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Abstract

The environment plays a major role in influencing diseases and health. The phenomenon of 

environmental exposure is complex and humans are not exposed to one or a handful factors but 

potentially hundreds factors throughout their lives. The exposome, the totality of exposures 

encountered from birth, is hypothesized to consist of multiple inter-dependencies, or correlations, 

between individual exposures. These correlations may reflect how individuals are exposed. 

Currently, we lack methods to comprehensively identify robust and replicated correlations 

between environmental exposures of the exposome. Further, we have not mapped how exposures 

associated with disease identified by environment-wide association studies (EWAS) are correlated 

with other exposures. To this end, we implement methods to describe a first “exposome globe”, a 

comprehensive display of replicated correlations between individual exposures of the exposome. 

First, we describe overall characteristics of the dense correlations between exposures, showing 

that we are able to replicate 2,656 correlations between individual exposures of 81,937 total 

considered (3%). We document the correlation within and between broad a priori defined 

categories of exposures (e.g., pollutants and nutrient exposures). We also demonstrate utility of the 

exposome globe to contextualize exposures found through two EWASs in type 2 diabetes and all-

cause mortality, such as exposure clusters putatively related to smoking behaviors and persistent 

pollutant exposure. The exposome globe construct is a useful tool for the display and 

communication of the complex relationships between exposure factors and between exposure 

factors related to disease status.

1. Introduction

1.1. A need to identify correlations between exposures

The environment is hypothesized to play a significant role in health and disease, but we lack 

methods to elucidate how multiple environmental exposures are associated together with 
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disease. Along this line, Wild and Rappaport and Smith have documented a new way to 

conceptualize the environment called the “exposome” [1, 2], the environmental analog of 

the genome that consists of the totality of exposures from birth to death. Recently, others 

and we have proposed a new method to search for environmental factors associated with 

disease called the environment-wide association study (EWAS) (e.g.,[3-6]). EWAS is 

analytically analogous to the genome-wide association study (GWAS), a comprehensive 

way to search for genetic variants associated with disease.

While EWAS and GWAS are operationally similar, genotypes and exposures are very 

different data types and correlation structures. Genotypes are static and often assume a fixed 

number of discrete values (e.g., homozygous/heterozygous for single nucleotide 

polymorphisms). Correlation between genetic variants is a function of chromosomal location 

due to the phenomenon of “linkage disequilibrium” (LD). The closer variants are located 

along the genome, the greater the chance they will be inherited together and correlated.

On the other hand, environmental exposures are heterogeneous (in measurement modality 

and data type) and are dependent on geographic location, human behavior, and time. Their 

correlation is known to be “denser” than that of genetic variants [3, 7] as many exposures 

are correlated with many others [8, 9]. Importantly, given an exposure identified from an 

EWAS, it is very difficult to infer if the exposure is independently associated with the 

disease, the direction of association (“what causes what”), or if the exposure is simply a 

correlate [7, 9].

Given these challenges, it is a priority to develop methods to identify robust correlations 

between exposures. Correlation between exposures may allow investigators to describe how 

exposures can lead to other exposures (as identified in an EWAS). For example, many 

nutrients are consumed together. A non-optimal diet (however it may be defined) may lead 

to a deficiency in a whole group of vitamins and nutrients. As another example, individuals 

who are exposed to air pollution may have high levels of several products of combustion, 

including hydrocarbons, volatile compounds, and heavy metal levels. In the environmental 

health sciences it is hypothesized that prevalent “mixtures”, or combinations of exposures, 

may dictate health [10]; understanding how exposures are correlated is one step toward 

defining what mixtures are relevant to human health.

