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This study established a fully automated computer-aided diagnosis (CAD) system for the classification of malignant and benign
masses via breastmagnetic resonance imaging (BMRI). A breast segmentationmethod consisting of a preprocessing step to identify
the air-breast interfacing boundary and curve fitting for chest wall line (CWL) segmentation was included in the proposed CAD
system. The Chan-Vese (CV) model level set (LS) segmentation method was adopted to segment breast mass and demonstrated
sufficiently good segmentation performance. The support vector machine (SVM) classifier with ReliefF feature selection was used
to merge the extracted morphological and texture features into a classification score. The accuracy, sensitivity, and specificity
measurements for the leave-half-case-out resampling method were 92.3%, 98.2%, and 76.2%, respectively. For the leave-one-case-
out resampling method, the measurements were 90.0%, 98.7%, and 73.8%, respectively.

1. Introduction

Because early detection of breast cancer offers the best chance
for a cure, regular screening has been identified as a key
to improving breast cancer survival rates. Breast cancer is
commonly based on X-ray mammography and ultrasound,
which have a low sensitivity and are not effective in dense
breast tissue. Dynamic contrast-enhanced (DCE) magnetic
resonance imaging (MRI) has been shown to be the most
sensitive screening methodology for the detection of invasive
breast cancer and can detect breast cancer missed by mam-
mography [1, 2]. Computer image analysis provides various
techniques for analyzing medical images. Computerized
methods have recently shown great potential for providing
radiologists with a second opinion about the visual diagnosis
of the malignancy of mammographic masses.

However, compared with mammography, relatively fewer
computer-aided diagnosis (CAD) systems have been devel-
oped specifically for breast MRIs (BMRIs). Most CAD sys-
tems require radiologists to manually (or semiautomated)
segment tumors from the imaging data [3–6]. As a result,
there is an urgent need to develop a fully automated CAD

system that allows radiologists to diagnose the data more
efficiently. Three key components of such an automated
CAD system commonly include an appropriate segmentation
algorithm, an appropriate feature extraction algorithm, and
an appropriate classification algorithm responsible for the
differential diagnosis of malignant and benign masses.

DCE-MRI automated segmentation should include
breast and mass segmentation. However, few studies have
focused on breast segmentation. Several mass segmentation
methods such as the threshold, region growing, clustering,
and 3D level set (LS) methods have been proposed. Shi et
al. [6] used the fuzzy 𝑐-mean (FCM) clustering algorithm
followed by a 3D LS method to refine segmentation. Region
growing methods [7] gather pixels or subregions from larger
regions using predetermined similarity criteria, which suffer
from sensitivity to the selection of initial seed points. Among
the clustering techniques, the FCM [8] has received much
attention, but it exhibits a low performance [9] owing to
its oversensitivity to noise. Liney et al. [10] presented a
user-interaction-threshold method to extract the region of
interest (ROI), a method that requires manual intervention.
A novel two-step approach that incorporates FCM clustering
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and a gradient vector flow (GVF) snake algorithm for mass
contour segmentation in BMRIs was also designed and
obtained encouraging results [3].

Features can be extracted from original ROIs, segmented
masses, and patient information. Most CAD systems in the
literature have explored morphological and texture features
based on segmented masses. As adjunct diagnostic criteria,
the morphological features of BMRIs have proven useful
in improving specificity without significantly decreasing
sensitivity [3, 11–13]. Texture analysis (i.e., homogeneity and
regularity with diagnosis potential in MRIs) is significantly
associated with breast tumor subtype and neoadjuvant ther-
apy response and has been used extensively to quantify MRI
characteristics [3, 14–16]. A preliminary study [3] proved
the potential discriminatory power of the image features
estimated from both morphological and texture features.

Feature selection, which refers to the choosing of a subset
of attributes from a set of original attributes, is an important
issue in building classification systems. However, few studies
have investigated the feature selection performance of both
morphological and texture features in discriminating patho-
logically verified breast masses.

