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Integrated systems analysis reveals a molecular
network underlying autism spectrum disorders
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Abstract

Autism is a complex disease whose etiology remains elusive. We
integrated previously and newly generated data and developed a
systems framework involving the interactome, gene expression and
genome sequencing to identify a protein interaction module with
members strongly enriched for autism candidate genes. Sequencing
of 25 patients confirmed the involvement of this module in autism,
which was subsequently validated using an independent cohort of
over 500 patients. Expression of this module was dichotomized with
a ubiquitously expressed subcomponent and another subcomponent
preferentially expressed in the corpus callosum, which was
significantly affected by our identified mutations in the network
center. RNA-sequencing of the corpus callosum from patients with
autism exhibited extensive gene mis-expression in this module, and
our immunochemical analysis showed that the human corpus
callosum is predominantly populated by oligodendrocyte cells.
Analysis of functional genomic data further revealed a significant
involvement of this module in the development of oligodendrocyte
cells in mouse brain. Our analysis delineates a natural network
involved in autism, helps uncover novel candidate genes for this
disease and improves our understanding of its molecular pathology.
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Introduction

Genetic studies of autism spectrum disorders (ASDs) in the past

decade have implicated a large number of clinical mutations in more

than 300 different human genes (Basu et al, 2009). These mutations

account for very few autism cases, suggesting that the genetic archi-

tecture of autism is comprised of extreme locus heterogeneity

(Abrahams & Geschwind, 2008). Key issues in understanding the

underlying pathophysiology of ASDs are identifying and characteriz-

ing the shared molecular pathways perturbed by the diverse set of

ASD mutations (Bill & Geschwind, 2009; Berg & Geschwind, 2012).

The common approach to uncover pathways underlying ASD is

based on enrichment tests against a set of annotated pathways for

mutations derived from a genome-wide comparison between cases

and controls. For example, a b-catenin/chromatin remodeling

protein network showed enrichment for the de novo mutations iden-

tified from sequencing exomes of sporadic cases with autism

(O’Roak et al, 2012). Common variants from genome-wide associa-

tion studies (GWAS) were also tested against KEGG pathways,

suggesting a possible association with a pathway for ketone body

metabolism (Yaspan et al, 2011). However, in spite of extensive

efforts by many research groups worldwide, including recent large-

scale genotyping and sequencing studies (Anney et al, 2012; Liu

et al, 2013), we still lack a complete understanding of the genetic

underpinnings of this disease. Therefore, instead of searching

genome-wide, we decided that a focused study either by injecting

our prior knowledge or by utilizing information from molecular

studies of natural pathways might help discover pathways relevant

to ASD etiology. Gilmen et al constructed a network by connecting

every pair of genes with any functional association, such as shared

annotation terms, pathway memberships, interacting partners or co-

evolutionary patterns. This association network was then seeded

with the genes previously found in ASD-associated de novo copy

number variants (CNVs) followed by a search of their neighbor-

hoods for sub-networks most enriched for these affected genes. This

“seeding-and-expansion” strategy identified functionally associated

genes in synapse development, axon targeting and neuron motility

(Gilman et al, 2011). Related studies were focused on a set of

proteins potentially implicated in ASD and characterized their inter-

acting partners to identify molecular pathways underlying ASD

(Sakai et al, 2011; Corominas et al, 2014; Cristino et al, 2014).

These approaches all started with a set of previously curated
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ASD-associated genes, which served to define an ASD-related

framework. However, given our incomplete understanding of ASD,

identifying ASD-associated pathways purely based on these known

genes might not be able to reveal the “natural” organization of

genes implicated in this disease and may miss many components

involved in ASD.

A complementary approach was also developed recently, in

which human genes were first grouped based on their expression

profiles across brain developmental stages or anatomical brain

sections. Significant mutation or aberrant expression within a few

co-expressed gene groups should then reveal a more complete func-

tional organization underlying ASD (Voineagu et al, 2011; Ben-

David & Shifman, 2012; Parikshak et al, 2013; Willsey et al, 2013).

However, co-expression analysis often identifies a large number of

genes co-expressed for many reasons, including gene sub-cellular

co-localization, co-evolution or just coincidental expression, and

thus, it is not possible to infer the exact physical organization of

genes in ASD from such a heterogeneous co-expression network.

For example, when we considered a threshold of Pearson’s correla-

tion of 0.7 for genes expressed across brain anatomical sections

(Hawrylycz et al, 2012), more than 2.8 million gene pairs displayed

significant co-expression, whereas the complete physical interac-

tome in human is estimated to consist of 150k to 370k protein–

protein interactions (Hart et al, 2006), accounting for only ~5–10%

of the co-expressed genes. Therefore, co-expression analyses reveal

functional association between genes, but not “physical” organiza-

tion; however, the latter is crucial for delineating the mechanistic

basis of the disease.

Herein, we describe a systems biology approach (Supplementary

Fig S1) to unravel natural organization of physically interacting

proteins implicated in ASD. We analyzed the human protein interac-

tome to detect a protein module strongly enriched for biological

processes relevant to ASD etiology. The module is frequently

mutated in patients with autism, which was further validated in a

large patient cohort and by our own independent sequencing stud-

ies. Network and transcriptome analyses of this ASD module collec-

tively revealed that the corpus callosum is likely a potential tissue of

origin underlying ASD, in line with its morphological alterations

that have been described in patients with ASD (Boger-Megiddo et al,

2006; Frazier et al, 2012).

Results

Modularization of the human protein interactome

We first generated a new topological protein interaction network

using the most comprehensive human protein interactome from

BioGrid (Stark et al, 2011) comprising 13,039 proteins and 69,113

curated interactions (see Materials and Methods, and Supplemen-

tary Dataset S1). Since interacting proteins are presumably co-

expressed, the quality of these protein interactions was often

analyzed by co-expression analysis (Yu et al, 2008). We found

significantly increased gene co-expression from this dataset relative

to a set of previously benchmarked interacting proteins (Das & Yu,

2012) and also to randomly paired proteins (Supplementary Fig S2,

and also see Materials and Methods, P < 1e-10, Wilcoxon rank-sum

test), demonstrating high quality of this human protein interactome

dataset. We then topologically clustered the proteins that consti-

tuted the network into highly interacting modules using a parame-

ter-free algorithm (Materials and Methods) that was specifically

designed for detecting community structures in a large-scale

network (Blondel et al, 2008). By maximizing the score for network

modularity, the human interactome was decomposed into 817 topo-

logical modules (Fig 1, Supplementary Dataset S1) of non-uniform

sizes (Supplementary Fig S3A). Within each module, the proteins

tightly interacted with each other, but sparsely with proteins in

other modules. This observed modularity of the human interactome

was then tested against a set of shuffled networks of the same size

by randomly rewiring existing interactions while maintaining the

same number of interacting partners. None of the randomized

networks achieved the same modularity observed from the network

in this study (Supplementary Fig S3B), confirming the significance

of these topological clusters (P < 0.01, estimated from the 100

random shufflings).

Gene Ontology (GO) enrichment analysis for the 192 topological

modules containing more than five genes (Supplementary Fig S4)

revealed 85 modules that showed significant enrichment for at least

one GO term (FDR < 0.05, hypergeometric test, Supplementary

Dataset S2). The enrichment was highly significant for most of the

modules (FDR ≤ 5e-3, Supplementary Fig S4), including module #22

for histone acetylation (FDR = 5.3e-3), module #4 for kinase

cascades (FDR = 9.41231e-18), module #2 for DNA-dependent regu-

lation (FDR = 2.43e-237) and module #13 for synaptic transmission

(FDR = 2.77e-28). Overall, these observations revealed the modular

architecture of the human protein interactome, with different

modules organized for specific functions (Supplementary Fig S5).