Many methods have been proposed to describe the correlation between multiple variables, 

often under the analytical category of “unsupervised learning”, and have been used 

successfully in the genomics field (e.g, [11-13]). We have yet to apply these methods to 

describe relationships between exposures. In this report, we describe correlations between 

exposure variables to construct an “exposome globe”, extending methods developed for 

unsupervised learning with genomic data called “relevance networks” [13]. We utilize the 

exposome globe to identify clusters of exposures correlated with exposures identified in 

EWAS (“EWAS-identified exposure”). We hypothesize it is possible to attain a broader and 

more interpretable view of EWAS-identified exposures with an exposome globe.
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1.2. Methods

1.2.1. About the National Health and Examination Survey (NHANES) data—As 

documented earlier (e.g., [4]), we attained four NHANES surveys data each representing 

independent samplings from the US population in years 1999-2000, 2001-2002, 2003-2004, 

and 2005-2006. Each NHANES survey dataset ascertains an array of environmental factors, 

sociodemographic factors (e.g., income), and clinical indicators (e.g., serum glucose, time to 

death). NHANES is a representative sampling of the US population and therefore covers the 

entire age, sex, and demographic distribution of the US.

We constructed a correlation globe with factors of the exposome. These factors include 

direct and quantitative measurement of environmental exposures representing chemicals, 

nutrients, or infectious agents (assayed directly in human tissue, such as blood serum, urine 

and hair). For example, quantitative measurements of nutrient (e.g., vitamins, carotenes) and 

pollutant (e.g., heavy metals, polychlorinated biphenyls) levels in human tissue are 

ascertained via mass spectrometry (MS), such as gas chromatography and inductively 

coupled plasma MS. Infectious agents (e.g., bacteria) were measured via immunological 

assays. Second, the CDC ascertained other indicators of environmental exposure including 

participant self-reported nutrient consumption (derived from a food questionnaire on foods 

consumed prior to the interview), physical activity, and prescribed pharmaceutical drugs.

1.2.2. Construction of an exposome globe of replicated environmental 
correlations—Our method is similar to that of the “relevance network” framework to find 

correlations of expressed genes [13]. We computed the non-parametric correlation 

coefficient between each pair of environmental factors (e.g., biomarkers of exposures and 

self-reported information) for each independent survey (e.g., 1999-2000, 2001-2002, 

2003-2004, and 2005-2006). These coefficients are bi-serial coefficients between pair of 

binary factors and Spearman correlations for continuous factors. There are many ways to 

compute correlations between variables. We chose a non-parametric metric as to not make 

any distributional assumptions regarding the environmental factors.

We computed 37,207 correlations in the 1999-2000 survey (we denote the set of all 

correlations by ρ1999-2000), 59,412 in 2001-2002 (ρ2001-2002), 128,715 in 2003-2004 

(ρ2003-2004) and 51,340 in 2005-2006 (ρ2005-2006). We filtered out correlations that were 

present in only one survey and therefore could not be replicated and those that had sample 

sizes less than 10. After filtering, we were left with 35,835, 56,557, 80,401, 47,203 

correlations in each of the four surveys respectively.

These correlations represented interdependencies between 289 unique environmental factors 

in 1999-2000, 357 in 2001-2002, 456 in 2003-2004, and 313 in 2005-2006 surveys. A total 

of 575 unique factors were observed across all surveys. The sample sizes for computing 

correlations ranged from 11 to 9965 (median 1883) in 1999-2000, 11 to 11,039 (median 

2237) in 2001-2002, 11 to 10122 (median 2271) in 2003-2004, and 33 to 10348 (median 

3267) in 2005-2006.

There were a different number of correlations measured in 2, 3, or 4 surveys. This is because 

the CDC had different sample sizes for different exposures. Specifically, 41,158 correlations 
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were ascertained in 2 surveys (e.g., 1999-2000 and 2003-2004), 25,436 in 3 surveys (e.g., 

1999-2000, 2003-2004, and 2005-2006), and 15,343 in all 4 surveys, resulting in a total of 

81,937 correlations considered.

We used a permutation-based approach to estimate the two-sided p-value of significance for 

each pair of correlations within each independent survey. Specifically, each environmental 

factor was randomly permuted (sampled without replacement) and the correlations were re-

computed to create a set of correlations that reflected the null distribution of no correlation. 

Briefly, given an exposure X and Y in one dataset of NHANES, we shuffled values of X to a 

new array X̃and computed the correlation between X̃ and Y. We repeated this procedure for 

all pairs of correlations for each survey. We denote distribution of correlations derived from 

the randomly permuted datasets as  for 

each of the 4 surveys respectively. The p-value for an individual correlation from ρ was the 

fraction of correlations from the permuted dataset  with greater absolute value. For 

example, for a correlation ρx from  the p-value equals 

 function.

