied greatly between diseases. When using DE 

genes, the recall values ranged from 0-100%, while the precision values were all below 3%. 

In other words, DE genes could recover all known targets of a disease, but most of the DE 

genes were not disease targets. When using disease-associated SNPs, the recall values were 

between 0-20%, while the precision values were below 5%. In other words, disease-

associated SNPs could recover a small portion of the known targets, but most of them were 

not in known targets. When using both DE genes and disease-associated SNPs, the recall 

values were below 6%, yet the precision values ranged from 0-25%. In other words, 

although the combination of both features could hardly recover any known targets, if a gene 

was differentially expressed and contained disease-associated SNPs, it would have higher 

chance to be a target for that disease.

When comparing between features, we found that DE genes gave better recall than disease-

associated SNPs and disease-associated SNPs gave better recall than the combination of 

both. On the other hand, disease-associated SNPs gave better precision than DE genes, and 

the combination of both gave the best precision. We also identified the genes that were 

differentially expressed, harbored disease-associated SNPs and were targets. They were 

MOG (Myelinoligodendrocyte glycoprotein) of multiple sclerosis, C5 (Complement C5) and 

TNF (Tumor necrosis factor) of rheumatoid arthritis, MC1R (Melanocyte-stimulating 

hormone receptor) of malignant melanoma, and ERBB4 (Receptor tyrosine-protein kinase 

erbB-4) of breast cancer (Table 2).

4. Discussion

Gene expression and genetic variants are the two most commonly measured and used 

features for selecting the best candidate genes for target validation. Their efficiency in target 

prioritization is often studied in specific disease conditions and their performance between 

diseases is largely unknown. Here we incorporated three diverse datasets from GEO 

microarray database, VARIMED disease-associated SNPs database and TTD target 

database, and systematically evaluated each feature and the combination of them in 

recovering and predicting known targets of 56 human diseases.

We found that the performance of each feature varied between diseases, which indicates that 

each feature could have different therapeutic utility for different diseases. However, overall, 

both DE genes and SNPs had lower precision than recall, which suggests that the DE or 

disease-associated SNP feature by itself is not good at predicting a target. The combination 

of being DE genes and harboring disease-associated SNPs had significantly improved 

precision (q < 0.05) compared to each feature alone (Figure 3). This implies that genes that 

are differentially expressed and harbor disease-associated SNPs are more likely to be targets. 

Indeed, for example, TNF (Table 2) is a successful target for RA validated by others (17) 

and carries risk variants via genome-wide association studies (18). Thus this combinatory 

feature could be used as a new criterion for prioritizing candidate genes for target validation.
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In this study, DE genes, disease-associated SNPs or the combination of them was directly 

evaluated to allow objective assessment of their performance in target prioritization. 

Although the combination of DE and SNPs showed increased predictive power, it was still 

not great (< 25%). Optimizing the two features may improve their performance in 

prioritizing targets. A common alternative way to prioritize DE genes is their fold change 

(fc). Disease-associated SNPs can be ranked by how often they are associated with DE 

genes (%SNPs), since genetic variants associated with disease traits are likely to influence 

gene expression (1). Then the rank sum of fc and %SNPs can be used combinatorially. 

Many other prioritization methods can be incorporated with each feature, including the use 

of protein-protein interaction network, pathway involvement, literature and ontology. 

However, their effect on the performance may not necessarily improve the overall 

performance and need to be evaluated on a disease-by-disease basis.

There are limitations in this study that should be recognized. First, the microarrays used to 

derive the DE genes were from the study with the largest sample size, which could be the 

reason for the over 10,000 DE genes in some diseases. Meta-analysis of all microarray 

studies of each disease might result in more robust set of DE genes and a better disease 

signature (19). Likewise, meta-analysis of genome-wide studies for the same disease, as well 

as accounting for LD structure among the associated variants, may increase the reliability of 

disease-SNPs pairs. In this work, we used stringent thresholds (i.e., FDR < 0.05 and p value 

< 10−6), changing which can alter the number of DE genes and disease-associated SNPs that 

will affect the precision and recall. Second, the known targets of each disease were extracted 

from the TTD database. Other databases may help derive more known targets, such as the 

DrugBank (20) and PharmGKB (21). However, DrugBank does not provide direct relations 

between targets and diseases, while PharmGKB has more pharmacogenomic information 

than drug-therapeutic targets relations. It is also important to recognize that all of these 

databases capture the current knowledge, which is not complete or perfect. As we discover 

more therapeutic targets and evaluate their efficacy, these resources will become more 

comprehensive and serve as a better gold standard.