A protein interaction module is associated with autism

To determine whether any of the modules are related to autism, we

first examined the 383 genes involved in ASD susceptibility from the

SFARI Gene list (https://gene.sfari.org/autdb/) that were present in

the network. Enrichment tests for each module in the network

revealed that module #2 (1,430 member genes, FDR = 2.3e-3,

hypergeometric test) and #13 (119 member genes, FDR = 4.6e-11,

hypergeometric test) showed significant enrichment. Module #2 was

enriched for transcriptional regulation, including ASD-associated

transcription factors and chromatin remodelers (FOXP2, MECP2, and

CHD8, etc.), and module #13 encompassed many genes for synaptic

transmission (SHANK2, SHANK3, NLGN1, NLGN3, etc., see GO

enrichment test above and also in Supplementary Fig S6). Given the

substantially stronger enrichment for SFARI ASD genes in module #13

relative to module #2, in the remaining part of the study, we focused

on module #13 for its ASD implication and molecular function.

To determine that the observed enrichment for SFARI genes was

not biased by unequal CDS (coding DNA sequences) length and GC

content in the above comparison, we further performed 10,000 sets

of permutation tests. In each permutation, we randomly sampled

genes with indistinguishable CDS length and GC content from the

SFARI genes (see Materials and Methods), and we validated the

enrichment for SFARI genes in module #13 (P < 1e-5). The SFARI

reference ASD gene list, although comprehensive, is likely to have

potential curation bias. We therefore tested this module’s enrich-

ment for ASD candidate genes using a variety of validation tests.

We first tested whether the observed enrichment for ASD genes in
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module #13 was simply accounted for by its overall enrichment for

synaptic genes. Of the total 1,886 known synaptic genes from

SynaptomeDB (Pirooznia et al, 2012), 1,745 were present on the

network. After removal of the synaptic genes from module #13, ASD

non-synaptic genes were highly enriched in the module relative to

those in the entire network or across the genome (14.8% versus

2.6% and 2.9%, respectively; P ≤ 1.64e-4, hypergeometric test).

Furthermore, 5.44% (95/1745) of the ASD SFARI genes were in the

synaptic set for the entire network, but 21% (25/119) were in

module #13, a highly significant enrichment (P = 3.28e-8, Fisher’s

exact test, for the ratio difference from the synaptic gene set). These

comparisons collectively demonstrate that the ASD enrichment in

module #13 cannot be attributed to only the synaptic genes in this

module, but instead is due to a clustering of ASD genes in the

module. Furthermore, the enrichment was also observed when test-

ing ASD genes from different releases of the SFARI curated database

(P ≤ 1e-10, Supplementary Fig S7).

We next analyzed the association of module #13 with ASD

using data from several unbiased genomic studies (Supplementary

Dataset S2). To account for any potential bias in CDS length or
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Figure 1. A modular protein interaction network with modules containing enrichment of autism-associated genes.
Two topological modules (#2 and #13) on human protein interaction network showed significant enrichment for autism genes (in red). The topological modules are
physical clusters on the network where their member genes intensively interact with each other but sparsely interact with non-member genes on the network. A zoom-in
view of module #13 is also shown, where known autism genes and genes affected by ASD-associated de novo CNVs were colorized in red and green, respectively. Genes
annotated by both were in blue. The false discovery rate indicates its significant enrichment for the known autism genes.
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GC content, all comparisons were based on a set of 9,782 genes

with comparable CDS length and GC content with genes in module

#13 (P = 0.25 and 0.14, respectively, Wilcoxon rank-sum test, see

Materials and Methods). We performed five independent tests

using (i) all the genes whose exons were affected by de novo CNV

events from three independent studies (Levy et al, 2011; Sanders

et al, 2011; Pinto et al, 2014); (ii) a list of 203 high-confidence

genes affected by ASD-associated de novo CNVs detected in 181

individuals with autism (Noh et al, 2013); (iii) 407 genes affected

by rare CNV events associated with ASD (Pinto et al, 2010); (iv)

67 genes affected by de novo loss-of-function mutations in ASD

probands; (v) 366 genes affected by de novo missense mutations

in ASD probands. As control gene sets for these analyses we also

included the following: (vi) 557 genes whose exons were affected

by de novo CNVs identified from non-ASD individuals (Kirov et al,

2012) or unaffected siblings (Levy et al, 2011; Sanders et al,

2011); (vii) 109 genes with de novo missense mutations identified

in unaffected siblings; and (viii) 148 and 52 genes with de novo

silent mutations in ASD probands and unaffected siblings, respec-

tively. All of the above de novo point mutations were from recent

large-scale exome-sequencing studies (Neale et al, 2012; O’Roak

et al, 2012; Sanders et al, 2012). The exact comparisons are

shown in Supplementary Table S1A and B.

We observed that genes affected in ASD patients by the de novo

CNVs (19.33% in the module versus 11.27% in the matched control

gene set, P = 0.01, Fisher’s exact test), the rare CNVs (5.04% in the

module versus 2.17% in the matched control gene set, P = 0.048,

Fisher’s exact test) and the disruptive mutations (2.52% in the

module versus 0.54% in the in the matched control gene set,

P = 0.03, Fisher’s exact test) each displayed a significant enrichment

for this module, whereas the enrichment signal was absent from all

types of mutations identified from non-ASD individuals and unaf-

fected siblings, nor the silent mutations from ASD probands

(P > 0.1, Fisher’s exact test, See Supplementary Table S1A and B for

the exact comparisons). Notably, although all ASD cohorts were

enriched, the strongest enrichment signal was from the high-confi-

dence CNV genes in ASD patients (Noh et al, 2013), where 14.29%

of these genes were implicated in this module compared with 1.1%

in the matched background (P = 3.1e-13, Fisher’s exact test). Lastly,

the similar enrichment was also observed from a set of ASD-

associated genes with syndromic mutations, or highly replicable

genes in different GWAS patient cohorts (P = 3.85e-6, Fisher’s exact

test, scored by SFARI Gene Module, category “S”). Overall, both

curated data and data from genome-wide screening consistently

support a significant association of module #13 with ASD. Our own

sequencing as described in the section below provides further

evidence for this module’s involvement in ASD.

Module #13 was also more enriched for ASD genes (21% in the

module) than genes involved in schizophrenia (Jia et al, 2010)

(10% in the module) and intellectual disability (Parikshak et al,

2013) (9.2% in the module), whereas no enrichment was observed

for Alzheimer’s disease (Bertram et al, 2007) (P = 0.28, Fisher’s

exact test, see Materials and Methods). The increased overlap with

schizophrenia and intellectual disability relative to Alzheimer’s

disease was expected given the shared molecular etiology among

the psychiatric disorders (Lee et al, 2013). Overall, this compari-

son suggests that the module is likely more specific toward

ASD-related genes.

DNA sequencing of ASD patients reveals an enrichment of rare
non-synonymous mutations in this module

We sequenced postmortem brain DNAs collected from 25 ASD

patients (all Europeans, Supplementary Table S2); in 19 subjects,

we sequenced the whole exomes (WES, >97× coverage) and in

six the whole genomes (WGS, ~35–40× coverage). In addition,

we sequenced four genomes and one exome from non-autistic

European individuals to control for the overall sequencing quality

(see Supplementary Tables S2, S3 and S4). We first analyzed

variants identified from the WES platform (19 exomes) and iden-

tified 153 non-synonymous variants that were mapped onto the

module, among which 19.6% (30/153) were extremely rare and

were not previously observed in the 1,000 Genome dataset.

Randomly sampling the same number of genes 10,000 times,

with indistinguishable CDS length and GC content from those in

this module, demonstrated a significant enrichment for the rare

non-synonymous variants in this module (P = 1.2e-3, with the

expected fraction 12%). The same enrichment signal was also

observed from the variants identified by WGS (P = 2.5e-3,

permutation test).