We then estimated the false discovery rate (FDR) q-value for each correlation in each of the 

surveys using the Benjamini-Hochberg step-down approach [14], resulting in a vector of q-

values for each survey, denoted as q1999–2000, q2001–2002, q2003–2000, q2003–2004, q2005–2006,. 

We deemed a correlation to be replicated if its q-value was less than 5% in at least 2 

surveys.

A replicated correlation can exist in 2, 3, or 4 independent dataset surveys. We computed a 

single “overall” correlation that summarized the correlation from multiple surveys with the 

inverse variance weighting method as used in fixed-effect meta-analyses[15]. In summary, 

we computed the overall coefficient as weighted average of the coefficients from each of the 

survey where weights are the standard errors of coefficient. The exposome globe consisted 

of overall summarized correlations in a set of tuples called P. Each tuple contains the 

relationship between exposures A and B and their correlation coefficient (ρ). Specifically, if 

a correlation between exposure A and B was replicated, its overall correlation is inserted in P 
as the tuple [(A, B), ρ], where (A, B) links A to B and ρ is the summarized correlation 

coefficient.

We visualized replicated overall correlations with the Circos visualization toolkit version 

0.67 [16]. Each individual environmental factor is grouped and arranged in a circle. Lines 

between factors on the inside of the circle depict replicated correlations between factors and 

the thicknesses of the lines depict the absolute values of the correlations. Red and blue lines 

represent positive and negative correlations respectively.

1.2.3. Environment-wide association findings in type 2 diabetes and all-cause 
mortality—Previously, we have conducted EWASs for type 2 diabetes (T2D [4]) and all-

cause mortality [5]. In T2D, we searched for association between 252 serum and urine 

biomarkers of exposure with serum fasting glucose and validated 10 factors. These 10 

factors included nutrients such as trans/cis-β-carotene and vitamin C/D and pollutants such 
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as PCB170 and heptachlor epoxide. In all-cause mortality, we searched for association 

between 249 environmental exposures and self-reported consumption behaviors and 

validated 7 factors, including urine-measured and serum-measured cadmium, smoking 

behaviors (e.g., number of cigarettes smoked per day), and physical activity behaviors (e.g., 

metabolic equivalents).

We visualized the EWAS findings from these studies in the exposome globe. First, we 

plotted the −log10(p-value) of association between the environmental factor and outcome 

(e.g., T2D, all-cause mortality) as a scatter plot in the Circos plot (referred to as an “EWAS 

track” below). Next, given a set E of validated factors (e.g. the 10 factors validated in T2D), 

we filtered and visualized correlations of pairs (A, B) from P that contained any factor in E 
(e.g., all pairs (E, B) or (A, E) where E is a validated exposure in E). In other words, we 

visualized all “first-degree neighbors” of the validated EWAS findings E from P.

2. Results

2.1. Distribution of correlations of the exposome globe

We considered 81,937 total correlations of the exposome. Correlations among factors of the 

exposome were modest; specifically, the median of the absolute value of all correlations was 

0.025 (interquartile range of 0.010 to 0.06, Figure 1A [red line]).

Of the 81,937 correlations, 12,385 (15%) had a q-value less than 5% in at least 1 survey 

dataset. Of these, the median absolute value of correlation was 0.122 (interquartile range of 

0.071 to 0.282, Figure 1A [green line]).

We define the “exposome globe” as the network of correlations that were replicated (q-value 

less than 5% in at least two independent surveys). Of the 81,937 correlations, 2,656 (3%) 

were replicated and made up the exposome globe. The median absolute value of correlations 

of the exposome globe was markedly higher than the median of all correlations at 0.5 

(interquartile range of 0.385 to 0.635, Figure 1A [blue line]). Most of the replicated 

correlations (2,513 of 2,656) had positive sign (Figure 1B). The median of positive and 

negative replicated correlations was 0.508 and −0.282 respectively (Figure 1B).