Classifier selection is a crucial step for computerized clas-
sification of malignant and benign breast masses. Classical
breast CAD classification algorithms include the support vec-
tormachine (SVM) [17], naive Bayes (NB) classifier technique
[18], 𝑘-nearest neighbors (KNN) [18], logistic regression (LR)
model [19], and linear discriminant method (LDA) [20].
SVMs have been shown to outperform many alternative
pattern-recognition techniques for breast cancer detection
fromMRI [5, 21, 22].The preliminary study [3] systematically
investigated diagnostic performance by combining themerits
of both morphological and texture features using the Fisher
stepwise discriminant analysis model.

In this study, a fully automated DCR-MRI CAD system is
developed, in which a fully automated breast segmentation
algorithm based on curve fitting is proposed. The Chan-
Vese (CV) model and LS method are used to evolve the
segmentation of breast masses. Both the morphological
and texture features of a BMRI mass are calculated based
on the proposed computerized segmentation contour and
radiologists’ delineation, respectively. To remove redundancy
and increase the diagnostic capabilities of the features, a
ReliefF algorithm [23], which is one of the most success-
ful feature selection algorithms, is adopted to select and
optimize the features. SVMs have been used to diagnose
breast cancer and achieved the highest classification accuracy
among the available artificial intelligent methods. This study
focuses on evaluating the SVM as a potential classifier in
combination with ReliefF feature selection to classify benign
and malignant masses. The computational results of both
the segmentation and characterization of breast masses are
compared viamanual delineation and the pathological results
given by experienced radiologists.

2. Materials and Methods

Figure 1 shows a flowchart of the main steps of the proposed
DCE-MRI CAD system. All five steps were fully automated.

BMRI input

Breast segmentation

Mass CV LS 
segmentation

Feature extraction
(texture, morphology)

Diagnostic result 

ReliefF feature selection

SVM classifier

Figure 1: Flowchart of computerized mass segmentation and
characterization in a BMRI.

The first step was to segment the breast as an organ from
other parts in the BMRI via preprocessing to identify the air-
breast interfacing boundary and curve fitting for the chest
wall line (CWL) segmentation. Second, the segmented breast
was processed further by applying the LS model to obtain the
final mass segmentation. Morphological and texture features
were extracted from the LS segmentation in the computerized
characterization section. A ReliefF algorithm has been suc-
cessfully used inmany large subset feature selection tasks, and
here it was guided to estimate theweight of themorphological
and texture feature. It was fundamentally important to select
the relevant and necessary features in the preprocessing step.
Finally, a SVM classifier was used to evaluate the ability of
the mass descriptors to discriminate the different ROIs to
determine whether they represented malignant or benign
masses.

2.1. Breast Mass Database. The dataset consisted of 120
female patients (42 benign and 78 malignant) who had
been examined with a final histopathology confirmation (age
range = 29–66 years, mean age = 47.5 years) from Sun Yat-
sen University Cancer Center (Guangzhou, China). Patients
with suspicious breast masses were recruited with written
informed consent. The Ethics Committee of Sun Yat-sen
University Cancer Center approved the study. Patients were
scanned in the prone position using a 1.5 T superconductive
magnetic system (GE, Signa, HDx) with a breast-specific 4-
channel phased-array surface coil. The patients were injected
with a contrastmediumusing a hand venipuncture technique
and then scanned in the prone position with the bilateral
breast naturally hanging into the two holes of the coil and
their feet placed into the machine. The patients had not
received treatment before nuclear magnetic detection. In this
study, only mass-like masses that showed strong contrast
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Figure 2: Processing steps for breast segmentation.

enhancements were selected. The database of the images for
each case included one sagittal postcontrast image slice that
showed an obvious contrast enhancement and demonstrated
the maximum dimension of a mass. All of the images in this
dataset were 512 × 512 pixels in size and had an 8-bit gray-
level resolution [3].