Excluding the variants also identified in the control subjects

that were sequenced on the same platform, we considered 113

non-synonymous sites in this module collectively identified from

WGS or WES. We compared their allele frequencies to those in

the 1,000 Genomes dataset, both the entire global populations and

the European populations, and from the 25 patients, we identified

a total of 38 genes affected by significant non-synonymous vari-

ants in this module with an expected false-positive rate at 0.1

(determined by Fisher’s exact test followed by Benjamini–

Hochberg correction). The high gene overlap between WGS and

WES was not expected by chance (P = 0.03 by random permutation

test). Furthermore, the identification of genes in our module was

not affected by the CDS length of the identified genes relative to

the average CDS length in the module (P = 0.16, Wilcoxon rank-

sum test). The identified genes and a summary of the variant

information are shown in Fig 2A. For example, LRP2 harbored

seven distinct non-synonymous mutations (z-axis, Fig 2A), four of

which were predicted to be deleterious by MutationTaster

(Schwarz et al, 2010). LRP2 has recently been identified as an

ASD candidate gene (Ionita-Laza et al, 2012), whose clinical

mutations cause the Donnai–Barrow syndrome (Kantarci et al,

2007) with the underdeveloped or absent corpus callosum. This

syndrome exhibits many autistic-like symptoms. Figure 2A further

underlines its tissue specificity in the corpus callosum using Brain

Explorer (http://www.brain-map.org). Other well-characterized

ASD-associated genes included SHANK2, SCN1A, NLGN4X and

NLGN3 as well as several LRP2 interacting proteins (LRP2BP,

ANKS1B). Overall, the affected loci in these genes were

more likely to be both rare in the population (y-axis) and

evolutionarily conserved (x-axis), suggesting their functional

importance (Fig 2A). We also noted that 28 genes of the 38 ASD

candidates have not been described previously (see Supplementary

Dataset S3). To better support their association with this

disease, we further examined their mouse mutant phenotypes in

Mouse Genome Informatics (http://www.informatics.jax.org) and

observed that 10 of the 28 new candidate genes displayed

abnormal behavioral traits or a defective nervous system in their
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respective mouse mutants (see Supplementary Dataset S3). For

example, mouse mutants of (i) ANKS1B and KCNJ12 exhibited

hyperactivity, (ii) ERBB2IP hyporesponsive behavior to stimuli,

(iii) GRID2IP abnormal reflex and (iv) SCN5A seizure.

Validation using an independent patient cohort

We next sought to further validate our observations in a larger

patient cohort. An exome-sequencing dataset of 505 ASD cases and

−15
−10

−5
0

5
10

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

corpus callosum

LRP2

NLGN3

SHANK2

SCN1A

NLGN4X

KIF13B ANKS1B

GRIK2

GRID2IP

UTRN

evolutionary conservation

fraction of rare variants

# 
of

 s
ig

ni
fic

an
t m

ut
at

io
ns

fr
ac

tio
n 

of
 p

re
di

ct
ed

 d
el

et
er

io
us

 v
ar

ia
nt

s

allele freq. differences between cases and controls

1

0.8

0.6

0.4

fr
ac

tio
n 

of
 o

ve
rla

pp
in

g 
ge

ne
s

real
random

P=9.5 x 10
-3

0.004 0.0060 0.002

B

A

Figure 2. Candidate genes from sequencing screens.

A An overview of the identified loci from whole-genome and exome sequencing. Evolutionary conservation is quantified by GERP++ score, where the higher scores
indicate greater selective pressure on the genomic loci. For genes with multiple significant loci, the most conserved residue is considered. Variants absent in the 1,000
Genome dataset are considered rare variants. The genes were colorized based on the fraction of deleterious mutations predicted by MutationTaster among all the
identified mutations in the gene (MRI image of the corpus callosum: Allen Institute of Brain Science).

B Validation using another larger patient cohort. In this dataset, variants with allele frequencies with increased absolute differences between cases and controls are
more likely to affect genes that were also detected in our study (red line). The allele frequency difference is the absolute difference between cases and controls. This
trend cannot be observed by 10,000 simulations (blue line for one randomized dataset).
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491 controls, each of European ancestry and unrelated within the

cohort, was analyzed (Liu et al, 2013). These samples had been

sequenced using a separate sequencing platform (SOLiD), and the

patients did not overlap with our sequenced cohort (See Materials

and Methods). A previous study examined this dataset but did not

find any genes (or variants) significantly associated with ASD (Liu

et al, 2013). We compared the allele frequencies for each of non-

synonymous variant detected in this study and found ~95% of these

variants had case–control frequency differences below 0.8%. We

observed that genes with non-synonymous variants with the highest

allele frequency differences between cases and controls were more

likely to be in the 38 module-specific candidate genes that we identi-

fied in our sequencing cohort (Fig 2B), and this trend was not

observed when we randomly sampled the same number of genes

from the module for 10,000 times (P = 9.5e-3, Fig 2B). Furthermore,

regression analysis on this dataset identified 16 genes in this module

with the extreme imbalanced allele frequencies among the patient

population (P < 0.05, see Materials and Methods); 14 were in the 38

candidate genes we identified (P = 1.2e-6, hypergeometric test,

Supplementary Dataset S3). Thus, this large-scale exome-sequencing

data validated and extended our results.

Expression specificity of the module in the corpus callosum

We next examined expression of the genes in module #13 using the

Allen Human Brain Atlas (Hawrylycz et al, 2012), which describes

the spatial gene expression across hundreds of neuroanatomically

precise subdivisions as measured by microarray analyses of two

individuals. Since the individuals exhibited high concordance in

expression profiles across brain sections (Hawrylycz et al, 2012),

we averaged the gene expression data for each of the 295 anatomi-

cal brain sections.

Most genes in module #13 were expressed across all brain

sections (Supplementary Fig S8). However, hierarchical clustering

of the normalized gene expression across brain sections revealed

two distinct spatial patterns with some heterogeneity apparent in

each (Fig 3A, complete list in Supplementary Dataset S4). Group 1

had 56 of 119 total genes preferentially expressed in 175 regions (T1

regions in Fig 3A), whereas the 63 genes of Group 2 had elevated

expression in the other 120 brain regions (T2 regions in Fig 3A).

Group 1 genes were strongly expressed in sections associated with

the corpus callosum (Fig 3A, including LRP2 shown in Fig 2A),

which transfers motor, sensory and cognitive signals between the

brain hemispheres. Group 2 genes (e.g., SHANK2 and SHANK3)

were up-regulated in T2 regions, which encompassed neuron-rich

regions, exemplified by the hippocampal formation, including

CA 1/2/3/4 fields, subiculum and dentate gyrus. Tissue enrichment

was derived from relative expression of individual genes across brain

sections; closer examination of their absolute expression in each

brain section relative to the transcriptome background revealed that

Group 1 expression levels were at background levels across most

tissue types, but peaked in the corpus callosum (Supplementary Fig

S8). Group 2 genes were highly expressed across all tissues, albeit

their expression levels were slightly depressed in the corpus callo-

sum (Supplementary Fig S8). Thus, Group 2 genes were more ubiq-

uitously expressed, and Group 1 genes were tissue specific in the

corpus callosum, and the trend was evidenced by its increased

tissue specificity index (P = 1.5e-4, Wilcoxon rank-sum test) and

decreased expression breadth (P < 0.01, Wilcoxon rank-sum test,

Supplementary Fig S9).

We further tested the tissue specificity of expression patterns by

RNA-sequencing (RNA-Seq) of postmortem human brain samples in

two sets of experiments. First, we examined expression levels in

four brain regions of one individual with no known disease (see

Materials and Methods). These regions were the dorsolateral

prefrontal cortex (Brodmann Area 9, BA9), the parietal lobe

(Brodmann Area 40, BA40), the amygdala (AMY) and the corpus

callosum (CC). BA9, BA40 and AMY are neuron-rich regions, while

the corpus callosum is glial rich. Consistent with the microarray

results, Group 2 genes were highly expressed in all tissues (P < 8e-7,

Wilcoxon rank-sum test, Fig 3B) confirming their ubiquitous expres-

sion, and Group 1 genes showed the greatest up-regulation over the

average transcriptome background in the corpus callosum

(P < 1.6e-6, Wilcoxon rank-sum test, Fig 3B) confirming their

increased tissue specificity. These RNA-Seq experiments also

confirmed the tissue specificity of LRP2 in the corpus callosum

(Supplementary Fig S10), as expected from Fig 2A. Secondly, to rule

out individual variability, we also examined gene expression by

RNA-Seq of the corpus callosum from six normal individuals (all

young Caucasian males; the control subjects in our later RNA-Seq

experiments, Materials and Methods). We found that both Group 1

and 2 genes were highly expressed in the corpus callosum relative

to the transcriptome background (P < 4.87e-6, Wilcoxon rank-sum

test, Fig 3C). These results confirmed that module #13 as a whole is

highly expressed in the corpus callosum, the largest white matter

structure in human brain.