2.1.1. Concordance of replicated correlations

We observed that correlations were concordant between surveys. The concordance of the 

exposure correlations between the different surveys was greater than 0.8 (assessed via 

Pearson ρ, Table 1). For example, the concordance between all correlations in the 2001-2002 

and the 2003-2004 survey was 0.82 (Table 1). All correlations were highly significant 

(p<10−10). As expected, when only considering replicated correlations (relationships of the 

exposome globe), the concordance was greater (e.g., concordance between 2001-2002 and 

2003-2004 survey was 0.90). Therefore, while correlations were modest/small (Figures 

1AB) they were reproducible across cohorts.

2.1.2. The exposome globe reflects correlations within and between categories of factors

While the globe was dense (2,656 of all possible 81,937 correlations were replicated) we 

observed interpretable broad patterns in the exposome globe (Figure 2). First, we observed 
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positive correlations within each exposure category (“intra-category” correlations), such as 

between serum nutrients, nutrients ascertained from food recall questionnaires, volatile 

organic compounds, hydrocarbons, polychlorinated biphenyls (PCBs), dioxins, phthalates, 

bacteria (co-infection), and pesticides. We observed positive correlations between categories 

of exposures, such as between phthalates and hydrocarbons, PCBs and dioxins, dioxins and 

furans, furans and PCBs, pesticides and PCBs. Of note, there were positive correlations 

between some nutrients and pollutants, such as PCBs, dioxins, and furans. Briefly, PCBs, 

dioxins, hydrocarbons, and furans are “persistent pollutants”. Persistent pollutants are 

lipophilic (accrue in fatty tissue) and accumulate in the food chain. PCBs had been used for 

manufacturing materials whose use has been banned during the 1970s. Dioxins, furans and 

hydrocarbons are by-products of industrial processes such as pesticide manufacturing and 

combustion. Demographic factors, including age, sex, and race/ethnicity were also 

correlated with multiple groups of exposures.

2.1.3. Describing EWAS-identified factors with the exposome globe

We used the exposome globe to describe the first-degree correlations of factors validated in 

previous EWAS investigations of T2D and all-cause mortality. We only selected correlation 

links in the exposome globe that were between validated EWAS exposures and other 

exposures. We observed qualitatively different globes for EWAS factors found in T2D and 

mortality (Figure 3).

In all-cause mortality, we observed clusters of correlated exposures putatively related to 

smoking but little related to healthy behaviors, such as physical activity or diet (Figure 3A). 

Specifically, we observed that the self-reported variables of current and past smoking, which 

had been identified via EWAS as risk factors for death (red points in the EWAS track, 

Figure 3A), were correlated with hydrocarbons (e.g., napthols) and volatile organic 

compounds (e.g., toluene). Further still, urine and serum cadmium, both also positively 

associated with death (red points on the EWAS track), were also correlated with smoking 

status and a biomarker of nicotine (cotinine). There were relatively fewer correlates for 

factors that were associated with protection from death, such as trans lycopene and physical 

activity.

In T2D, we observed that serum measures of PCB170 and heptachlor epoxide, two types of 

banned and polychlorinated compounds used in materials manufacturing and pesticides 

respectively, and positively associated with T2D (red point in EWAS track [Figure 3B]), 

correlated with other exposures of the same category, such as other polychlorinated 

biphenyls and pesticides. Therefore, PCB170 and heptachlor epoxide could be a marker of 

correlated chlorinated exposures, all which may play a role in T2D. Cumulative role of 

groups of persistant pollutants is indeed one hypothesis for T2D [17]. Serum levels of 

Vitamin A (e.g., retinol, retinyl stearate, and retinyl palmitate), were positively correlated 

with heptachlor epoxide. Further, serum-measures of γ-tocopherol, a type of vitamin E 

(positive association with T2D, red point in EWAS track, Figure 3B), was negatively 

correlated with serum-measured folate (blue correlation line, Figure 3B); individuals with 

high levels of γ-tocopherol had lower levels of folate.
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3. Discussion

3.1.1. Summary of findings

By relating all possible exposures with one another by comprehensively computing 

correlations and replicating these correlations across multiple independent survey datasets, 

we were able to produce a first exposome correlation globe. We observed that this globe 

contains many reproducible correlations between exposures of the same environmental 

health category or group, but also between these groupings. The correlations of these 

exposures may be indicative of ways human populations are exposed (“routes of exposure”), 

such as behaviors and/or shared metabolic fate of biomarkers of exposure. Relatedly and 

importantly, by selecting correlations that are related to a disease outcome and identified by 

EWAS (via the EWAS track), we can create hypotheses regarding disease-related exposures, 

such as smoking correlates in mortality and persistent pollutants in T2D.