2.2. Breast Segmentation. Breast segmentation is performed
to separate the breast as an organ from the chest wall, a
critical and challenging first step in automated BMRI anal-
ysis. For this task, the segmentation algorithm requires the
identification of both the air-breast interface and the CWL.
Although breast segmentation inBMRIs is an important topic
for cancer treatment and diagnosis, it is mostly performed
using a manual or semiautomated delineation method [3,
24, 25]. Few automated methods have reportedly been used
in an MRI CAD system [26–28]. These methods require a
large number of training samples or complex calculation.
The segmentation method used in this study consisted of a
preprocessing step to identify both the air-breast interfacing
boundary and curve fitting for the CWL segmentation.
The air-breast interface is initially identified given a BMRI
scan sagittal postcontrast image. The air-breast boundary is
relatively easy to identify in a BMRI due to the highly intense
contrast of the boundary. Preprocessing techniques includ-
ing thresholding (image binarization), image morphologi-
cal opening, morphological closing, hole filling, connected
components extraction, and edge contour extraction were
applied sequentially to each 2D slice (Figure 2). Once the air-
breast interface was identified, there were three main steps to
refining the breast segmentation: (1) using the curve fitting
method to fine fit the outline of the breast; (2) drawing a
straight line according to the outer contour line of the two
vertices as the initial CWL; and (3) adopting the GVF snake
iteration approach and curve fitting iteration to increase the
accuracy of the CWL edge extraction. Figure 2(h) shows the
result of the outer contour. Figure 2(i) shows the result of

using the two vertices to draw a straight line as the initial
CWL. The straight line based on the GVF snake iterative
algorithm is shown in yellow in Figure 2(j). The green line
represents the fitting of the breast contour line, with the
polynomial fitting method used to obtain the CWL.

2.3.Mass Segmentation. Because breastmasses onDCE-MRI
scans may be more pronounced at the periphery than the
internal region of the mass, the object segmented by the
FCM clustering algorithm may contain holes. The prelimi-
nary study [3] implemented a novel two-step approach that
incorporated FCM clustering and a GVF snake algorithm
for mass contour segmentation on a BMRI. Although the
snake model allows for fast evaluation, it makes handling
topological changes difficult. The main drawbacks of the
snake algorithm are its sensitivity to initial conditions and
the difficulties associated with topological transformations.
Moreover, the snake segmentation method of a contour is
too smooth and has a disadvantageous influence on the sub-
sequent characterization and differentiation of benign and
malignant breast masses. In this study, an LS-based method
was adopted to produce a refined ROI. An FCM-based
method was not used to produce an initial segmentation of
the ROI. FCM initial segmentation has been proven not to
improve performance. A current implementation of the GVF
snake was compared with a previous implementation.The LS
segmentation method used is detailed as follows.

The LS method is a deformable model that can capture
object’s shape or surface by numerically solving a well-
designed partial differential equation (PDE). The LS method
has increasingly been applied to image segmentation in the
past decade, as it allows for cusps, corners, and automatic
topological changes such as object splitting and merging.
It has several advantages over its predecessor, the explicit
active contour model. The curve is represented implicitly via
a Lipschitz function 𝜙 in level 𝐶 = {(𝑥, 𝑦) | 𝜙(𝑥, 𝑦) = 0}, and
the evolution of the curve is given by the zero-level curve at
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time 𝑡 of the function 𝜙(𝑥, 𝑦, 𝑡). The isocontour 𝜙(𝑥, 𝑦) = 0,
which encloses a regionΩ, has specifically been referred to as
the zero LS in the literature. Evolving the curve𝐶 in a normal
direction at a speed 𝐹 amounts to solving the differential
equation. Consider

𝜕𝜙

𝜕𝑡

=
󵄨
󵄨
󵄨
󵄨
∇𝜙
󵄨
󵄨
󵄨
󵄨
𝐹, 𝜙 (𝑥, 𝑦, 0) = 𝜙

0
(𝑥, 𝑦) . (1)

In the LS formulation of the model, 𝐶 ⊂ Ω is represented
by the zero LS of a Lipschitz function 𝜙 : 𝑅 → Ω, such that

𝐶 = 𝜕𝜔 = {(𝑥, 𝑦) ∈ Ω : 𝜙 (𝑥, 𝑦) = 0} ,

inside (𝐶) = 𝜔 = {(𝑥, 𝑦) ∈ Ω : 𝜙 (𝑥, 𝑦) > 0} ,

outside (𝐶) = Ω \ 𝜛 = {(𝑥, 𝑦) ∈ Ω : 𝜙 (𝑥, 𝑦) < 0} .

