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Abstract

Big data bring new opportunities for methods that efficiently summarize and automatically extract 

knowledge from such compendia. While both supervised learning algorithms and unsupervised 

clustering algorithms have been successfully applied to biological data, they are either dependent 

on known biology or limited to discerning the most significant signals in the data. Here we present 

denoising autoencoders (DAs), which employ a data-defined learning objective independent of 

known biology, as a method to identify and extract complex patterns from genomic data. We 

evaluate the performance of DAs by applying them to a large collection of breast cancer gene 

expression data. Results show that DAs successfully construct features that contain both clinical 

and molecular information. There are features that represent tumor or normal samples, estrogen 

receptor (ER) status, and molecular subtypes. Features constructed by the autoencoder generalize 

to an independent dataset collected using a distinct experimental platform. By integrating data 

from ENCODE for feature interpretation, we discover a feature representing ER status through 

association with key transcription factors in breast cancer. We also identify a feature highly 

predictive of patient survival and it is enriched by FOXM1 signaling pathway. The features 

constructed by DAs are often bimodally distributed with one peak near zero and another near one, 

which facilitates discretization. In summary, we demonstrate that DAs effectively extract key 

biological principles from gene expression data and summarize them into constructed features 

with convenient properties.
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1. Introduction

Modern genomic technologies have dramatically reduced the cost of comprehensively 

interrogating biological systems, which has made genome-scale measurements a routine part 

of biology. This has produced vast amounts of data from which we can extract complex 
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biological principles, potentially broadening our horizon from examining a single pathway 

to extracting and summarizing the global principles that underlie complex biological 

systems.

While “big data” introduce new opportunities, they also raise new computational challenges. 

Even though hardware advances will play a role, new algorithms that can extract, represent, 

and reason about the principles embedded in such data are also needed. Supervised machine 

learning algorithms have been developed to predict gene functions and interacting partners1 

or to identify new disease-related genes.2 These methods identify new genes or interactions 

by building upon known examples and consequently are well suited to discovering key 

biological features, but are not well suited to discovering new processes. Unsupervised 

algorithms such as clustering can identify key relationships embedded within data, e.g. the 

existence of tumor subtypes,3 but tend to identify only the strongest signals in the data.

To best utilize big data in reasoning systems, the feature extraction method should allow for 

the discovery of new pathways and principles, construct features with amenable 

distributions, and build features that generalize across datasets. Based on these key factors, 

we identified Denoising Autoencoders (DAs) as a promising approach. DAs are a variant of 

Artificial Neural Networks (ANNs), but unlike ANNs, which are frequently used for 

classification, the goal of DAs is to learn compact and efficient representations from input 

data.4 DAs improve upon the classic autoencoder by incorporating noise during training, a 

procedure which generates robust features.5 The training objective for DAs is to build 

features that reconstruct initial input data from corrupted data, i.e. input data with random 

noise added. DAs depart from supervised ANNs whose performance heavily relies on the 

quality of gold standards, and because the data define the objective function for the 

algorithms, DAs can directly use unlabeled data. DAs also serve as building blocks for deep 

networks6 which have gained popularity in fields such as image and audio processing for 

their high performance. Compared with commonly used feature extraction approaches such 

as PCA or ICA that linearly map input to features , DAs extract features in the non-linear 

space.

In this paper, we introduce an unsupervised feature construction approach based on DAs that 

summarizes available genomic data and extracts useful features. We apply this approach to a 

large compendium of breast cancer gene expression data. We demonstrate that the DA 

trained on one breast cancer dataset captures the same biological features in an independent 

dataset measured by a different technology. We use the Molecular Taxonomy of Breast 

Cancer International Consortium (METABRIC) cohort7 as a training set and the cohort from 