To further validate our results, we performed immunohistochem-

ical analyses for a Group 1 corpus callosum-specific gene (Supple-

mentary Fig S10), LRP2, that also showed excessive mutation in our

sequencing analyses (Fig 2A). The experiment was performed in the

frozen postmortem corpus callosum tissue from one autism patient

(Fig 4A) and one control subject (Supplementary Fig S11). LRP2

protein was significantly expressed in the corpus callosum in both

individuals, with no obvious difference between the normal and

ASD subjects. As shown in Fig 4A, the staining results further

revealed that the human corpus callosum was predominantly popu-

lated by oligodendrocyte cells.

Given this fact, we next explored the function of this module in

the oligodendrocytes by comparing gene expression of module #13

with other major cell types (neurons and astrocytes) in brain. Due

to a lack of the cell-type expression data in human brain, we

mapped module #13 onto their unambiguous mouse orthologs (the

one-to-one orthology) and analyzed their cell-type expression

(Cahoy et al, 2008). Hierarchical clustering revealed that the

mouse orthologs in our module formed two major clusters with

expression enrichments in either neurons or glial cells (i.e., oligo-

dendrocytes and astrocytes, Fig 4B). The expression profiles of

glial cells were significantly enriched for Group 1 genes, and of

neuronal cells for Group 2 genes (P = 6.4e-4, chi-square test,

Fig 4B), suggesting that expression propensities of Group 1 and 2

in sections T1 and T2 (Fig 3A), respectively, were largely due to

their different compositions of glial cells and neurons. However, a

portion of the genes in both the neuron and glial clusters showed

common enrichment in the oligodendrocytes, separating the

cluster of the myelinating oligodendrocytes (myelin OLs, the

sub-cluster on the x-axis, Fig 4B) from the non-myelinating
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oligodendrocytes (the newly differentiated oligodendrocytes, OLs

and the oligodendrocyte precursor cells, OPCs, the sub-cluster on

the x-axis, Fig 4B). We thus hypothesized that the two sub-

components (Group 1 and 2) in the module are likely to be

involved in the development of oligodendrocyte cells.

Using the data generated by Emery et al (2009), we next

compared gene expression of the mouse orthologs of Group 1 and 2

genes in differentiating mouse culture systems. In cultured oligoden-

drocyte precursor cells (OPCs), the two gene groups did not show

substantial expression changes relative to the transcriptome average

(Fig 4C). However, in the matured myelinating oligodendrocytes

(MOG+), Group 1 genes exhibited marked up-regulation (P = 3.0e-3,

Wilcoxon rank-sum test, Fig 4D), whereas the Group 2 genes showed

slight down-regulation with no statistical significance (P = 0.74,

Wilcoxon rank-sum test). This indicates that up-regulation of Group

1 genes is associated with oligodendrocyte maturation.

In the same mature oligodendrocytes, we tested the expression

of module #13 components using mouse knockouts (Emery et al,

2009). The transcription factor, myelin gene regulatory factor

(MRF), plays a central role in developing myelination capacity for
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Figure 3. Expression analysis of the synaptic module.

A Dichotomized expression of the genes in module #13 across 295 brain sections. Relative abundance of each gene across the 295 brain sections was hierarchically
clustered to reveal gene groups exhibiting similar expression patterns across tissues. Group 1 genes showed elevated expression in 175 regions (T1, e.g., corpus
callosum) relative to other brain sections, and Group 2 genes showed high expression in 120 regions (T2, e.g., hippocampal regions) relative to other brain sections.

B RNA-sequencing of four different brain regions from a healthy subject. The brain regions include the Brodmann areas 9 (BA9), 40 (BA40), the amygdala (AMY) and the
corpus callosum (CC), which revealed the same observation as from the microarray analyses. Group 1 (red) and 2 (blue) genes were compared with 1,000 randomly
sampled genes (gray) from the transcriptome in each brain region. The raw FPKM values were normalized into the cumulative density functions based on kernel
density estimation. The elevation of Group 2 genes across all brain regions and the greatest increase of Group 1 genes in the corpus callosum were all statistically
significant (P < 1e-5, Wilcoxon rank-sum test).

C RNA-sequencing of the corpus callosum transcriptomes from six non-autistic individuals. FPKM quantifies the absolute expression of genes in each group. The two
groups have similar expression in the corpus callosum (P > 0.5, Wilcoxon rank-sum test), which are all above the transcriptome background (P < 4.87e-6, Wilcoxon
rank-sum test), suggesting that both sub-components are active in this tissue.
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oligodendrocyte cells, and mice lacking MRF in the oligodendro-

cyte lineage show defects of myelination, accompanied by severe

neurological abnormalities and postnatal lethality due to seizures

(Emery et al, 2009). In mouse oligodendrocytes with a conditional

knockout of MRF (MRFfl/fl; Olig2wt/cre), Group 2 genes exhibited a

significant up-regulation relative to the transcriptome background

(P = 8.7e-4, Wilcoxon rank-sum test, Fig 4D), whereas Group 1

genes underwent down-regulation with marginal statistical signifi-

cance (P = 0.1, Wilcoxon rank-sum test, Fig 4D). This suggests

that Group 2 genes are directly or indirectly suppressed by the

master myelination factor MRF in the myelinating oligodendro-

cytes. Overall, given these observations, we propose that up-

regulation of the Group 1 genes in this module is associated with,

or likely contributes to, oligodendrocyte maturation from their

precursor cells (OPSc). However, in the mature oligodendrocytes,

myelination capacity is acquired by the MRF-mediated regulatory

network, which also serves to suppress expression of the Group 2

genes (Fig 4E).

Altered gene expression in the corpus callosum of ASD patients
revealed by RNA-sequencing

Given the apparent importance of oligodendrocytes in the corpus

callosum, we further hypothesized that gene expression in this

module is likely to be perturbed in the corpus callosum of ASD

patients. We obtained frozen postmortem samples from six young

Caucasian males with a diagnosis of autism together with their

respective matched controls from the NICHD Brain and Tissue

neuron cluster

glial cluster relative expression across cell types
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Figure 4. Cell-type expression of module #13 in oligodendrocytes.

A Immunohistochemistry analysis in the corpus callosum. Staining of LRP2 in the human corpus callosum reveals that the major cell population in the corpus callosum
is the oligodendrocytes (the blue round nuclei), which express LRP2 stained in brown. A zoom-in view is shown in the inset.

B Neural cell-type expression of the orthologous module #13 in mouse brain. Gene expression in different neural cell types was hierarchically clustered into the three
major cell types in brain (neurons, oligodendrocytes and astrocytes). The clustering grouped genes in module #13 into a neuron cluster and a glial cluster, enriched
for Group 1 and 2 genes, respectively. The fraction of Group 1 (red) and 2 (blue) genes in the glial and neuronal clusters were represented by the pie charts, with
statistical significance determined by a chi-square test.

C Overall expression of module #13 in cultured oligodendrocyte precursor cells (OPCs). Group 1 and 2 were expressed at a similar level as the transcriptome
background in OPCs. The statistical significance was determined by Wilcoxon rank-sum test, and the error bars represent one standard error.

D The role of the module in oligodendrocyte (OL) development. Differentiation of OPCs into mature myelinating OLs (MOG+) led to a significant up-regulation of Group
1 genes (left, OPCs → mature OLs). On the other hand, conditional knockout (CKO) of the master myelination factor MRF from mature OLs led to a significant up-
regulation of Group 2 genes (right, mature OLs → MRF CKO). The statistical significance was determined by Wilcoxon rank-sum test.