(2)

Because the classical LS models rely on the edge func-
tion (depending on the image gradient) to stop the curve
evolution, they can detect only objects with edges defined by
gradients. In practice, the discrete gradients are bounded.The
stopping function is never zero on the edges, and the curve
may pass through the boundary, especially for the models
used in [29].

Chan and Vese [30] proposed a new model for active
contours to detect objects in a given image based on curve
evolution techniques, the Mumford-Shah functional for seg-
mentation, and LSs. The Chan-Vese model can detect objects
whose boundaries are not necessarily defined by gradients.

Define the evolving curve 𝐶 in Ω as the boundary of an
open subset 𝜔 ofΩ (i.e., 𝜔 ⊂ Ω and 𝐶 = 𝜕𝜔). In what follows,
inside (𝐶) denotes the region 𝜔 and outside (𝐶) denotes the
regionΩ \ 𝜛.

The Mumford-Shah functional for segmentation is

𝐹
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where 𝑢
0
is a given image and 𝜇 and𝜆 are positive parameters.

The solution image 𝜇 obtained by minimizing this functional
is formed by smooth regions denoted by 𝑅

𝑖
and sharp

boundaries denoted by 𝐶.
The energy functional of the Chan-Vese model is defined

by
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where 𝜇 > 0, V > 0, 𝜆
1
> 0, 𝜆

2
> 0 are fixed parameters.

The Heaviside function 𝐻 and one-dimensional Dirac
measure 𝛿

0
are, respectively, defined as

𝐻(𝑍) = {
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For the LS formulation of the variational active contour
model, the Chan-Vese model replaces the unknown variable
𝐶 with the unknown variable 𝜙. The energy 𝐹(𝑐
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then be written as
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The Dirac delta function 𝛿, which is the derivative of
the Heaviside function 𝐻, is accordingly replaced by the
derivative of𝐻

𝜀
, which is calculated as
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Keeping 𝑐
1
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2
fixed and minimized in terms of 𝐹

𝜀
,

the associated Euler-Lagrange equation can be deduced for
𝜙. Consider
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Formulations (7), (8), (9), and (10) are numerical approx-
imations of the CV LS model.

The mass extracted by FCM-based segmentation, FCM-
GVF, and LS was compared with the reference standard, that
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Figure 3: An example of DCE-MRI mass segmentation: (a) original image; (b) initial segmentation result on using the FCM-based method;
(c) deformation of GVF snake using FCM-based contour for initialization; (d) LS segmentation result.

is, the radiologist’s manual segmentation. Figure 3(a) shows
an exampleROI that contains amass proven to be amalignant
tumor via biopsy. The mass edge is blurred and partially
overlapped by other soft tissues, so the traditional segmen-
tation methods are prone to segmentation leak. Figure 3(b)
shows the boundary resulting from the FCM clustering and
morphological opening. Although the FCM segmentation
covers most of the mass edges visually, it is still slightly
undersegmented on the lower right corner of the mass. The
boundarywas then refined by theGVF snake segmentation as
shown in Figure 3(c) and by the LS segmentation as shown in
Figure 3(d), respectively. In both figures, although the FCM-
GVF segmentation covers most of the mass edges visually, it
is still slightly too smooth. The LS segmentation covers most
of the mass edges visually, allowing for cusps, corners, and
automatic topological changes.

