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Autocrine Boost of NMDAR Current in Hippocampal CA1
Pyramidal Neurons by a PMCA-Dependent, Perisynaptic,
Extracellular pH Shift

Huei-Ying Chen1 and Mitchell Chesler1,2

1Department of Neuroscience and Physiology and 2Department of Neurosurgery, New York University School of Medicine, New York, New York 10016

The plasma membrane Ca 2�-ATPase (PMCA) is found near postsynaptic NMDARs. This transporter is a Ca 2�-H � exchanger that raises
cell surface pH. We tested whether the PMCA acts in an autocrine fashion to boost pH-sensitive, postsynaptic NMDAR currents. In mouse
hippocampal slices, NMDAR EPSCs in a singly activated CA1 pyramidal neuron were reduced when buffering was augmented by exoge-
nous carbonic anhydrase (XCAR). This effect was blocked by the enzyme inhibitor benzolamide and mimicked by the addition of HEPES
buffer. Similar EPSC reduction occurred when PMCA activation was prevented by dialysis of BAPTA or the PMCA inhibitor carboxyeosin.
Using HEPES, BAPTA, or carboxyeosin, the effect of XCAR was completely occluded. XCAR similarly curtailed NMDAR EPSCs of minimal
amplitude, but had no effect on small AMPAR responses. These results indicate that a significant fraction of the postsynaptic NMDAR
current is reliant on a perisynaptic extracellular alkaline shift generated by the PMCA.
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Introduction
NMDA receptors are a major pathway of postsynaptic Ca 2� entry
in pyramidal neurons (Kovalchuk et al., 2000) and have impor-
tant roles in synaptic plasticity (Malenka and Bear, 2004). After
its influx, Ca 2� is pumped from dendritic spines by the plasma
membrane Ca 2�-ATPase (PMCA) (Scheuss et al., 2006) via an
electroneutral, 1:2 exchange for extracellular H� (Carafoli and
Stauffer, 1994; Thomas, 2009). Therefore, Ca 2� extrusion causes
a fall in cytosolic pH and a rise in cell surface pH (Schwiening et
al., 1993; Kreitzer et al., 2007; Makani and Chesler, 2010). A
widespread rise in extracellular pH (pHe) results when many neu-
rons are coactivated (Chesler, 2003). These pHe shifts can be
detected within milliseconds (Gottfried and Chesler, 1996; Tong
et al., 2006), indicating rapid activation of the PMCA by sub-
membrane Ca 2�.

NMDARs are highly sensitive to pHe (Traynelis et al., 2010).
Factors governing this alkalosis have therefore been the subject of
study, especially in hippocampal area CA1 (Chen and Chesler,
1992; Shah et al., 2005; Tong et al., 2006). The size and speed of
this pHe shift is dependent on extracellular carbonic anhydrase

(ECAR). This enzyme catalyzes the hydration of CO2 to HCO3
�

and H�, and thereby controls the rate of buffering. Although the
CO2/HCO3

� system has a high buffering capacity at equilibrium,
this requires seconds because the overall ECAR activity is low.
During the rise of an alkaline transient over milliseconds, the
system is far from equilibrium. Therefore, the extracellular fluid
is poorly buffered in the time frame of synaptic events (Tong et
al., 2006).

In brain slices, rapid buffering efficacy was doubled by addi-
tion of exogenous CAR (XCAR) to the saline (Tong et al., 2006;
Makani and Chesler, 2007). This curtailed the alkaline pHe tran-
sients and also reduced the NMDAR component of the EPSC in
CA1 pyramidal cells, indicating that a fraction of the NMDAR
current arose from the population alkalosis. AMPAR currents, by
contrast, were unaffected (Makani and Chesler, 2007).

The relevance of these observations would seem limited to the
occasions of synchronous activation sufficient to cause an effec-
tive population alkalosis. However, the description of PMCA iso-
forms adjacent to NMDARs suggests that this modulation may be
far more discrete. Splice variants of PMCA2 were localized to
dendritic spines (Burette et al., 2010) and coimmunoprecipitated
with postsynaptic density proteins (DeMarco and Strehler,
2001). Given this proximity to postsynaptic NMDARs, an alka-
line boost of the current might occur in a local, autocrine fashion.
This modulation could be independent of population activity,
requiring afferent input to just one or a few dendritic spines. We
tested this hypothesis by studying the effect of XCAR on
NMDAR-mediated EPSCs evoked solely in the patched cell. Our
results indicate that postsynaptic NMDAR currents of a pyrami-
dal neuron are boosted by approximately one third through ac-
tivity of the same cell’s PMCA. Part of this work has appeared
previously in abstract form (Chen and Chesler, 2013).