The Cancer Genome Atlas (TCGA)8 as an independent evaluation set. We demonstrate an 

approach that uses known characteristics to perform post-hoc interpretation of these 

features. The DA constructs features that distinguish tumor from normal samples, classify 

patients’ estrogen receptor (ER) status, summarize intrinsic subtypes, and identify the 

activity of key transcription factors (TFs). We also observe a feature that is highly predictive 

of patient survival. This constructed feature is more predictive of survival than commonly 

used markers such as tumor grade or ER status. These results suggest that constructed 

features from denoising autoencoders shed light on unexplored knowledge in breast cancer 

and provide a fruitful ground for approaches that aim to reason from such data.
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2. Methods

2.1. Construction of Denoising Autoencoders from Genomic Data

DAs provide a powerful means to analyze audio or image data where measurements are 

temporally or spatially linked.4,9 Here we describe a technique that allowed construction of 

DAs from genomic data, which do not have temporal or spatial linkage. These DAs 

summarized the gene expression characteristics of both breast cancers and normal tissues to 

automatically extract biologically and clinically relevant features. The constructed DA 

networks contained three layers: an input layer, a hidden layer and a reconstructed layer 

(Fig. 1A). The hidden layer represented the constructed features, with each node 

corresponding to one feature. The reconstructed layer and the input layer had the same 

dimensions, and the objective function for the algorithm was to minimize the difference 

between the two layers. Noise was added to the input data during training to construct 

robust, high-quality features.6

Here we describe the detailed training process for DAs from genome-wide transcriptome 

measurements. We define the term “sample” to represent the complete gene expression 

vector for each collected tissue biopsy. To facilitate training, samples were randomly 

grouped into batches, and the number of samples contained in a batch was termed the batch 

size. For each sample in a batch, a set of genes matching a defined proportion of genes 

(termed the corruption level) were randomly chosen. The expression values for these genes 

in this sample were set to zero. Like other feed-forward ANNs, the hidden layer y was 

constructed by multiplying one sample x with a weight matrix W. A bias vector, b, was 

added before transformation by the sigmoid function (Formula 1). The value contained in 

the hidden vector y for each node was termed the activity value of that node. The 

reconstructed layer was generated from the hidden layer in a similar manner (Formula 2). 

We used tied weights, which meant that the transpose of W was used for W′. Cross-entropy 

(Formula 3) was used to measure the difference between the input layer (x) and the 

reconstructed layer (z). Thus, the problem became fitting appropriate weights and bias terms 

to minimize the cross-entropy. This optimization was achieved by stochastic gradient 

descent using the Theano10 library , with weight and bias being updated after each batch and 

the size of each update is controlled by learning rate. Training proceeded through epochs, 

and samples were rebatched at the beginning of each epoch. Training was stopped after a 

specified number of epochs (termed epoch size) was reached.

(1)

(2)

(3)
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To determine the appropriate parameter setting for the METABRIC dataset described in 

Section 2.3, we carried out a parameter sweep with 10-fold cross validation. We performed a 

full factorial design over all combinations of the following parameters: epoch size of 100, 

200, 500; batch size of 1, 10, 20, 50; corruption level of 0.0, 0.1, 0.2; learning rate of 0.005, 

0.01, 0.05. The dimension of hidden layer was manually set as 100 since it is a amenable 

size for interpretation and could be trained efficiently. With the selected parameters, all 

samples in the METABRIC dataset were used to train a DA network. Then we fixed the 

optimized weight matrix and bias vectors and calculated the activity values for each node in 

the hidden layer for each sample. We used the weights and bias terms derived from 

METABRIC to directly calculate the activity values for the same nodes for each sample in 

an independent set characterized by TCGA (Section 2.3). Specifically, the weight matrix, W, 

is derived during training the METABRIC dataset, and we calculate activity values for each 

node over each sample in both the METABRIC and TCGA datasets based on the same 

weight matrix W .

2.2. Interpretation of Constructed Features

A major weakness of traditional ANNs has been the difficulty of interpreting the constructed 

models. DAs have largely been used in image processing, where these algorithms construct 

features that recognize key components of images, for example diagonal lines. Unlike pixels 

in image data, genes are not linked to their neighbors, and unlike audio data, they are not 

linked temporally. Instead they are linked by their transcription factors, their pathway 

membership, and other biological properties. To address this interpretation challenge, we 

developed strategies that allow constructed features to be linked to clinical and molecular 

features of the underlying samples.