2.4. Feature Extraction and Selection

2.4.1. Morphological and Texture Features. The morphologi-
cal and texture features are the most commonly used features
of a breast cancer CAD system. The CAD system in this
study directly obtained the two features and required no other
software. Texture is an intrinsic characteristic of an object and
is important formedical image analysis [31]. Researchers have
proposed various textural algorithms such as fractal-based
description, texture spectrum, and the Markov random field
model [32–34]. The gray-level cooccurrence matrix (GLCM)
texture method has been investigated heavily since its intro-
duction by Haralick et al. in 1973 and has demonstrated
considerable promise in MRI texture analysis. Important
texture information exists in the tissue surrounding a mass
margin. In this study, 13 textural measures were calculated
for the nearest pixels (distance: 1 pixel) in 4 limited direc-
tions: 0∘, 45∘, 90∘, and 135∘, respectively. Thirteen features
including the angular second moment, contrast, correlation,
inverse difference moment, sum average, sum variance, sum
entropy, entropy, difference average, difference variance, dif-
ference entropy, information measure of correlation 1, and
information measure of correlation 2 were calculated from
the GLCM. Owing to the isotropic texture of the images
investigated, the features evaluated in the current study were
the averages over the four directions. These texture features

contained some important information about homogeneity,
contrast, and other organized image structures.

In addition to the texture feature, eight morphologi-
cal features were selected and calculated to describe the
morphological properties as defined in the breast imaging
reporting and data system lexicon. These features included
compactness, spiculation, extent, elongation, solidity, circu-
larity, entropy of radial length distribution, and eccentricity.
A detailed description of these features can be found in the
preliminary study [3].

2.4.2. Feature Selection. Feature selection [17, 35–39] is used
to identify and remove as much irrelevant and redundant
information as possible. It can improve the accuracy of the
resulting model and decrease the calculation time of the
induction algorithm. In this study, texture andmorphological
feature subset selectionwas used to find the set of features that
best distinguished malignant from benign masses.

Feature subset selection research has traditionally looked
at relevant features. Feature selection algorithms usually fall
into two categories [35]: the filter and wrapper methods.
Although the wrapper has the advantage of better perfor-
mance, its usage in the biomedical arena is limited due
to its high computational cost [35]. A filter algorithm was
used in this study to alleviate this problem. Relief [39] is
a well-known filter algorithm that estimates the quality of
attributes according to how well their values distinguish
between close instances. However, Relief is ineffective at
removing redundant features, as two predictive but highly
correlated features are probably both highlyweighted. ReliefF
[23] extends relief, enabling the method to work with noisy
and incomplete datasets and to deal withmulticlass problems.
ReliefF is a simple yet efficient procedure used to estimate the
quality of attributes in problems with strong dependencies
between attributes. In practice, ReliefF is usually applied
independently of the chosen predictor in data preprocessing
as a feature subset selection method. The key idea of ReliefF
is to estimate the quality of attributes according to how well
their values distinguish between close instances. Given a
randomly selected instance 𝑅

𝑖
from class 𝐿, ReliefF searches

for 𝑘 of its nearest neighbors from the same class, known as
nearest hits𝐻, and also 𝑘 of its nearest neighbors from each
of the different classes, known as nearest misses𝑀. It updates
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the quality estimation𝑊(𝐹) for all attributes 𝐹 depending on
their values for 𝑅

𝑖
, hits 𝐻

𝑗
, and misses𝑀

𝑗
(𝐶). The updated

average of the contribution of all of the hits andmisses can be
calculated via the following equation:
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= 𝑊 (𝐹) −

𝑘

∑

𝑗 = 1

diff (𝐹, 𝑅
𝑖
, 𝐻
𝑗
)

(𝑚 ⋅ 𝑘)

+ ∑

𝐶 ̸=class(𝑃)

[

[

𝑃 (𝐶)

1 − 𝑃 (class (𝑅
𝑖
))

×

𝑘

∑

𝑗 = 1

diff (𝐹, 𝑅
𝑖
,𝑀
𝑗
(𝐶))

]

]

× ((𝑚 ⋅ 𝑘))
−1
,

(11)

where Function diff(𝐹; 𝐼1; 𝐼2) calculates the difference
between the attribute 𝐹 values for two instances 𝐼1 and 𝐼2.
The contribution for each class of misses is weighted with
the prior probability of that class 𝑃 (𝐶) (estimated from
the training set). 1 − 𝑃 (class(𝑅

𝑖
)) represents the sum of the

probabilities for the miss classes.
In this study, ReliefF was applied to find a candidate

feature subset from the available morphological and texture
features.The parameters of the weight distribution histogram
were obtained as shown in Figure 4. The weight coefficient
range was [−1, 1], with values closer to 1 indicating a stronger
classification ability. The model with the features selected
from the ReliefF feature selection methods was tested on
the SVM classifier. Eight higher weight features were used to
classify benign and malignant breast masses according to the
weight distribution of the characteristic parameters.