Our study revealed a baseline performance of the two most common gene features, DE and 

SNPs, on prioritizing candidate targets, and identified an increased predictive power of the 

combination of the two features than that of each feature alone.
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Figure 1. 
The schematic diagram of the work flow.
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Figure 2. 
Histogram of disease categories (A), known targets (B), DE genes (C), and disease-

associated SNPs (D) of the 56 diseases studied.
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Figure 3. 
Performance of recovering known targets of each disease by DE genes, disease SNPs or 

both. Each point indicates the values of one disease.
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Table 1

Statistics of the 56 diseases in the study

Recall Precision

Disease Name # of 
known 
targets

# of DE 
genes 

(FDR<0.05)

# of dis. 
SNPs 

(p<10−6)

% of 
targets 
being 
DE 

genes

% of 
targets 

harboring 
dis. SNPs

% of 
targets 

being DE 
genes & 

harboring 
dis. SNPs

% of 
DE 

genes 
being 

targets

% of 
dis 

SNPs 
in 

targets

% of DE 
genes 

harboring 
SNPs that 

are 
targets

Obesity 64 1 507 0
3.1

* 0 0
0.4

* NA

Prostate Cancer 59 1030 407
23.7

** 1.7 0
1.4

**
0.5

* 0

Breast Cancer 51 10314 189
82.4

** 2.0 2.0
0.4

* 0.5
3.6

**

Asthma 48 2754 348 12.5 4.2 0 0.2
1.7

** 0

Rheumatoid Arthritis 43 858 1826 11.6
7.0

*
4.7

** 0.6
0.5

**
15.4

**

Type 2 Diabetes Mellitus 41 26 647 0
9.8

** 0 0
1.4

** 0

Alzheimer's Disease 39 4682 416 30.8
7.7

** 0 0.3
2.2

** 0

Atherosclerosis 35 93 0 0 0 0 0 NA NA

Hypertension 32 71 161 0
3.1

* 0 0 0.6* NA

Parkinson's Disease 25 1235 899 8.0 0 0 0.2 0 0

Multiple Sclerosis 22 131 435
9.1

* 4.6
4.6

**
1.5

* 0.2
25.0

**

Inflammatory Bowel Disease 18 4682 39
50.0

* 0 0 0.2 0 0

Non-small Cell Lung Cancer 17 7834 4 52.9 0 0 0.1 0 0

Hypercholesteremia 17 7179 1 64.7 0 0 0.2 0 NA

Malignant Melanoma 17 7901 78 82.4
5.9

*
5.9

* 0.2
3.9

**
6.2

**

Myocardial Infarction 17 4 132 0 0 0 0 0 NA

Osteoarthritis 15 131 59 6.7 0 0 0.8 0 0

Lymphoma 12 888 14 33.3 0 0 0.5 0 NA

Crohn's disease 11 5590 352 54.5
9.1

* 0 0.1
0.3

* 0

Glaucoma 11 140 28 0 0 0 0 0 NA

Chronic Obstructive Pulmonary 
Disease

11 23 42 0 0 0 0 0 NA

Acute Myeloid Leukemia 10 2097 0 40.0 0 0 0.2 NA NA

Malaria 10 194 27 0 0 0 0 0 NA

Erectile Dysfunction 10 1 3 0 0 0 0 0 NA

Sepsis 10 29 0 0 0 0 0 NA NA

Colon Cancer 9 2547 235 11.1 0 0 0 0 0

Irritable Bowel Syndrome 8 69 0 0 0 0 0 NA NA

Ulcerative Colitis 7 2587 119 0 0 0 0 0 0

Cystic Fibrosis 7 4 0 0 0 0 0 NA NA

Type 1 Diabetes Mellitus 7 35 1456 0 0 0 0 0 NA

Small Cell Carcinoma of Lung 7 8118 0 28.6 0 0 0 NA NA
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Recall Precision

Disease Name # of 
known 
targets

# of DE 
genes 

(FDR<0.05)

# of dis. 
SNPs 

(p<10−6)