2.2.1. Linking Constructed Features to Sample Characteristics—We first linked 

constructed features to specific sample characteristics. This included the identification of 

features that categorize tumor and normal samples, molecular subtypes, and ER status. We 

divided the METABRIC samples into two parts: two thirds of the sample set (1424 samples) 

was used for a discovery set, and one third of the sample set (712 samples) was reserved as a 

test set. For these tasks, we binarized each node activity by identifying each node's highest 

and lowest activity values among the samples in the discovery set and defined 10 equally 

spaced activation thresholds between these values. We evaluated the balanced accuracy for 

each node at each threshold to predict the desired sample characteristic. For each task, we 

chose the nodes with the highest balanced classification accuracies and recorded the 

corresponding thresholds. These high-accuracy nodes were tested on the test set using the 

activation threshold identified in the discovery set. To avoid sampling bias, the above 

procedure was repeated ten times with random partitioning of the discovery and testing sets. 

The final reported discovery/test accuracy for a node represents these accuracies averaged 

over the ten runs. We applied this procedure to identify nodes that could stratify tumor/

normal samples, ER+/− samples, and categorize samples into molecular subtypes (i.e. 

Luminal A, Luminal B, Basal-like, HER2-enriched, and Normal-like). We verify that this 

procedure avoids overestimating the performance of constructed features by evaluating these 

features in the independent TCGA dataset without retraining. This separate dataset was 

never used at any prior stages, and in this dataset gene expression values were measured by 
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an entirely different experimental platform. To evaluate each node from METABRIC in 

TCGA, we used the average of the thresholds identified over the ten METABRIC partitions 

as the activation threshold for TCGA samples. We termed this the “independent evaluation” 

performance of the node.

2.2.2. Linking Constructed Features to Transcription Factors—To interpret 

selected features in the context of transcriptional programs that they summarized, we 

developed an approach to link transcription factors to constructed features. The weights 

connecting the input and hidden layers determined how each gene in the input layer 

influenced the activity values of each node in the hidden layer. The distribution of weights 

for all genes to a single node approximately resembled a normal distribution centered at zero 

(Fig. 1B). Most genes gave zero or low weight to a hidden node; while a small number of 

genes gave high positive or high negative weights. Hence, we defined “high-weight genes” 

as those exhibiting weight values that lie outside two standard deviations from the mean of 

the weight distribution. We identified nodes whose high-weight genes were overrepresented 

by genes bound by one transcription factor and calculated the odds ratio. We employed the 

transcription factor ChIP-seq data from ENCODE via the UCSC genome browser at http://

genome.ucsc.edu/ENCODE/downloads.html.11,12 ChIP-seq data were derived from 

experiments in T47d and MCF7, a pair of breast cancer cell lines that were expected to best 

match these breast cancer datasets. All transcription factor target genes were determined 

using a probabilistic model called Target Identification for Profiles (TIP).13

2.2.3. Linking Constructed Features to Patient Survival—We linked features 

constructed by the DAs to patient survival. We evaluated patient survival using the 

METABRIC dataset because it contained up to 15 years of follow-up on each patient. 

Because the distribution of activity values for each node is bimodal with one peak close to 0 

and another close to 1 (Fig. 1C), we defined 0.5 as the activation cutoff to divide samples 

into two groups. We assessed the differences of these groups for each node by Kaplan-Meier 

curves and the non-parametric logrank test using the survival package in R.14 The node 

whose activities best separated two high and low survival groups was the one with the most 

prognostic power. To evaluate the importance of this constructed feature, we further 

compared this feature with frequently-used clinical markers of survival including tumor 

grade, molecular subtype and ER status.