E A proposed model. Up-regulation is associated with, or likely to contribute to, the differentiation of OPCs into mature myelinating OLs. The mature OLs acquire their
myelination capacity by activating the MRF-mediated regulatory network, which also serves to repress expression of Group 2 genes.
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Bank (Materials and Methods and Supplementary Table S5). Total

RNAs were prepared and subjected to high-coverage (180M reads/

sample) deep RNA-sequencing. Biological replicates (with the

same sequencing depth) were performed on half of the samples,

using different sections of the same tissue block. The biological

replicates produced highly reproducible results with a median

Pearson’s coefficient equal to 0.95 (range 0.9–0.96; Supplementary

Fig S12), whereas the correlations among samples from different

individuals were substantially lower (median correlation coeffi-

cient 0.89, P = 4.4e-3, Wilcoxon rank-sum test), demonstrating the

high intra-individual reproducibility of our platform. Because gene

expression in the brain is age dependent in patients with autism

(Chow et al, 2012), we compared gene expression in each case–

control pair with identical age, ethnicity, sex and comparable post-

mortem intervals (PMIs). We then identified genes showing the

most extreme expression changes in at least one case–control pair

(fold change > 2, above the 97.5% upper bound for up-regulation

and below 2.5% for down-regulation across the entire transcripto-

mes, Supplementary Table S6). Genes encoding components of the

module #13 showed significant enrichment for the differentially

expressed genes relative to the genes encoding the entire protein

interaction network (P = 5e-4, hypergeometric test, Fig 5A). We

conducted comparisons against two control gene sets: a complete

list of 1,886 known synapse-related genes (the synaptome in

Fig 5A) from SynaptomeDB (Pirooznia et al, 2012) and the other

control included a list of known 383 autism candidate genes repre-

sented on the network. In each case, the gene set contained a

similar fraction of differentially expressed genes as the entire tran-

scriptome background (P = 0.39 and 0.14, hypergeometric tests,

respectively). Thus, expression of module #13, but not synaptic

genes in general or known ASD candidate genes, was significantly

altered in the corpus callosum of the ASD patients relative to the

matched controls.

A network view of the candidate loci in this ASD module

We postulated that genes associated with ASD might show common

patterns in their topological positions on the molecular network,

and thus, we used the protein interaction network to integrate our

findings from the genome sequencing and expression analyses for

the module. The global interactome can be viewed as a layered

structure with proteins distributed from central cores to peripheral

layers. This can be revealed by the k-core decomposition algorithm

(Materials and Methods, also see the layered structure in Supple-

mentary Fig S13), where the coreness K of a protein describes its

closeness toward the network center. Proteins with K = 1 are

peripheral nodes that are individually connected, and proteins with

K ≥ 10 lie in the center of the network (the entire K distribution is

shown in Supplementary Fig S14). A previous study has shown that

the proportion of essential and conserved proteins increased succes-

sively toward the network’s innermost cores (Wuchty & Almaas,

2005).

By combining the 38 genes with at least one significant non-

synonymous variant detected from our whole-genome and exome

sequencing (Fig 2A), we examined the fraction of genes with the

significant variants as a function of their coreness K in the module.

As shown in Fig 5B, within this module, a significantly high propor-

tion of central proteins were affected by mutations in individuals

with ASD (P = 4.5e-2, hypergeometric test), whereas a significant

depletion was manifested in the intermediate layer (3 ≤ K < 6)

(P = 0.01, hypergeometric test). The peripheral nodes were also

enriched for mutations in the module, but these were not statisti-

cally significant. By randomly sampling the same number of genes

from the module 10,000 times, we found that the particular U-shape

distribution was not expected by chance (P = 4.0e-4), suggesting

that network topology is indeed correlated with gene mutation

frequency in ASD patients.

We also examined brain tissue gene expression as a function of

network coreness K. Analysis of the different layers of the network

revealed that protein products of the genes centered in the network

(K ≥ 10, Fig 5B) were significantly biased toward the corpus callo-

sum-specific sub-component (Group 1; Fig 5C, P = 0.01, hypergeo-

metric test). These observations were also observed using the

independent 500-patient cohort (P ≤ 0.05, hypergeometric test).

Further analysis of the corpus callosum RNA-sequencing data from

the six non-autistic subjects (Supplementary Table S5) revealed a

positive correlation between the network coreness and their expres-

sion levels for individual genes in module #13 (r = 0.32, P = 3.7e-4,

Spearman’s correlation, Fig 5D). These observations collectively

indicate that the central genes may play fundamentally important

roles in the corpus callosum as they are preferentially expressed in

this tissue and pathogenic mutations of ASD patients more likely lie

in these genes. We note that two genes, DYNLL1 and BCAS1,

displayed extreme expression in the corpus callosum (Fig 5D) with

FPKMs > 130. Examination of their expression in the three neuronal

regions (BA9, BA40 and AMY, Fig 3B) revealed that DYNLL1 is a

ubiquitously expressed gene with high expression across all the

brain sections, whereas the extreme expression of BACS1 was

unique only in the corpus callosum (FPKM < 20 in other neuronal

regions). Its specific expression in the corpus callosum was further

confirmed on the microarray data from Allen Brain Atlas, suggesting

a novel function of this gene in the corpus callosum.

Affected sub-complexes in this ASD module

To characterize the module at higher resolution, we decomposed it

into 21 sub-clusters (Fig 5E) using the algorithm in Fig 1. Functional

coherence among genes within the same sub-complexes was

observed; for example, EXOC3–6 were clustered in the fourth sub-

complex, consistent with their co-complex membership by recent

mass spectrometry profiling (Havugimana et al, 2012). The second

sub-complex contained glutamate receptors, encompassing AMPA,

kainate and NMDA families, delineating the collaborative nature of

these receptor proteins. Most interestingly, many known genes

implicated in ASD were also co-clustered, such as the co-clustering

of NLGN1-3 with NRXN2-3, suggesting mutations on these genes

are likely to perturb a common protein complex. In general, except

for one sub-complex (THAP10-DYNLL2-DNAL4), all others have

been affected by either mutations or mis-expression of at least one

member protein, suggesting a pervasive role of this module underly-

ing ASD etiology. Notably, the sixth and eighth sub-clusters showed

significant enrichment for both the differentially expressed genes

(P = 0.035, hypergeometric test) and the mutated genes (P = 0.036,

hypergeometric test), respectively (Fig 5E). The sixth sub-cluster

revealed interaction between the DLGAP (DLGAP1-4) and SHANK

proteins, all of which are part of the postsynaptic scaffold. In
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Figure 5. Integrative analysis of the genetic alteration in this study.

A Enrichment of the differentially expressed genes in module #13. RNA-sequencing of the corpus callosum of autism patients and their matched controls. Enrichment
was not observed for the genes in the human synaptome or the collection of known autism genes (excluding genes in this module). Statistical significance was
determined by hypergeometric test.

B The mutation pattern of the genes from the innermost layers of the interaction network (K ≥ 10) to the periphery layer (K = 1). Genes in the central and periphery
layers in this module are more likely to be affected, while the trend cannot be observed in 10,000 random simulations. For individual bins, significant enrichment and
depletion were observed in the central layers (K ≥ 10) and the intermediate layers (3 ≤ K < 6), respectively. Statistical significance of the enrichment was determined
by hypergeometric test. 10,000 random permutations were performed to determine the statistical significance of the curve.

C Compositional bias of the mutated genes in central layers. The mutated genes in central layers are more biased toward the corpus callosum-specific subcomponent;
this trend is not observed in background or other mutated genes with varying degree of K. Statistical significance of the enrichment was determined by
hypergeometric test.