Received June 4, 2014; revised Oct. 31, 2014; accepted Nov. 17, 2014.
Author contributions: H.-Y.C. and M.C. designed research; H.-Y.C. performed research; H.-Y.C. and M.C. analyzed

data; H.-Y.C. and M.C. wrote the paper.
This work was supported by the National Institutes of Health, National Institute of Neurological Disorders and

Stroke (Grant NS032123) and the Attilio and Olympia Ricciardi Fund. We thank N. Galifianakis, A. Paulson, S. Makani,
W. Sly, and A. Waheed for critical feedback.

The authors declare no competing financial interests.
Correspondence should be addressed to Dr. Mitchell Chesler, Department of Neuroscience and Physiology and

Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016.
E-mail: Mitchell.Chesler@nyumc.org.

DOI:10.1523/JNEUROSCI.2293-14.2015
Copyright © 2015 the authors 0270-6474/15/350873-05$15.00/0

The Journal of Neuroscience, January 21, 2015 • 35(3):873– 877 • 873



Materials and Methods
Experimental preparation and solutions. Procedures were performed with
approval of the New York University School of Medicine Institutional
Animal Care and Use Committee. Transverse hippocampal slices (250 –
300 �m) were prepared from P7–P14 Swiss Webster mice of either sex. A
cut was made between the CA3 and CA1 regions to prevent reverberating
synaptic activation of CA1 neurons. Slices were made and kept in low
Ca 2� artificial CSF (ACSF) containing the following (in mM): 124 NaCl,
3.0 KCl, 0.5 CaCl2, 3.0 MgCl2, 26 NaHCO3, 1.0 NaH2PO4, and 10
D-glucose plus 1 mM kynurenic acid. Slices recovered in the cutting ACSF
at room temperature for at least 30 minutes and were then transferred to
the recording chamber and superfused with standard ACSF for another
20 minutes. Standard ACSF contained the following (in mM): 124 NaCl,
3.0 KCl, 2.0 CaCl2, 1.5 MgCl2, 26 NaHCO3, 1.0 NaH2PO4, and 10
D-glucose, pH 7.4, with 95% O2 and 5% CO2. In some cases, a modified
ACSF was used with 20 mM HEPES acid in addition to 26 mM NaHCO3.
The HEPES ACSF was made using initial addition of 35 mM NaHCO3

with a compensatory reduction of NaCl to 109 mM. In 95% O2 and 5%
CO2, titration of the HCO3

� by HEPES acid produced a final HCO3
� level

of 26 mM, as judged by the final pH of 7.4. Experiments were conducted
in a submersion-style chamber at 32°C.

Drugs were added to the external ACSF or to the pipette solution in the
following concentrations: 6,7-dinitroquinoxaline-2,3-dione (DNQX) 10
�M, picrotoxin 100 �M, benzolamide (10 �M), ethylisopropylamiloride
(EIPA) 10 �M, cariporide 100 �M, 4,4�-diisothiocyanatostilbene-2,2�-
disulfonic acid (DIDS) 100 �M, S0859 30 �M, niflumic acid 100 �M,
lidocaine N-ethyl bromide (QX-314) 4 mM, 1,2-Bis (2-amino-
phenoxy)ethane- N, N,N�,N�-tetraacetic acid (BAPTA) 20 mM, car-
boxyeosin (CE) 1 or 5 �M (see below), and N-methyl verapamil bromide
(D-890) 500 �M. In most cases, XCAR consisted of 1 �M bovine type II
enzyme in ACSF. In three experiments, we used 2 �M human, recombi-
nant type IV carbonic anhydrase. D-890, QX-314, and cariporide were
obtained from Abcam, Tocris Bioscience (now R&D Systems), and Santa
Cruz Biotechnology, respectively. Benzolamide was a gift from Dr. E.
Swenson (University of Washington). Recombinant type IV carbonic
anhydrase was a gift from Dr. W. Sly (St. Louis University). All other
agents were obtained from Sigma-Aldrich.