2.2.4. Linking Specific Features to Biological Pathways—To interpret selected 

constructed features in the context of biological pathways, we developed an approach that 

leverages gene set enrichment analysis (GSEA)15 to associate known pathways to 

constructed features. GSEA was developed to identify enrichment within the distribution of 

differentially expressed genes from microarray experiments. We applied GSEA to a node's 

weight vector, which identified pathways associated with genes that consistently gave high 

positive or high negative weight to a node. These genes also exhibited the most influence 

over the activity value of that node. We defined significantly associated pathways using a 

false discovery rate (FDR) q-value threshold of 0.1. We used cancer pathways available 

from the Pathway Interaction Database (PID) curated by the National Cancer Institute and 
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Nature Publishing Group16 as gene sets for GSEA. In total, this set contained 196 pathways 

downloaded from the Molecular Signatures Database (MSigDB).15

2.3. The METABRIC and TCGA Breast Cancer Compendium

We constructed a compendium consisting of the two largest molecular characterizations of 

breast cancer to date. The first dataset, METABRIC, was collected from tumor banks in the 

UK and Canada and contained 1992 clinically annotated breast cancer specimens and 144 

tumor-adjacent normal tissues.7 We used this dataset to train DAs and identify predictive 

features. The gene expression data from this study were downloaded from the European 

Genomephenome Archive after approval by the specified Data Access Committee. The 

transcriptomes of tumor and normal tissue samples were profiled on the Illumina HT-12 v3 

platform. We converted Illumina identifiers to gene symbols, and the expression values for 

identifiers that mapped to the same gene symbol were averaged. Missing values were 

imputed using KNNImputer from the Sleipnir library17 using 10 neighbors as recommended 

by Troyanskaya et al.18 We used median absolute deviation (MAD) to filter genes with 

invariant expression across samples and retained the top 3000 genes with the highest MAD 

values.

The second dataset was obtained from The Cancer Genome Atlas (TCGA). It consisted of 

522 primary tumors, 3 metastatic tumors, and 22 tumor-adjacent normal samples.8 These 

data were obtained by measurement on three distinct platforms, none of which match the 

METABRIC platform. The TCGA consortium constructed a unified expression collection 

that summarized genes’ measurements from three platforms into one mean-centered 

expression value per gene. In this unified expression dataset, genes were identified by their 

symbol. This dataset served as our independent evaluation dataset, and no training, 

discovery, or threshold selection was performed on this dataset.

In order to evaluate DAs constructed from the METABRIC dataset directly on the 

independent TCGA dataset, we removed genes that were not measured by TCGA. This 

results in a METABRIC set containing 2520 genes measured for 2136 samples and a TCGA 

set containing the same 2520 genes measured for 547 samples. DAs use values between zero 

and one in the input vector, so the range of expression values for each gene were linearly 

transformed to this range.

3. Results and Discussion

To summarize our breast cancer gene expression compendium and construct biologically 

meaningful features, DAs were trained using the METABRIC dataset and evaluated on the 

TCGA dataset. We interpreted the constructed features by sample characteristics 

classification, transcription factor enrichment, survival analysis, and pathway analysis. We 

identified features representing a variety of important clinical or molecular characters of 

breast cancer, including sample type (tumor or normal tissue), ER status, and intrinsic 

subtype. They were shown to be robust across datasets. In addition, breast cancer related 

transcription factors were found to be linked to these features. Finally, DAs constructed a 

novel feature that was highly predictive of patient survival, and from this we uncovered a 

variety of biological processes enriched in that feature.
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3.1. Construction of a Denoising Autoencoder from Genomic Data

To apply DAs to genomic data for the first time, we performed a full factorial parameter 

sweep over the METABRIC dataset. We fixed the number of nodes in the hidden layer to 

100 to fix the number of weights the algorithm is allowed to fit under each parameter 

setting. The remaining parameters were evaluated by the ability of autoencoders generated 

using each set to reconstruct held out test data. The parameters that we selected were: a 

batch size of 10, an epoch size of 500, a corruption level of 0.1, and a learning rate of 0.01. 