D Positive correlation between network coreness and gene expression in the corpus callosum. RNA-sequencing of the corpus callosum of six non-autistic individuals
revealed a positive correlation, suggesting the central layers may play critical roles in the corpus callosum. Two outlier genes, DYNLL1 and BCAS1, are separately
labeled due to their extreme expression in this tissue. The correlation coefficient r and its statistical significance were computed using Spearman’s correlation.

E Predicted sub-complexes within this module. Genes in this module are topologically clustered to form sub-complexes, with the significantly mutated genes
labeled in blue, mis-expressed genes in the corpus callosum labeled in green, and both in red. Two clusters, #6 for SHANK-DLGAP complexes and #6 for
LRP2, and its binding partners, are enriched for the mis-expressed or mutated genes, respectively. Statistical significance of the enrichment was determined
by hypergeometric test.
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addition, genes in the eighth sub-complex were preferentially

mutated in our screen, which characterized another pathway involv-

ing the corpus callosum-specific protein LRP2. Overall, these results

further delineate the substructure of the components and complexes

that comprise the ASD-associated module.

Discussion

Most of our knowledge today about ASD genetics has been gained

from genetic association or exome-sequencing analyses of large ASD

patient cohorts, which allows us to begin to observe the molecular

underpinnings of this disease. However, a complete picture for this

disease may require an integration of ASD genetic data from differ-

ent dimensions. For example, a number of studies have analyzed

genes that displayed differential expression in ASD brains (Voineagu

et al, 2011; Chow et al, 2012), but aberrant mutations have not yet

been identified for many of these genes. Since the retention of

genetic mutations within a population is strongly driven by natural

selection and population demographics (Hartl & Clark, 2007), muta-

tions in genes critical for ASD are likely to be depleted by purifying

selection or simply by population bottleneck, preventing the identifi-

cation of ASD candidate genes only from mutational analyses. In

addition, another example of a gene that would be missed by differ-

ential expression studies is LRP2, whose implication in ASD was

found by this study and also an earlier investigation (Ionita-Laza

et al, 2012), but it did not exhibit altered expression in ASD

patients. These observations strongly suggest that genetic alterations

leading to ASD might occur at different levels, perturbing gene regu-

lation or affecting gene function, and highlight the importance of

building an integrative model to study ASD, where genomic data

from multiple independent dimensions are incorporated to reveal

the hidden architecture of this disease.

The integrative framework presented in this study is such an

example to unravel the natural and physical organization of compo-

nents implicated in ASD. We leveraged abundant genomic data

including the human protein interactome, the transcriptome data in

human and mouse brain, the MRF knockout data in mouse oligo-

dendrocytes and also the mutation data from previous ASD sequenc-

ing projects. In addition, we also independently sequenced the

genomes, exomes and transcriptomes in patients’ brains to validate

our observations from those publically available data or to gain new

insights into this disease. Our integrative approach incorporated

these genomic data of diverse dimensions, suggesting several key

findings relevant to autism. First, we observed the modular struc-

ture of the human protein interactome, where genes forming a natu-

ral topological cluster tend to have shared functions. In particular,

module #2 (with GO enrichment for gene regulation) and #13 (with

GO enrichment for synaptic transmission) showed statistically

significant enrichment for ASD genes. Their enriched functional

categories are consistent with earlier studies for de novo mutations

associated with ASD (O’Roak et al, 2012; Ben-David & Shifman,

2013). These observations suggest convergent functional modules

underlying the seemingly heterogeneous mutations associated with

ASD.

Because of its high enrichment, we specifically studied module

#13, and a second key finding is that this module had dichotomized

spatial expression pattern across human brain: one sub-component

(Group 2 genes) ubiquitously expressed and one with enhanced

molecular expression in the corpus callosum (Group 1 genes). Both

interact extensively with each other. We confirmed using RNA-Seq,

microarrays and immunohistochemical staining that the module as

a whole was expressed in the corpus callosum, a brain structure

predominantly constituted by axons and oligodendrocyte cells. Up-

regulation of Group 1 genes was associated with oligodendrocyte

maturation from OPC cells (Fig 4D). Considering that the expression

of Group 1 genes is highly enriched in the corpus callosum, we spec-

ulate that this sub-component is likely involved in differentiating

OPCs in the corpus callosum. Genes in this group include KCNJ10

(potassium inwardly rectifying channel, subfamily J, member 10),

which exhibited tenfold up-regulation from OPCs to the matured

myelinating oligodendrocytes, suggesting a strong role of this gene

in oligodendrocyte development. Importantly, mutations in this

gene were identified among ASD patients from our exome/genome

sequencing and also in an earlier study from a different patient

cohort (Sicca et al, 2011). Meanwhile, aberrant mutations in this

gene were also found to be associated with seizure susceptibility

(Buono et al, 2004), a condition commonly comorbid with ASD.

These observations support the potential role of oligodendrocytes in

the development of autism. Group 2 genes, in addition to their rela-

tively high expression in the corpus callosum (Fig 3C), showed the

strongest expression in neuronal regions in brain (Figs 3B and 4B),

explaining the high enrichment signal of synaptic genes in module

#13 in our initial GO enrichment analysis. This observation supports

the synaptic theory of this disease.

The corpus callosum plays a central role in mediating signal

communication between the brain hemispheres through the axons

extending from different cortical layers; thus, appropriate myelina-

tion by the oligodendrocytes for the axons is key for the process.

We further observed that conditional knockout of the myelination

regulatory factor (MRF) in the matured oligodendrocyte cells signifi-

cantly up-regulated Group 2 genes, which were otherwise highly

expressed in neuron-rich regions. Collectively given the functions of

module #13 involved in the development of oligodendrocytes, the

major cell type in the corpus callosum, our study likely provides a

molecular clue to the reduced size of the corpus callosum that has

been observed among individuals with ASD (Egaas et al, 1995).

Two recent studies (Parikshak et al, 2013; Willsey et al, 2013)

have implicated the superficial cortical layer (II/III) or the deep

cortical regions (layer V/VI) in ASD. Callosal projection neurons are

primarily localized in the superficial layers II/III (~80%) or deep

layers V/VI (~20%); thus, our study now connected the two studies

suggesting a critical role of the interhemispheric connectivity

circuitry, whereby disrupting its sub-components to affect the inter-

hemispheric signal transduction through the corpus callosum will

likely to give rise to ASD phenotypes. Therefore, the disease etiology

should be understood at the level of the complete interhemispheric

connectivity circuitry, not simply by a particular brain region or cell

type. This could not only explain the enrichment in ASD-associated

mutations in genes highly expressed in the constitutive parts of the

circuitry (superficial or deep cortical layers in the earlier studies, or

in the corpus callosum in this study), but also might provide a

molecular basis for the observation from the imaging studies of the

under-development of the corpus callosum among ASD patients.

Importantly, different from previous research, our study illustrates

the role of the oligodendrocyte cells in ASD, which myelinate and
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support the axons in the corpus callosum for interhemispheric

signal transduction. Since current ASD research has been primarily

focused on neuronal regions, future study is warranted to examine

the implications of other cell types in this disease.

Two groups of genes were identified previously which displayed

elevated expression in the corpus callosum, but were not signifi-

cantly associated with ASD (Ben-David & Shifman, 2012). The

overlap between our module and these genes was restricted to two

genes. Meanwhile, only four of our genes overlapped with those

from NETBAG (Gilman et al, 2011), which identified the function-

ally associated genes affected by rare de novo CNVs in autism. Nota-

bly, a more recent paper considered a sub-network implicated in

ASD constituted by known ASD candidate genes and their first-

degree interacting neighbors (An et al, 2014; Cristino et al, 2014).

This empirical network was large and encompassed more than

2,000 genes for ASD, but ~30% of genes in our module were not

captured by their empirical network. Worthy of note, based on inde-

pendent yeast-two-hybrid screens, recent studies have attempted to

generate the complete interactomes for individual proteins impli-

cated in ASD (Sakai et al, 2011; Corominas et al, 2014), and thus,

we envision a significant expansion of our current observation when

the human protein interactome is more complete.

