Skip to main content
. Author manuscript; available in PMC: 2016 Jan 1.
Published in final edited form as: Pac Symp Biocomput. 2015:455–466.

Algorithm 2.1.

Stochastic Coordinate Coding with Missing Values

Initialization:
Samples X = {x1, x2, …, xn}, missing indices Ω = {Ω1, Ω2, …, Ωn}, λ ∈ ℝ, initial dictionary 𝒟0 ∈ ℝm×k, initial combination coeficients Z = {z1, z2, …, zn}, number of iterations T.
1: ℋ ∈ ℝk×k ← 0
2: for t = 1 to T do
3:   for i = 1 to n do
4:     Update coefficients via a few iterations of coordinate descent according to (3)
5:     zi ← arg minzi f𝒟(zi)12𝒫Ωi(𝒟zixi)22+λzi1.
6:     Update Hessian matrix
7:      =+ziziT,
8:     Update the dictionary 𝒟i−1 colum by column
9:     for j ∈ {t|1 ≤ tk, t ∈ ℕ, zi(t) ≠ 0} do
10:        uj=𝒫Ωi(𝒟·,ji1)1[j,j]zi(j)*𝒫Ωi(𝒟i1*zixi).
11:        𝒫Ωi(𝒟·,ji)uj.
12:        𝒟·j1max{D·j2,1}𝒟·j.
13:     end for
14:   end for
15:   𝒟0 ← 𝒟n
16: end for
Output: 𝒟n.