Whole-cell voltage clamp. CA1 pyramidal neurons were viewed under
infrared differential interference contrast microscopy using a Zeiss Ax-
ioscop 2 Plus fixed-stage microscope with a 40�, water-immersion ob-
jective (0.75 numerical aperture), and a Dage-MTI video camera. Patch
pipettes were pulled from 1.5 mm OD � 1.12 mm ID borosilicate tubing
(World Precision Instruments). The pipette filling solution contained
the following (in mM): 120 Cs-gluconate, 20 KCl, 20 HEPES, 2 Mg 2�-
ATP, 1.0 EGTA, and 4 QX-314 and was titrated to pH 7.3 with CsOH
(osmolarity, 280 –290 mOsm). Pipettes had resistances of 3–5 M�. With
addition of 20 mM BAPTA to the filling solution, Cs-gluconate was re-
duced to maintain osmolarity. With BAPTA, CE, or D-890 in the patch
pipette, 10 minutes of dialysis was allowed before analysis of drug effects.
In CE occlusion experiments, pipettes contained 5 �M CE and initial
effects were apparent within 5 minutes. Therefore, to study EPSCs before
and after dialysis, CE concentration was reduced to 1 �M, allowing time
for acquisition of control traces before its effects occurred.

After breakthrough, recordings stabilized for 3–5 minutes before data
acquisition. Cells were accepted if the series resistance was �20 M� and
did not change by �20%. Data were acquired using an Axopatch 1D
amplifier and Digidata board 1320A controlled by Clampex 10.2 and
analyzed with ClampFit (Molecular Devices). Traces were sampled at 5
kHz and filtered at 2 kHz. Records in figures are averages of 10 raw traces,
except for D-890 experiments, in which 5 traces were averaged. Electrical
artifacts were truncated for clarity. EPSC reversal potential was obtained
from the zero current intercept of the EPSC I–V curve obtained in 20 mV
steps between holding potentials of �70 and �50 mV.

Stimulation. The Schaffer collateral fibers in stratum radiatum were
activated with a 100 �s constant current stimulus via a 2– 4 �M tip diam-
eter pipette filled with ACSF. Stimulus intensity and duration were set to
elicit EPSCs of either 100 – 400 pA or 30 –55 pA and were delivered at a
30 s interval in all experiments.

pH microelectrodes. Concentric pH microelectrodes (tip diameter of
2– 4 �M) were fabricated and calibrated as described previously (Makani
and Chesler, 2007). pHe readings were obtained in mid-CA1 stratum radia-
tum at a depth of 	150 �M and referenced to the overlying ACSF, pH 7.4.

Data analysis. EPSC peak, charge transfer, and half-time of decay were
obtained in the 5 minute period before the addition of XCAR. Although
effects of XCAR appeared rapidly, data were not analyzed during a 7
minute wash-in period to insure full effect of the enzyme. A similar 7
minute period was allowed for delay experiments and for wash-in of
HEPES-bicarbonate ACSF. After the 7 minute delay, data were taken
over the next 5 minute period. Statistics were presented as means with SE
with significance at p � 0.05. Comparisons were made with a two-tailed,
Student’s paired or unpaired t test or one-way ANOVA, as appropriate.
Values of n refer to the number of recorded cells. In the Discussion, we
calculated the reversal potential (Er) for a putative anion conductance
with a given HCO3

� to Cl � permeability ratio using the zero current
condition of the constant field equation (Hodgkin and Katz, 1949), as-
suming a [HCO3

�]i of 45 mM or lower.

Results
Slices were bathed in standard ACSF with DNQX and picrotoxin
to block AMPAR and GABA-A receptor-mediated responses in
all cells. A holding potential (VH) of �50 mV removed the Mg 2�

block of NMDARs, allowing a large NMDAR-mediated EPSC
solely in a patched neuron. Addition of XCAR consistently re-
duced the EPSC peak (�23 
 3.0%, n � 9, p � 0.001, Fig. 1a,b).
This effect was virtually instantaneous as the enzyme reached the
slice and was comparable using bovine CAR type II (n � 6) or
human recombinant CAR type IV (n � 3, dashed lines Fig. 1b).
Charge transfer was likewise decreased (�20 
 4.2%, n � 9, p �
0.01, Fig. 1c), but the decay half-time was unaffected (89 
 3.5 ms
in control vs 91 
 5.2 ms in XCAR, n � 9, p � 0.54, Fig. 1d), nor
was the reversal potential changed (�2.7 
 2.9 mV in control vs
�2.3 
 2.6 mV in XCA, n � 5, p � 0.90, Fig. 1e). EPSC reduction
was not due to run down, because a 7 minute delay had no effect
on the peak (�1.9 
 1.4%, n � 5, p � 0.29, Fig. 1f,g). Moreover,
in saline containing benzolamide, an ECAR inhibitor (Travis et
al., 1964), XCAR had no effect on the peak EPSC (�1.1 
 2.3%,
n � 6, p � 0.89, Fig. 1h,i), indicating that the enzyme active site
was required to reduce the NMDAR current.