In conclusion, by using an integrative framework, we were able

to examine the convergence of clinical mutations onto specific

disease-related pathways. The framework provided in this work

might be used to uncover functional modules for other diseases,

improving their risk assessment.

Materials and Methods

Network compilation and operations

The human protein interaction network used in this study was

downloaded from BioGrid database (rel.3.1.92) (Stark et al, 2011),

where high-quality protein interactions were collected by the cura-

tion team. We removed the isolated nodes, self-interacting edges

and interactions between human and non-human proteins from the

network. We analyzed a total of 13,039 proteins and 69,113 interac-

tions. To first assess the quality of this network, we examined gene

co-expression between the reported interacting proteins, which has

been used previously to examine the quality of protein interactions

(Yu et al, 2008). We compared gene co-expression between the

BioGrid interactome with a set of benchmarked high-confidence

human interacting proteins (HINT) (Das & Yu, 2012; Wang et al,

2012) and also with a set of randomly paired proteins. The expres-

sion dataset encompassing 79 human tissues and cell types (Su

et al, 2002) was used for the co-expression analysis, where probe

identifies from the microarray platform were mapped onto their

Entrez identifiers, and signals of multiple probes corresponding to a

single Entrez gene were averaged. Pearson’s pairwise correlation

was then computed for protein pairs in each dataset.

Having assessed the overall quality of the network, we next topo-

logically decomposed the global protein interaction network into a

set of network modules with dense interactions within a module

and sparse interactions between modules. The network decomposi-

tion algorithm was first described in a previous publication, which

showed significant improvement compared with other methods

(Blondel et al, 2008). The modules in this study were from the first-

pass partitioning of the network without further grouping small

modules into larger ones. This practice gave more specific insights

into module functions. The power-law distribution of the module

sizes (Supplementary Fig S3A) was based on a statistic test for

empirical data (Clauset et al, 2009). To test whether the modularity

of the network can be observed by chance, we generated 100

randomized networks by shuffling edges of each node but main-

tained its degree (degree-preserving shuffling (Milo et al, 2002))

(Supplementary Fig S3B). We also performed Markov clustering

algorithm (MCL) and affinity propagation (Vlasblom & Wodak,

2009) to divide the network, but their performance was not satisfac-

tory, where the resulting network modularity scores Q were signifi-

cantly lower than that of the algorithm used in this study. These

network operations were based on FUGA (Drozdov et al, 2011).

Network visualization was implemented by CytoScape v2.8.3

(http://www.cytoscape.org). The layered structure of the protein

interaction network was decomposed with the k-core algorithm

implemented by MatlabBGL (http://dgleich.github.io/matlab-bgl/).

Visualization of the layered structure by k-core decomposition was

implemented by LaNet-vi (http://lanet-vi.soic.indiana.edu).

We examined GO enrichment for each of the decomposed

network module to infer their biological relevance. GO annotations

(excluding IEA terms) were downloaded from http://www.geneon-

tology.org (as of Sep. 2012). The hypergeometric test was performed

to determine GO enrichment, followed by FDR correction (false

discovery rate). In each of the tests, we only considered modules

with more than five genes. To justify this size threshold selection,

we varied the threshold from 1 to 20 genes and identified n = 5 was

the optimal threshold, which has balanced sensitivity and specificity

(Supplementary Fig S4B). Specifically, in Supplementary Fig S4B,

the blue curve (with red circles) showed the number of clusters with

GO enrichment above a given size threshold, and the black curve

(with green squares) was the gradients of the blue curve at each

threshold, which detected the pattern changes on the blue curve. It

is clear that the number of GO-enriched clusters decreased rapidly

with the increase of the threshold when the threshold was < 5 (from

~200 clusters at threshold n = 1 down to 85 at the threshold n = 5,

the blue curve). This threshold-sensitive pattern was recapitulated

by the rapid increase in the gradients at each threshold points, espe-

cially by the two consecutive rises in the gradients from threshold

n = 3 to n = 4 and from n = 4 to n = 5 (black curve), transitioning

from a threshold-sensitive regime into a threshold-insensitive

regime. After the threshold n = 5, the blue curve gradually

decreased and reached convergence after n = 8, accompanied with

the almost flat gradient curve (the black curve), which, however,

suggests the threshold n ≥ 8 would be too conservative. Thus, in

this study, we used the turning point n = 5 as our threshold to

trade-off specificity and sensitivity. Furthermore, for module #13,

we also considered the sources of the curated interactions. Module

#13 consists of 119 proteins mediating 275 interactions and was

derived from 109 different publications (with different PubMed IDs,

on average ~2.5 interactions per publication), compared with a total

of 16,140 PubMed IDs for 69,113 interactions in the whole network

(on average ~4.28 interactions per publication). The elevated diver-

sity of experimental sources for this module suggests that its

network modularity was less likely to be biased toward a particular

experimental platform.
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The enrichment of module #13 for ASD gene candidates curated
from SFARI

To determine the associations of the network modules with ASD,

we first considered the curated genes implicated in ASD and then

generalized our comparisons to genes from unbiased genome-wide

screens. We first retrieved known autism-associated genes from

SFARI Gene (https://gene.sfari.org/ autdb/). Among a total of 484

genes in the database (as of February, 2013), 383 were on the

protein interaction network. Different versions of these annotated

genes were also considered. In addition to using the hypergeometric

test to assess the enrichment of the SFARI genes in module #13, we

perform a set of permutation tests to ensure that the comparison

was not biased by unequal CDS length or GC content. Briefly, we

compiled a list of 10,390 genes whose CDS length (the longest

RefSeq transcript, Ensembl 72) was similar with the SFARI genes

(P = 0.24, Wilcoxon rank-sum test). Furthermore, we also compiled

a list of 14,041 genes, whose GC content in CDS was similar with

the SFARI genes (P = 0.58, Wilcoxon rank-sum test). We then

considered the intersection between the two gene sets, totaling

7,743 genes (excluding the SFARI genes). Among this gene set with

indistinguishable CDS length and GC content, we randomly sampled

383 genes, the same number with the SFARI genes, for 10,000 times

(the pseudo-ASD risk genes), and we found that none of the 10,000

random simulations overlapped with module #13 more than the real

SFARI gene list, giving an empirical P < 1e-5. We also used genes

annotated by SynaptomeDB (Pirooznia et al, 2012) to control for

potential bias from known synaptic genes in this comparison.

The enrichment of module #13 for ASD gene candidates from
genome-wide screens

To determine the enrichment in module #13 for genes implicated in

ASD from genome-wide screens, we compared genes in module #13

with 9,782 background genes with indistinguishable CDS length and

GC content (P > 0.05, Wilcoxon rank-sum test, as described above),

and this set of control genes was not overlapping with module #13.

For each set of ASD candidate genes (identified by CNV, exome-

sequencing studies, etc., Supplementary Table S1), we asked

whether or not the module was more enriched for these ASD candi-

date genes than the matched control gene sets. The exact compari-

sons can be found in Supplementary Table S1B, where we

considered ASD candidate genes affected by de novo CNVs, rare

CNVs, de novo disruptive, missense and silent mutations from large

collection of ASD probands. The same categories of mutations iden-

tified from non-ASD individuals or the matched unaffected siblings

were also analyzed in Supplementary Table S1B. The references for

the data sources can be found in Supplementary Table S1A and B,

and the complete gene list can be found in Supplementary Dataset

S2. Particularly for the de novo CNV datasets, we first considered de

novo CNVs (annotated as “de novo” in their final category) identi-

fied from ASD probands from a recent publication (Pinto et al,

2014). In addition, de novo CNVs from two early studies were also

considered (Levy et al, 2011; Sanders et al, 2011). The union and

the intersection of the de novo CNV datasets from Pinto et al and

those from Sanders et al or from Levy et al were separately tested.