2.5. Classification. Once the features were extracted and
selected from the segmented masses, the data with 𝑛 selected
features could be fed into an appropriate classificationmodel.
The literature has discussed many different approaches to
diagnosing breast cancer, such as SVM, LDA, NB, KNN,
and ANN. SVMs have been used to diagnose breast cancer
and achieved the highest classification accuracy among the
available artificial intelligent methods. Therefore, in this
study, an SVM classifier was used to evaluate the diagnostic
performance of carefully selected variables. The Fisher clas-
sifier was used for comparison, as the preliminary study [3]
found that it was more generalizable for unknown cases than
othermore complex classifiers given a limited training sample
size.

The SVM was developed by Vapnik [40] based on
Vapnik-Chervonenkis (VC) theory and the structural risk
minimization (SRM) principle and has been used for many
machine learning tasks such as pattern recognition, object
classification, and regression analysis. It seeks a tradeoff
between minimizing the training set error and maximizing
the margin to achieve a high level of generalization and
remain resistant to overfitting. In addition, SVMs have a
strict theory and mathematical foundation that presents no
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Figure 4: Weights calculated by ReliefF for morphological and
texture features.

local optimization or dimensional problems. Chang and Lin
[41] developed LIBSVM, which was implemented for the
purposes of this study. There were two steps involved in
the LIBSVM implementation: (1) the dataset was trained
to obtain a model and (2) the model was used to predict
the information for the testing dataset. The final output
was the classification accuracy for breast cancer prognosis,
which classified the patients as having a malignant or benign
diagnosis with the optimum feature of the subset.

3. Results and Discussion

3.1. Segmentation Performance. Automated breast mass seg-
mentation is an important step for the CAD system. The
accurate delineation of masses in a BMRI is crucial for
diagnosis and the associated image-guided biopsy. Table 1
summarizes the mean values and standard deviations of the
areas from the mass contours, which were segmented by
the FCM-based method, FCM-GVF method, LS method,
and radiologists’ manual delineation, respectively. The dif-
ferences between the computerized method and radiologists’
manual delineation were analyzed using Pearson’s correlation
coefficient (Pearson’s 𝑟) and paired Student’s 𝑡-test (Table 1).
According to the original hypothesis, there is no significant
difference between the two groups of mass areas segmented
by different methods. Pearson’s correlation coefficient was
used to measure the correlation between the computer
segmentation and reference standard. The paired Student’s 𝑡-
test was used to evaluate the significance of the differences
between the segmentation.

Pearson’s 𝑟 between the mass areas segmented by the
FCM-basedmethod and the radiologists’ manual delineation
was 0.9807, and the paired 𝑡-test between the areas extracted
by the two methods achieved a 𝑃 value of 0.7173. This
indicates that the areas worked out by the two methods were
highly correlated without a significant difference in averages.
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Table 1: Areas, statistical comparisons, and area overlap measures of computerized and radiologists’ manual delineation.

Segmentation method Area
(mean ± SD pixels) Pearson’s correlation 𝑡-test

𝑃 value
AOR1

(mean ± SD)
AOR2

(mean ± SD)
FCM 1,439.5 ± 1,300.7 0.9807 0.7173 0.84 ± 0.14 0.75 ± 0.15
GVF-snake-FCM 1,474.7 ± 1,333.9 0.9828 0.8098 0.87 ± 0.09 0.78 ± 0.14
CV-level set 1,526.4 ± 1,334.8 0.9868 0.9449 0.89 ± 0.10 0.79 ± 0.14
Radiologists’ manual 1,547.1 ± 1,380.5 — — — —

After the 𝑟 and 𝑃 values were refined using the GVF and LS
methods, they increased and continued to show a high cor-
relation between the areas without a significant difference in
average (𝑃 > 0.05).This indicates that the three computerized
methods could help radiologists achieve accurate delineation.
TheLSmethod showed the best performance among the three
methods.