3.1.2. Strengths of exposome globes

There are several advantages of the proposed exposome globes. First, exposome globes 

allow the presentation and visualization of the clusters of co-existing exposures, or mixtures, 

in humans. These mixtures may be a result of common routes of exposure or behaviors (e.g., 

foods are mixtures of nutrients or smoking behavior can result in a mixture of hydrocarbons 

and heavy metals). These systematic correlations may also help identify shared 

characteristics of exposures; for example, chlorinated persistent pollutants were all densely 

correlated with one another perhaps due to shared routes of exposure, but also because they 

happen to be lipophilic and have similar metabolic fates.

Secondly, knowing how exposures are correlated with one another may aid inference in 

disease association studies, such as EWAS or gene-environment (GxE) interaction studies. 

For example, displaying EWAS identified factors with correlation globes may enable 

investigators to pin down behaviors that underlie the correlations. For example, we observed 

that many of the exposures found in an EWAS in all-cause mortality, such as smoking, were 

strongly correlated with hydrocarbons and volatile organic compounds. These compounds 

may be indicative of the complex chemical matrix of cigarette smoke (e.g., metals, 

hydrocarbons, and volatile compounds may be found in cigarette smoke). Such a 

visualization is analogous to a “manhattan plot” in GWAS, where the correlation (LD) 

between genetic variants and their p-value of association is visualized jointly to enable 

assessment of independence of associations between genotype and disease [18].

Relatedly, in GxE investigations, exposome globes may present alternative scenarios for 

interaction between the environment and genetic variants. Because of power and sample size 

constraints, GxE investigations test a few environmental factors at a time [19]. For example, 

we recently documented an interaction between serum levels of trans-β-carotene and a 

GWAS-identified SNP, rs13266634 in the SLC30A8 gene in T2D [20]. However, evidence 

of statistical interaction is not evidence of biological interaction. But, other exposures 

correlated with trans-β-carotene (e.g., Figure 3B) may provide clues to other possible 

alternative molecular pathways that are centered on the SLC30A8 gene.
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Third, correlated exposures may enable investigators to identify biases, such as confounders 

in association studies, including EWAS or GxE interaction studies. Confounded exposures 

are those that are not causal, but associated with the disease of interest (e.g., diabetes or 

mortality) and the causal exposure (similar to genetic loci in linkage as discussed above). 

Once correlated exposures are identified through the globe, investigators can attempt to 

“control” and condition for them in their statistical models to observe how they influence the 

strength of association between exposures and the disease. Conditioning by correlated 

exposures also enables investigators to assess independence of associations between 

exposure and disease or even find other exposures associated with the disease [21], such as 

in GWAS [22]. Further, as we have claimed before, exposome globes may also enable 

investigators to compare effect sizes for disease associations among different categories of 

correlated exposures appropriately [9].

Fourth, exposome globes enable coordination, collaboration, and communication between 

individual investigators. For example, because of heterogeneous nature of exposures (such 

as measurement modality), single investigators may have expertise on but a few of these 

exposures (e.g., phenols, heavy metals, infectious agents). The exposome globe presents a 

way to relate exposures to another and across domains of expertise (e.g., between chemical 

exposure to infectious agents). Exposure globes may also help organize broad follow-up 

efforts, across exposures of different categories and correlated exposures.