XCAR did not lower pHe (�pHe � 0.027 
 0.01, n � 4 slices,
p � 0.55; see also Makani and Chesler, 2007), so acidosis could
not explain the EPSC reduction. Because a more localized,
transport-mediated surface acidosis might occur, we tested
XCAR in the presence of the Na�-H� exchange blockers EIPA (n �
4) or cariporide (n � 4). To cover HCO3

�-dependent acid extruders,
we used DIDS (n � 4), which blocks the Slc4 transporters of brain,
with the exception of Slc4a7 (Ruffin et al., 2014), for which we used
the drug S0859 (n�4) (Ch’en et al., 2008). With these drugs present,
respective reductions of the EPSC by XCAR were �29 
 4.0%,
�24 
 2.2%, �23 
 3.2%, and �21 
 1.8%, which did not differ
from controls (9 cells of Fig. 1b) or from one another.

Alternatively, apparent EPSC reduction could occur if XCAR
diminished the Ca 2� activated Cl� conductance of these cells
(TMEM16B; Huang et al., 2012; but see Discussion). In the pres-
ence of its blocker niflumic acid (n � 4), EPSC curtailment by
XCAR was �28 
 5.0%, which did not differ from controls or
from the reduction seen with the four drugs above.

XCAR curtailed the EPSC similarly at a VH of �30 mV
(�26 
 4.5%, n � 5, p � 0.01, Fig. 2a,b), which did not differ
from its effect at �50 mV in paired trials (p � 0.91). Therefore,
the EPSC reduction was not voltage dependent. This also sug-
gested that the effect of XCAR was not reliant on a Ca 2� influx
triggered by the step to �50 mV, for example, via L-type Ca 2�
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channels in postsynaptic spines (Leitch et al., 2009). This was
tested directly with the L-type blocker D-890 in the pipette. If
these channels were required, then a smaller effect of XCAR
would be expected at �50 mV. With D-890, however, reductions
of the EPSC by XCAR were �34 
 5.0% at �50 mV and �26 

3.7% at �30 mV (n � 5, p � 0.13, Fig. 2c–f).

If XCAR curtailed the EPSC by buffering a Ca 2�-triggered,
PMCA-mediated alkalosis, then the EPSC should be reduced and
the effect of XCA occluded by the addition of a fast extracellular
buffer or by agents that prevent PMCA activation. Adding 20 mM

HEPES to normal HCO3
�-buffered ACSF diminished the EPSC

(�24 
 2.9%, n � 5, p � 0.05, Fig. 3a,b) and occluded the effect
of XCAR (�0.5 
 3.4%, n � 5, p � 0.99, Fig. 3c,d). Inclusion of
BAPTA in the pipette similarly reduced the EPSC (�23 
 4.2%,
n � 7, p � 0.001, Fig. 3e,f) and occluded the effect of XCAR
(�1.8 
 1.6%, n � 5, p � 0.31, Fig. 3g,h). Inhibiting the PMCA
with 1 �M CE in the pipette (Makani and Chesler, 2010) also
curtailed the EPSC (�19 
 4.0%, n � 7, p � 0.01, Fig. 3i,j) and
occluded further reduction by XCAR (�1.8 
 2.6%, n � 5, p �
0.6, Fig. 3k,l). EPSC curtailment with both 20 mM BAPTA and 5
�M CE in the patch pipette (�24 
 3.1%, n � 6, p � 0.001) was
no different from that caused by BAPTA or CE alone, which is
consistent with a common mechanism. These data demonstrate
that the recorded cell was the sole source of the EPSC modula-
tion; tie the EPSC reduction to pHe buffering, Ca 2� influx, and
the PMCA; and show by occlusion that EPSC reduction was not
due to NMDAR antagonism by XCAR.

If a PMCA-mediated alkalosis boosts adjacent NMDARs,
then the effect of XCAR should occur with just a few afferents
activated. This was tested using a minimal stimulus to elicit
EPSCs averaging 43 
 3.3 pA (range 30 –55 pA). XCAR re-
duced these responses by �25 
 3.2% (n � 9, p � 0.001, Fig.
4a,b). Small EPSCs were unchanged in delay experiments
without XCAR (�2.0 
 3.8%, n � 5, p � 0.72, Fig. 4c,d). The
reduction of small EPSCs did not differ from that of the larger
EPSCs of Figure 1b ( p � 0.65). Pooling all XCAR trials at �50
mV, the mean EPSC reduction was �26 
 1.2% (n � 52).