We note that by keeping other parameters constant while setting the corruption level to 0.0 

(no noise added) results in the best performance. We chose a corruption level of 0.1 to avoid 

the risk of overfitting and to improve the quality and robustness of constructed features. 

Although METABRIC dataset is one of the largest available expression datasets of breast 

cancer, they have fewer examples than most datasets used for training neural networks. We 

observe that DAs still effectively summarize dataset of this size. After selecting these 

parameters, DAs were built by training on the METABRIC dataset. We named the 

constructed features “Node##” based on the order in which they appear in the hidden layer. 

The DAs trained on the METABRIC dataset were directly applied to the TCGA dataset to 

generate activity values for each already constructed feature in each sample. The results of 

our parameter sweep, as well as the activity scores for each feature in each sample, are 

available for download from the online supplement.

3.2. Features constructed by DAs represent clinical characteristics

In order to examine whether the features constructed by DAs exhibit clinical significance, 

we assessed the ability of hidden nodes to classify two important clinical features: sample 

type and ER status. We first identified hidden nodes that best classified whether samples 

were obtained from tumor or normal tissue using two thirds of the METABRIC samples 

(discovery set) and then tested the performance of these nodes in the remaining samples (test 

set). Tumor and normal tissues are very distinct from each other, and consequently there 

should be at least one feature that separates these with high accuracy. Table 1 shows the 

balanced classification accuracies calculated during discovery, testing, and an independent 

evaluation dataset. The top 5 hidden nodes are ordered by their performance in the discovery 

set. Nodes 64 and 99 achieved very high accuracy in distinguishing tumor from normal 

samples in the METABRIC dataset. More interestingly, Node64 and Node99 also classified 

TCGA samples with near-perfect accuracy. This indicates that training the weights matrix 

using all of the METABRIC samples does not appear to lead to test set contamination during 

the feature interpretation phase.

Next we sought to apply our framework to the more challenging task of constructing 

features with activities that reflect the ER status of breast cancer samples. The estrogen 

receptor plays an important role in the progression of breast cancer, as the majority of breast 

cancers start out as estrogen dependent and overexpress the estrogen receptor.19 A tumor's 

expression status (ER+ vs. ER−) serves as an immunohistological biomarker that helps 

determine whether patients will benefit from endocrine therapy.20 Table 2 shows that 

Node30 and Node58 achieve the highest accuracy for ER status classification. As expected, 

the accuracy associated with stratifying samples into ER categories is not as high as when 

stratifying tumor and normal samples. This is because ER signaling is a complex biological 
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process involving many co-regulatory proteins and can be activated by both estrogen ligands 

and a variety of other pathways.20 Thus, the expression pattern for ER positive samples and 

ER negative samples is more complicated, making classification more challenging. Again, 

the results for ER status stratification in METABRIC and TCGA datasets indicate that 

features constructed by DAs maintain robust performance across datasets. This is consistent 

with our observations from the tumor/normal separation and further indicates that the 

unsupervised training using all of METABRIC does not lead to contamination during the 

discovery/test phase.

Transcription factors FOXA1 and GATA3 are two key determinants of ER function and 

endocrine response. FOXA1 facilitates ER-chromatin interactions that are necessary for ER-

mediated gene regulation,21 and GATA3 acts upstream of FOXA1 in modulating the 

accessibility of enhancers bound by ER.22 Therefore, to understand whether these nodes 

were capturing underlying biological principles, we evaluated whether these TFs were 

strongly associated with nodes categorizing ER status. We calculated odds ratios for each 

node/TF pair as described in section 2.2.2. We found that Node58 achieved the highest odds 

ratios for both FOXA1 and GATA3 among all nodes. Specifically, it was enriched of genes 

regulated by FOXA1 with an odds ratio of 4.02 and of genes regulated by GATA3 with an 

odds ratio of 3.16. These results suggest that Node58 was able to distinguish ER+ from ER- 

breast cancers with high accuracy because it contained genes that reflect the activity of key 

ER-associated TFs.