3.1.3. Future directions

With the exposome globe in place, other analyses can follow. First, one could quantitatively 

identify highly correlated subsets of the exposome, analogous to “haplotypes” in the genome 

using methods such as weighted network analyses [11]. Haplotype blocks are contiguous 

regions of the genome that contain genetic variants that are correlated because they are 

inherited together, a phenomenon known as linkage disequilibrium. There are several 

benefits of explicitly identifying clusters of the exposome, including assessing only a subset 

of exposures that are correlated with one another in future EWAS. This is likely to be a 

more cost effective measurement of the exposome. By analogy, in GWAS, a comprehensive 

view of common frequency genetic associations is achieved by measuring only a subset 

(“tagging” variants) of all possible common genetic variants. Tag variants are in linkage 

disequilibrium and correlated with unmeasured variants. While providing “tag” exposures 

that are proxies of others, exposome haplotypes themselves will allow derivation of new 

categories of exposure that reflect the mixtures present in humans. Further, we may begin to 

hypothesize how interventions on few exposures may modulate many others and even how 

seemingly distinct pathologies may share a common etiology.

We emphasize that the exposome globe is descriptive does not capture independent 

relationships, causal, and/or time-dependent relationships between exposures. Extending 

globes to partial correlation networks (e.g., [23, 24]) may be informative regarding 

independent relationships, but an outstanding challenge is adapting these methods to missing 

exposure information and assessing exposures over time (both issues with NHANES, a 

cross-sectional survey). Understanding the directionality of relationships between exposures 

will require longitudinal exposure data on individuals coupled with multivariate 
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computational methods to model time-dependent changes of entire correlation globes. 

Exposures are highly time-dependent, and it would be worthwhile to test whether and how 

exposome globes differ between an individual from child to adulthood.

Our method could be expanded to incorporate geospatial and/or clinical data. Exposures 

reflect where individuals live and work; for example, the correlation globe for individuals in 

urban settings will likely be very different than those living in a rural place. Last, we plan to 

move beyond just T2D and mortality and consider relationships between the exposome 

globe and other clinical and physiological variables. In doing so, we hope to get a broader 

glimpse of the complex role of the exposome in disease.

4. Acknowledgments

This work is supported by a NIH National Institute of Environmental Health Sciences (NIEHS) K99/R00 Pathway 
to Independence Award (1K99ES023504-01) and a fellowship award from the Pharmaceutical Research and 
Manufacturers Association of America (PhRMA) to CJP.

References

1. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of 
environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers 
Prev. 2005; 14(8):1847–50. [PubMed: 16103423] 

2. Rappaport SM, Smith MT. Environment and Disease Risks. Science. 2010; 330(6003):460–461. 
[PubMed: 20966241] 

3. Patel CJ, Ioannidis JP. Studying the elusive environment in large scale. J Am Med Assoc. 2014; 
311(21):2173–4.

4. Patel CJ, Bhattacharya J, Butte AJ. An Environment-Wide Association Study (EWAS) on type 2 
diabetes mellitus. PLoS ONE. 2010; 5(5):e10746. [PubMed: 20505766] 

5. Patel CJ, et al. Systematic evaluation of environmental and behavioural factors associated with all-
cause mortality in the United States National Health and Nutrition Examination Survey. Int J 
Epidemiol. 2013; 42(6):1795–810. [PubMed: 24345851] 

6. Hall MA, et al. Environment-wide association study (EWAS) for type 2 diabetes in the Marshfield 
Personalized Medicine Research Project Biobank. Pac Symp Biocomput. 2014:200–11. [PubMed: 
24297547] 

7. Ioannidis JPA, et al. Researching Genetic Versus Nongenetic Determinants of Disease: A 
Comparison and Proposed Unification. Sci Transl Med. 2009; 1(7):8.

8. Smith GD, et al. Clustered environments and randomized genes: a fundamental distinction between 
conventional and genetic epidemiology. PLoS Med. 2007; 4(12):e352. [PubMed: 18076282] 

9. Patel CJ, Ioannidis JP. Placing epidemiological results in the context of multiplicity and typical 
correlations of exposures. J Epidemiol Community Health. 