Figure 5 shows the log-log scatter plot of the areas mea-
sured using the computerized method versus radiologists’
manual segmentation. The mass area is calculated by the
number of pixels in the mass region. The log-log scatter
plot was drawn because the mass area had a wide range.
Judging by the distribution of the data points in Figure 5,
the computerized methods somewhat underestimated the
mass area compared with the radiologists’ reference area, as
most of the data points are distributed below the reference
diagonal line. The FCM-GVF method had a smaller under-
estimation than the FCM-based method. One drawback of
the FCM-basedmethod is that it depends simply on intensity
information and does not include the spatial relationships
of pixels. For a more complicated mass enhancement, it is
difficult for the FCM-basedmethod to locate the contour that
approaches near to the realistic mass contour.The FCM-GVF
method improves the initial segmentation when deforming
to a balance of internal and external forces. However, one
drawback of the FCM-GVF method is that it depends on
image edge information. The CV LS method can detect
objects whose boundaries are not necessarily defined by
gradients. In this study, it showed a densely distributed scatter
along the diagonal. As such, its segmentation results (i.e.,
better segmentation) approximated those of the radiologists’
hand-painted results.

Figure 6 exhibits the histograms of the overlap measures
for the FCM-based, FCM-GVF, and LS methods. All of the
masses segmented using the three methods have values of
AOR1 and AOR2, with the most concentrated distribution
over 0.6. Figure 6 also shows that the bars of the LS method
are denser from 0.7 to 1. These results indicate that the LS
automated segmentation method performed better for the
masses.

3.2. Feature Select and Classification Performance. The pre-
liminary study [3] proved that morphological and texture
features can be used to classify breast masses and that
the features of the computerized segmentation method can
provide a more efficient and objective diagnostic perfor-
mance when discriminating between benign and malignant
masses. This study sought to verify whether the features
of LS computerized segmentation and the ReliefF feature
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Figure 5: Scatter plot of the mass areas segmented by computerized
and radiologists’ manual delineation. The diagonal line represents
the most perfect segmentation performance. The squares represent
areas segmented by the FCM-based initial method. The diamonds
represent areas extracted using the FCM-GVFmethod.The triangles
represent areas extracted using the LS method.

selection method can work together to improve diagnos-
tic performance when discriminating between benign and
malignant masses. Two classification methods including the
Fisher and SVM methods were experimented with and their
results were subsequently compared.The Fisher classifier was
chosen because the preliminary study [3] found it to be more
generalizable to unknown cases than other more complex
classifierswhen the training sample size is limited. SVMshave
been used to diagnose breast cancer and have achieved the
highest classification accuracy among the available artificial
intelligent methods according to the literature. In the current
study, a two-loop leave-one-case-out resampling procedure
was designed to train the Fisher and SVM classifiers and test
performance using𝑁 available cases, where𝑁 = 120.

To verify the classification accuracy of the newly devel-
oped CAD system, a subset of eight features whose weights
ranked at the top in the ReliefF algorithm was selected as an
independent test set. In addition, as these eight features could
form two hundred and fifty-five different cases, all of the cases
were tested and the optimal classification result was chosen
as the independent experimental result. The corresponding
selected features are shown in Tables 2 and 3.
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Figure 6: Histograms of the overlap measures for the computerized methods: (a) AOR1; (b) AOR2. The closer the AOR value is to one, the
better the segmentation performed. The LS method exhibited the best performance of the three methods.

Table 2: Classification results of the different segmentation methods (leave-half-case-out).