To test whether XCAR had reduced small EPSCs by an in-
crease in afferent threshold and dropout of axons, we studied its
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effect on small AMPAR-mediated EPSCs (without DNQX; VH �
�70 mV). AMPAR EPSCs (�42 
 3.3 pA, n � 5, range �32 to
�50 pA) were not changed by XCAR (�4.5 
 3.9%, n � 5, p �
0.26, Fig. 4e,f). Therefore, the enzyme did not reduce the number
of activated afferents nor was its effect due to diminished presyn-
aptic release (Makani and Chesler, 2007).

Discussion
Our data argue that the postsynaptic NMDAR current is boosted
in an autocrine manner by a PMCA-mediated alkalosis. This inter-
pretation is based on reduction of the EPSC by XCAR, which aug-
ments buffering in a rapid time frame (Tong et al., 2006). In support
of this view, HEPES both curtailed the EPSC and occluded the effect
of XCAR, as did dialyzed BAPTA or CE. Therefore, XCAR’s effect
required Ca2�-mediated activation of the PMCA in just the patched
cell, most likely via an NMDAR-mediated Ca2� influx.

Several alternative hypotheses can be excluded. XCAR did not
cause a fall in pHe that could reduce the EPSC and a more local-
ized acidosis due to transport was unlikely because a host of
transport blockers did not alter XCAR’s effect. XCAR did not
change EPSC time course, consistent with an action upon
NMDAR channels alone. An alternate notion is that Ca 2� entry
activated a Cl� conductance of similar time course that was di-
minished by XCAR (see below). This is unlikely because neither
niflumic acid nor DIDS (which inhibits the ClC-3 Cl� channel;
Wang et al., 2006) altered the effect of XCAR.

A role for a pure Cl� conductance or mixed Cl�-HCO3
� con-

ductance is doubtful in principle because XCAR had the same
effect on the peak EPSC at �50 vs �30 mV. At �50 mV, an
apparent reduction of the outward EPSC could occur if a coacti-
vated, outward current (ECl � �50 mV) were reduced by XCAR.
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At �30 mV, however, the EPSC was inward, but a Cl� current
would still be outward. Therefore, its reduction would have been
expected to increase, rather than decrease, the EPSC. The same
argument would hold for typical Cl� channels with some perme-
ability to HCO3

� because the reversal potential of the anion
current would remain negative to �30 mV if the HCO3

� to Cl�

permeability ratio were as high as 0.6 (Kaila, 1994) and the intra-
cellular HCO3

� was elevated to as much as 45 mM.
A similar argument applies if a surface pH shift linked to an

HCO3
� conductance were postulated to account for our results.

At �50 mV, an HCO3
� influx could elicit a surface acidosis, given

a typical HCO3
� reversal potential of 0 to �20 mV. If this acid

shift were augmented by XCAR (by speeding CO2 hydration), it
could inhibit NMDARs and reduce the EPSC. At �30 mV, how-
ever, an HCO3

� efflux and consequent alkalosis would occur. This
alkaline shift would be boosted by XCAR (by speeding HCO3

�

dehydration; Kaila, 1994), so an increase in the EPSC would have
been expected instead of the observed decrease.

In summary, our data imply that a perisynaptic alkalosis nor-
mally increases the postsynaptic NMDAR current by approxi-
mately one-third. This is likely to be a minimal estimate because
increased buffering should reduce but not fully abolish a surface
alkalosis. The modulation is highly localized because XCAR
caused similar reduction of large and small EPSCs. Given expres-
sion of PMCA2 variants in association with the postsynaptic den-
sity (DeMarco and Strehler, 2001), a current boost at the level of
single postsynaptic boutons appears plausible.

Whereas prior studies using XCAR relied upon simultaneous
activation of the pyramidal neuron population, the present re-
sults indicate that alkaline modulation of NMDARs occurs with
modest synaptic input to a single neuron and is therefore a nor-
mal, significant attribute of this form of synaptic transmission.
Functionally, this modulation may provide a means of regulating
NMDAR responses via control of the alkalosis. Because the size of
this pH shift is affected greatly by ECAR activity (Chesler, 2003),
changes in the expression of one or more of its isoforms could pro-
vide a form of plasticity. In fact, increased excitability was reported in
mice with a knock-out of extracellular CAR14 (Makani et al., 2012).
Another means of altering the magnitude of the alkalosis is via elec-
trogenic Na�-HCO3

� cotransport by glia. These mechanisms of pHe

control may differ regionally, as evidenced by the variability in alka-
line transients in brain and spinal cord (Chesler, 2003). Evolution
may have favored a large alkalosis in the CA1 stratum radiatum,
where long-term potentiation depends on the activation of postsyn-
aptic NMDARs (Collingridge et al., 1983).
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