10. Carlin D, et al. Unraveling the Health Effects of Environmental Mixtures: An NIEHS Priority. 
Environ Health Perspect. 2012; 121(1):a6–a8. [PubMed: 23409283] 

11. Horvath, S. Weighted Network Analysis: Applications in Genomics and Systems Biology. 
Springer; New York: 2011. 

12. Eisen MB, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad 
Sci U S A. 1998; 95(25):14863–8. [PubMed: 9843981] 

13. Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using 
pairwise entropy measurements. Pac Symp Biocomput. 2000:418–29. [PubMed: 10902190] 

14. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. J R Stat Soc B. 1995; 57(1):289–300.

15. Borenstein, M., et al. Introduction to Meta-Analysis2009. John Wiley and Sons; Chichester, UK: 

PATEL and MANRAI Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



16. Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 
2009; 19(9):1639–45. [PubMed: 19541911] 

17. Porta M. Persistent organic pollutants and the burden of diabetes. Lancet. 2006; 368(9535):558–9. 
[PubMed: 16905002] 

18. Pearson TA, Manolio TA. How to interpret a genome-wide association study. J Am Med Assoc. 
2008; 299(11):1335–44.

19. Patel CJ, Chen R, Butte AJ. Data-driven integration of epidemiological and toxicological data to 
select candidate interacting genes and environmental factors in association with disease. 
Bioinformatics. 2012; 28(12):i121–6. [PubMed: 22689751] 

20. Patel CJ, et al. Systematic identification of interaction effects between genome- and environment-
wide associations in type 2 diabetes mellitus. Hum Genet. 2013; 132(5):495–508. [PubMed: 
23334806] 

21. Park SK, et al. Environmental risk score as a new tool to examine multi-pollutants in 
epidemiologic research: an example from the NHANES study using serum lipid levels. PLoS One. 
2014; 9(6):e98632. [PubMed: 24901996] 

22. Pang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 
additional variants influencing complex traits. Nat Genet. 2012; 44(4):369–75. S1-3. [PubMed: 
22426310] 

23. Magwene PM, Kim J. Estimating genomic coexpression networks using first-order conditional 
independence. Genome Biol. 2004; 5(12):R100. [PubMed: 15575966] 

24. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. 
Biostatistics. 2008; 9(3):432–41. [PubMed: 18079126] 

PATEL and MANRAI Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 1. 
A.) Cumulative distribution of absolute value of correlations. The red line denotes the 

summarized correlation coefficients for all pairs of exposures possible. The green line 

denotes correlations that achieved q-value less than 5%. The blue line denotes correlations 

that were replicated (and part of the exposome globe), or had q-value less than 5% in at least 

2 surveys. B.) Histogram of all replicated correlations of the exposome globe. Vertical black 

line denotes 0 correlation.
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Fig 2. Overall Exposome Correlation Globe
575 exposures are grouped by a priori defined environmental health categories and 

displayed in different colors in the globe. Replicated correlations are shown in red (positive 

correlation) or blue (negative correlation) lines between exposures. Line thickness is 

proportional to size of the absolute value of correlation coefficient. Only replicated 

correlation links are displayed (distribution shown in Figure 1B).
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Fig 3. A.) Exposome Correlation Globes for EWAS in All-Cause Mortality and B.) T2D
Association p-values from EWAS are shown as a separate track (“EWAS track”) above each 

exposure (red points denote EWAS validated associations with positive effect size 

[indicating risk] blue points indicate an EWAS validated negative effect size [indicating 

protective]). Validated EWAS associations for T2D and all-cause mortality are offset in 

labeled in red or blue text. Only “first-degree” correlations (correlations for validated EWAS 

findings) are displayed in the globes and displayed in black text. Acryl.=acrylamide; 

Mel=Melamine; VoC=volatile organic compounds; PCBs=polychlorinated biphenyls; 

PFCs=polyfluorinated compounds
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Table 1

Pearson ρ of exposure correlations between each independent NHANES dataset. Number of correlations 

compared are in parentheses.

1999-2000 2001-2002 2003-2004 2005-2006

1999-2000 1.00 0.84 (33191) 0.84 (34337) 0.92 (16955)

2001-2002 1.00 0.82 (55025) 0.93 (22931)

2003-2004 1.00 0.94 (47070)

2005-2006 1.00
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