Segmentation method Classification model Accuracy (%) Sensitivity (%) Specificity (%)

FCM Fisher 79.5 87.7 57.1
SVM 74.4 82.5 52.4

FCM-GVF-snake Fisher 80.8 86.0 66.7
SVM 82.1 86.0 71.4

CV-level set Fisher 91.0 96.5 76.2
SVM 92.3 98.2 76.2

Table 3: Classification results of the different segmentation methods (leave-one-case-out).

Segmentation method Classification model Accuracy (%) Sensitivity (%) Specificity (%)

FCM Fisher 83.3 91.0 69.0
SVM 80.8 93.6 57.1

FCM-GVF-snake Fisher 78.3 82.1 71.4
SVM 82.5 93.6 61.9

CV-level set Fisher 90.8 94.9 83.3
SVM 90.0 98.7 73.8

As shown in Tables 2 and 3, when all eight of the
features, including entropy, entropy of sum, entropy of radius
distribution, area, boundary of fractal dimension, entropy
of difference, compactness, and speculation, were selected
as a subset for the experiment, their accuracy, sensitivity,
and specificity varied among the different segmentation and
classification methods. The two tables make it clear that the
combination of the CV LS segmentation method and SVM
classifier achieved the best performance out of all of the
methods. The leave-half-case-out test in Table 2 exhibits an
accuracy level of 92.3%, a sensitivity level of 98.2%, and

a specificity level of 76.2%. The leave-one-case-out test in
Table 3 exhibits an accuracy level of 90.0%, a sensitivity level
of 98.7%, and a specificity level of 73.8%.

3.3. Discussion. The results of our experiment demon-
strate that our new DCE-MRI CAD system using CV
LS/ReliefF/SVM hybrid model exhibited the best diagnostic
performance. Nowadays, our CAD system has shown that
the eight morphological and texture features in breast MRI
as adjunct diagnostic criteria can improve the specificity
without significantly reducing the sensitivity. The most
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widespread CAD applications in the breast mostly will take
into account dynamic features. For example, Baltzer et al.
[42] have shown that fast visual assessment of dynamic data
using CAD calculated parametric images is feasible without
a decrease in diagnostic accuracy. They also proved that the
combination of multiple dynamic and morphological MRI
criteria seems to have the potential for a differential diagnosis
of inflammatory breast carcinomas and acute mastitis [43].
Our future work will evaluate whether a combination with
dynamic features evaluation could further improve our CAD
system diagnostic accuracy.

4. Conclusion

This study developed a fully automated BMRI prognostic
system that implemented breast segmentation, tumor seg-
mentation, feature extraction, feature selection, and clas-
sification between benign and malign tumors. Compared
with the FCM and GVF snake segmentation methods, the
segmentation performance indicated that the CV LS comput-
erized segmentation method is a more accurate method for
automatically determining a suspicious mass region and can
help radiologists in their detection and delineation of BMRIs.
The ReliefF algorithm was useful in selecting an optimal
subset of breast tumor features. The subset could be used to
decrease feature dimensions and weight minimum distance
classifiers. In terms of computerized characterization, the
Fisher and SVM methods were used separately to select
morphological and texture features and make classifications
with the adoption of a leave-one-case-out cross-validation
method and a leave-half-case-out validation method. In
conclusion, the ReliefF/SVM/CV LS hybrid model exhibited
the best performance (accuracy = 90.0%, sensitivity = 98.7%,
and specificity = 73.8% for the leave-one-case-out validation;
accuracy = 92.3%, sensitivity = 98.2%, and specificity =
76.2% for the leave-half-case-out validation). The new DCE-
MRI CAD system may assist radiologists in delineating and
characterizing BMRI masses, for example, by quantifying
morphological and texture features and characterizing DCE-
MRI masses as malignant or benign. It also has the potential
to assist radiologists in decreasing the biopsy rate without
increasing false negatives.

Additional tests and experiments must be conducted to
further verify the results obtained in this study. Future work
could increase the sample size of the dataset by providing
more medical samples to reflect the real population. A much
greater effort will be required to design effective computer-
vision methods that can fully exploit the image informa-
tion in DCE-MRIs to improve segmentation and feature
selection.
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