% of 
targets 
being 
DE 

genes

% of 
targets 

harboring 
dis. SNPs

% of 
targets 

being DE 
genes & 

harboring 
dis. SNPs

% of 
DE 

genes 
being 

targets

% of 
dis 

SNPs 
in 

targets

% of DE 
genes 

harboring 
SNPs that 

are 
targets

Bacterial Infection 6 233 0 0 0 0 0 NA NA

HIV 6 356 350 16.7
16.7

* 0 0.3
0.3

* NA

Chronic Lymphocytic Leukemia 6 5996 40 66.7 0 0 0.1 0 0

Amyotrophic Lateral Sclerosis 5 2 84 0 0 0 0 0 NA

Skin Squamous Cell Carcinoma 5 877 2 0 0 0 0 0 NA

Cancer of the Stomach 5 1846 55 0 0 0 0 0 0

Gastro-esophageal Reflux Disease 4 2 0 0 0 0 0 NA NA

Huntington's Disease 4 8100 15 75.0 0 0 0 0 0

Pulmonary Hypertension 4 10 0 0 0 0 0 NA NA

Endometriosis 3 9 33 0 0 0 0 0 NA

Acute Promyelocytic Leukaemia 3 2 0 0 0 0 0 NA NA

Macular Degeneration 3 721 0 0 0 0 0 NA NA

Pulmonary Fibrosis 3 14 1 0 0 0 0 0 NA

Cervial Cancer 3 66 0 0 0 0 0 NA NA

Myelodysplastic Syndrome 2 760 0 0 0 0 0 NA NA

Alpha-1 Anti-trypsin Deficiency 2 5 0 0 0 0 0 NA NA

Sickle Cell Anemia 1 6429 7 100.0 0 0 0 0 0

Urothelial Carcinoma 1 8767 0 100.0 0 0 0 NA NA

Cardiomyopathy, Dilated 1 5728 19 100.0 0 0 0 0 0

Hepatic Cirrhosis 1 118 6 0 0 0 0 0 NA

Spinal Muscular Atrophy 1 12648 0 100.0 0 0 0 NA NA

Vitamin A Deficiency 1 88 0 0 0 0 0 NA NA

Idiopathic Fibrosing Alveolitis 1 241 18 0 0 0 0 0 NA

Testis Cancer 1 5280 61 0 0 0 0 0 0

Severe Acute Respiratory 
Syndrome

1 359 0 0 0 0 0 NA NA

Average 13.6 2319.7 162.8 20.7 1.3 0.3 0.1 0.3 2.4

NA: either the total # of dis. SNPs is 0 or the total # of DE genes harboring SNPs is 0.

*
q < 0.1

**
q < 0.05
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Table 2

Diseases that have targets that are DE genes and harbor dis. SNPs

Disease Name All Known Targets (DE genes in italic, harboring SNPs in bold, DE genes & harboring SNPs in bold italic)

Multiple Sclerosis ADRB2, CASP3, CNP, CRH, LPAR1, CXCR3, ICAM1, IFNAR2, IFNG, ITGA4, KCNA3, LEP, MMP9, MOG, 
MPO, PPARG, KLK6, CFLAR, NR1I2, CCR2, SPP1

Rheumatoid Arthritis C5, CD4, CD80, CCL2, CCR2, CD86, CFLAR, CTSK, F2RL1, FGF2, IKBKB, IKBKE, IL12A, IL13, IL15, IL17A, 
IL1R1, IL4, IL6ST, ITGA4, ITGB1, LTA, ITGB7, JAK3, JUN, LIF, LTB4R, MAPK11, MAPK12, MAPK14, MIF, 
MMP8, MMP9, MYD88, OSM, PTGES, PTGS2, SYK, TLR9, TNF, TNFRSF1 B, TRBV7-9, VEGFB

Malignant Melanoma ALOX12, BIRC5, BRAF, CDH2, CTLA4, CTSL1, DCT, EDNRB, FN1, HDAC4, HSP90AA1, IFNAR2, JUN, MAP3K4, 
MC1R, PLAU, TXNIP

Breast Cancer AKT1, ANGPT2, CDH2, CYP1B1, BRCA2, CCND1, CDC25A, CLU, COPS5, CTSD, CXCL12, CXCR4, CYP19A1, 
DNMT3B, EGFR, EPHA2, ERBB2, ERBB4, ESR2, ESRRA, FOS, HSD17B1, JUN, LHCGR, MAP2K1, MAP3K4, 
MDM2, MFGE8, MMP2, MUC1, NCOA3, NRG1, PGR, PLAUR, PRL, PRLR, PTGS2, PTK6, PTN, SERPINB5, 
SNCG, SRC, ST14, STC1, TPBG, VDR, HSP90AA1, MAP2K5, SCGB2A2, STS, TYMP
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