3.3. Features constructed by DAs recapitulate molecular subtypes

Breast cancer is a complex and heterogeneous disease caused by various molecular 

alterations in distinct signaling pathways. Breast cancer patients respond differently to 

treatment and show diverse clinical outcomes. Categorizing breast cancers into molecular 

subtypes that exhibit similar characteristics opens the door to the development of subtype-

specific prognostic markers and treatments. Parker et al. developed a 50-gene subtype 

predictor (PAM50) based on gene expression data.23 PAM50 subtypes are available for both 

the METABRIC and TCGA cancers. Here, we evaluated whether features constructed by 

DAs can also predict these subtypes. We defined each subtype prediction as a binary 

classification problem and show the results in Table 3. The table contains the node that 

achieves the highest accuracy in the discovery set. In general, we observed that only one 

node was predictive of each sub-type. There were two exceptions: for the Normal-like 

subtype Node38 performed similarly to Node42, and for the Luminal A subtype Node23 

performed similarly to Node5. We observed that the Basal-like subtype reached the highest 

accuracy, which is consistent with clustering results showing Basal as the most distinct 

cluster.8 Luminal A (LumA) and Luminal B (LumB) subtypes were mixed together in the 

clustering analysis as well. Combining LumA and LumB into one subtype identified features 

that obtained higher accuracies. Both Node30 (Basal) and Node6 (LumA/B), identified here 

as subtype nodes, were also predictive of ER status. This is because ER positive patients 

usually fall into the luminal subtypes, and ER negative patients usually fall into the Basal 

subtype. In METABRIC, 77.6% of ER positive samples are LumA or LumB, while only 

3.9% of ER positive samples are from the Basal subtype. Therefore the ER status signal is 

sufficient to identify these groups, but not differentiate between, for example, the two 
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luminal subtypes. The specific LumA and LumB subtypes are best captured by different 

nodes. Methods that aim to reason based upon features constructed from the DA may be 

able to exploit these distinct but complementary features to obtain superior accuracy and 

better reflect the underlying complex biology of breast cancer.

3.4. Features constructed by DAs are associated with prognosis

Many factors have been correlated to prognosis, such as histologic grade,24 ER status,25 

lymph node metastases,26 and intrinsic molecular subtypes.27 Here we assessed the 

correlation between features constructed by DAs and patient prognosis. As shown in Fig. 

1C, the distribution of node activity was bimodal. We separated patients into two groups 

based on their node activity using a cutoff of 0.5 and then correlated activity values of each 

node to patient survival time. The node that best separated good and poor prognosis was 

Node5 (logrank p-value of 2.1e−20; Fig. 2A). To compare the performance of Node5 with 

other clinical or molecular features, we carried out survival analysis for ER status (Fig. 2B), 

each tumor grade, and each intrinsic molecular subtype. The LumA subtype had a 

significantly better prognosis than other subtypes and provided the strongest subtype-

survival association in the METABRIC dataset (Fig. 2C). A tumor of grade 3 (clinically 

termed high-grade) was a sign of poor prognosis when compared to grades 1 and 2 (Fig. 

2D). Comparing the ability of these survival-associated breast cancer features to Node5, 

Node5 was more strongly associated with survival. Interestingly, Node5 was also the node 

that best classifies the LumA subtype (Table 3). We investigated the associations of each 

node with tumor grade and found that Node5 was also most strongly associated with grade 

(online supplement). These results suggest that Node5 learned a combined expression 

pattern that captures features of both the LumA subtype and a tumor's grade, which 

contributed to its strong association with survival.

To further investigate how Node5 learned this combined pattern, we performed pathway 

analysis using a modified GSEA. GSEA identified pathways that defined the activity values 

of Node5 (Table 4). The most significant pathway was the FOXM1 transcription factor 

network. FOXM1 is one of the most overexpressed genes in breast cancer28 and its down-

regulation has been shown to inhibit proliferation, migration and invasion of breast cancer 

cells.29 The Aurora Kinase A, Aurora Kinase B, and PLK1 pathways affect cell cycle 

progression.30,31 Misregulation of the cell cycle is related to both tumor formation and 

growth and is consistent with FOXM1's role in modulating cell cycle progression. The 

number of cells undergoing division is used in determination of a tumor's grade, indicating a 

potential relation for Node5 to grade based on the number of mitotic events. The other two 

pathways have also been demonstrated to be key players in breast cancer,32,33 and c-Myb is 

a known marker of the luminal subtypes34 indicating a potential connection between Node5 

and the Luminal A subtype.

4. Conclusion

While machine learning has made key contributions to biology, a gap still exists between 

data integration methods, which are largely supervised, and discovery-oriented approaches, 

which are unsupervised and don't condition on known biology. We have evaluated DAs as a 
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means to fill this gap allowing us to develop unsupervised methods for data integration. We 

found that DAs effectively summarize key features in breast cancer data. We identified 

features that stratify tumor/normal samples, ER+/− samples, and molecular subtypes, in 

addition to identifying transcription factor activities. Moreover, DAs constructed a feature 

significantly associated with the FOXM1 pathway that was highly predictive of patient 

survival by combining information from the Luminal A subtype and tumor grade. A DA 

constructed from one dataset identifies the same features in an independent dataset, even 

though the strongest principle component of a combined dataset captures the underlying 

study highlighting the major methodological differences between these studies.35

Future work will focus on developing new approaches to interpret features, especially 

features that cannot be mapped to existing knowledge but may represent new signals. We 

will also evaluate deep network architectures with multiple layers of stacked DAs. We 

anticipate that employing features generated by DAs in supervised learning will improve 

prediction accuracies, as we have shown that these features comprise clinical information 

and molecular patterns. Because the patterns observed are consistent across datasets, we also 

anticipate that DAs will provide a fruitful mechanism for data integration. Future work 

should explore the scope and limitations of this approach for large-scale data integration. 

Overall, we anticipate that DAs can provide a new mechanism to effectively summarize and 

integrate large compendia of genomic data in an unsupervised manner.
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Fig. 1. 
A) The network structure of denoising autoencoders. B) The distribution of one node's 

weight vector. C) The distribution of activity values for a node are bimodally distributed. 

Here we use Node5 as an example.
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Fig. 2. 
Kaplan-Meier plots of disease-specific survival for Node5 (A), ER status (B), Luminal A 

subtype (C), and Tumor Grade (D) demonstrate that the constructed feature outperforms the 

other predictors.
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Table 1

Performance of hidden nodes in classifying tumor from normal samples.

METABRIC TCGA

Node Discovery Test Evaluation

64 0.970 0.968 0.996

99 0.957 0.959 0.998

38 0.879 0.887 0.911

43 0.873 0.873 0.750

69 0.871 0.872 0.906
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Table 2

Performance of hidden nodes in classifying ER + from ER - samples.

METABRIC TCGA

Node Discovery Test Evaluation

89 0.848 0.833 0.749

30 0.824 0.822 0.856

58 0.808 0.801 0.828

6 0.798 0.799 0.771

69 0.784 0.779 0.820
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Table 3

Performance of hidden nodes in classifying each intrinsic subtype.

Subtype Basal Her2 LumA LumB Normal LumA/B

Node 30 29 5 66 42 6

METABRIC Discovery 0.929 0.761 0.780 0.755 0.750 0.849

METABRIC Test 0.918 0.741 0.777 0.750 0.748 0.849

TCGA Evaluation 0.992 0.712 0.800 0.717 0.733 0.825
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Table 4

PID pathways enriched in Node5.

Pathway FDR q-value

FOXM1 transcription factor network < 1e–4

Aurora B signaling 4.93e–4

Aurora A signaling 0.001

PLK1 signaling 0.003

Integrin-linked kinase signaling 0.068

C-MYB transcription factor network 0.074

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.