Genes with at least one exon affected by these de novo CNVs were

considered for both ASD and non-ASD subjects. The de novo CNVs

for non-ASD subjects were collected from a recent publication

(Kirov et al, 2012). This control CNV dataset was combined with

those identified from the unaffected siblings in Sanders et al and

Levy et al. Since these de novo CNVs affected thousands of genes in

the genome, we also considered a small set of strong candidate

genes affected by the ASD-associated high-confidence de novo CNVs

in this comparison, and these genes were identified from a previous

study (Noh et al, 2013).

Collection of genes involved in other psychiatric diseases

We additionally tested enrichment signals in module #13 for genes

implicated in schizophrenia, intellectual disability and Alzheimer’s

diseases. Genes in schizophrenia were obtained from SZGR (http://

bioinfo.mc.vanderbilt.edu/SZGR/index.jsp), where 38 core genes

and 278 protein-coding genes representing confident loci from previ-

ous genome-wide association studies were considered. 613 genes

implicated Alzheimer’s disease were obtained from AlzGene

(http://www.alzgene.org). Genes implicated in intellectual disabil-

ity were collected in a recent publication (Parikshak et al, 2013).

Whole-genome and exome-sequencing protocols

Sample information

Samples were requested from two sources, Autism Speak’s Autism

Tissue Program (ATP) and NICHD Brain and Tissue Bank (NICHD).

Sample information can be found in Supplementary Table S2.

Autism diagnosis was confirmed by the clinical practitioners in the

brain banks with ADI-R (Autism Diagnosis Interview–Revised). The

ATP samples covered the most case DNAs in the ATP’s repository

(excluding 15q duplication, epilepsy, Angelman syndrome samples

or samples from patients’ siblings or samples with no sufficient

DNA amount).

Sequencing protocol

The genomic DNAs from ATP were extracted from the occipital

lobe, Broadmann Area (BA19). We received frozen tissue blocks

(postmortem corpus callosum) of six patients from NICHD and

extracted genomic DNAs with the use of QIAGEN’s DNeasy Blood &

Tissue Kit. We used 5 lg DNAs for genome sequencing and 3 lg
DNAs for exome sequencing. DNA quality was examined on agarose

gel electrophoresis prior to library preparation. Sequencing was on

Illumina’s HiSeq 2000 platform with 101 × 2 pair-end adaptors.

WGS samples were subject to standard Illumina’s procedures with

variants called by the company’s software CASAVA. The called vari-

ants were further validated with the Illumina Omni genotyping SNP

array with overall concordance rates of ~99.28%.

The variants were further filtered by removing variants falling in

the segmental duplication, simple repeat regions, etc. For exome

sequencing, GATK (ver. 2.3.9) was used to call variants by aggregat-

ing samples over the targeted intervals designed for exome capture,

reaching the average ratio of Ti/Tv 3.18. Agilent SureSelectXT kit

(Human All Exon V5+UTRs) was used for exome pull-down in this

study. Coverage and Ti/Tv values (transition to transversion rates)

for individual samples in WGS and exome sequencing can be

found in Supplementary Tables S3 and S4. Variants were annotated

using ANNOVAR (Wang et al, 2010) based on human genome build

hg19.
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Analysis

Fisher’s exact test was used to identify alleles overrepresented in the

patient cohort. 1,000 Genome variants’ allele frequencies in all

samples or only in Europeans were referenced in the analysis. The

P-values for variants in this module were further corrected with the

Benjamini–Hochberg procedure. The functional consequences of the

identified variants were tested by MutationTaster (Schwarz et al,

2010), where the automatic annotations based on the 1,000 Genome

frequencies were overridden by the prediction from the original

Bayesian classifier. Phenotypic analysis of the identified genes was

based on the component of Human-Mouse: Disease Connection

in Mouse Genome Informatics (http://www.informatics.jax.org/

humanDisease.shtml).

Validation using dbGAP data

We were approved to use one exome-sequencing dataset in dbGAP,

which sequenced a larger patient population in previous study (Liu

et al, 2013). Half of the samples were sequenced in Broad Institute

(by the Illumina platform) and the other half in Baylor College Medi-

cine (BCM, by the SOLiD platform). Due to incomplete data depos-

ited in dbGAP for those sequenced on the Illumina platform, we

were only able to study the subjects sequenced by BCM, including

505 unrelated patients and 491 controls, all with European ethnicity.

Variants showing the most significant deviation in their allele

frequencies from the control subjects were identified with a regres-

sion analysis. We regressed case/control frequencies reciprocally,

followed by a residue analysis that identified outliers exceeding

the upper 5% bound of the residue distribution modeled by a

t-distribution.

Expression analyses of the module across brain sections

Expression data were from Allen Brain Atlas (Hawrylycz et al,

2012), where gene expression was measured with microarrays

across hundreds of anatomical sections in two representative indi-

viduals (9,861 and 10,021). The microarray data had been normal-

ized and postprocessed by Allele Brain Atlas, and we considered

295 brain sections that were measured in both individuals (by

matching the brain section identifiers). Expression of a given gene

in a given tissue was then averaged over the two individuals to

reduce the potential individual-specific fluctuations. In addition,

signals of multiple probes mapped onto the same transcripts were

also averaged in this analysis. The expression profiles were then

normalized across sections followed by a hierarchical clustering,

which allowed identifying gene groups sharing similar spatial

expression patterns. In each brain section, the absolute expression

of genes in Group 1 and 2 was also compared against the tran-

scriptomic background in the corresponding section. Tissue speci-

ficity index was computed for individual genes across the 295

brain sections using the following formula defined in a previous

study (Yanai et al, 2005), s ¼ PN
i¼1 ð1� xiÞ=N � 1, where s is the

tissue specificity index of a given gene, N is the total number of

different brain sections, and xi is the gene’s expression in a

section, i. Expression breadth of a given gene was determined by

the number of brain sections where the gene is active, and we

varied the threshold to define gene activity based on the distribu-

tion of the absolute gene expression across the transcriptomes in

the 295 brain sections (Supplementary Fig S9). The thresholds

chosen in our comparison were 15, 25 and 50% of the data points

across all genes, and expression values below these cutoffs were

deemed to be inactive.

Genes in this module were further mapped onto the mouse

genome by identifying their one-to-one mouse orthologs based on

Ensembl Gene (as of August, 2013). Mouse expression data for

neurons, oligodendrocytes and astrocytes were retrieved from a

previous study (Cahoy et al, 2008). Chi-square test was used to

determine the imbalanced distribution of genes in Group 1 and 2 in

the neuron and glial cluster, respectively (Fig 4B). Mouse expres-

sion data in the oligodendrocyte precursor cells (OPCs), the mature

oligodendrocytes (OLs) and the MRF conditional knockouts were

retrieved from a previous study (Emery et al, 2009). We mapped

the probes onto mouse gene symbols and averaged signals from

multiple probes mapped onto the same genes. Expression across

multiple biological replicates under the same condition was

averaged.

Immunohistochemistry analysis of the postmortem
corpus callosum

Immunohistochemistry analysis was performed on the corpus callo-

sum from a patient (#5308) and a control subject (#4727). Anti-

LRP2 antibody was purchased from Abcam (cat#: ab76969, Abcam,

Cambridge, MA). Immunohistochemistry labeling for LRP2 was

carried out using the DAKO EnVision system (cat#: K4065, DAKO,

Carpinteria, CA) at 1:100; slides were developed using the Dako

Envision method as the manual suggested. Heat-induced antigen

retrieval was performed with Decloaking Chamber (Biocare Medical,

Concord, CA) in citrate buffer (pH 6.0). Human kidney carcinoma

tissue and normal human ovary were used as positive and negative

controls given the presence and absence of LRP2 (from literature) in

these two tissues, respectively. In addition, IgG was also used as a

control for the specificity of anti-LRP2. Cell types in the corpus

callosum were independently identified and verified by a neuro-

pathologist at Stanford.

RNA-sequencing protocols

Sample information

Postmortem tissues of corpus callosum from 12 individuals were

subject to RNA-sequencing in this study. Frozen tissue blocks were

all provided by NICHD Brain and Tissue Bank. The samples were all

European males, and case–control pairs were matched in terms of

their age, sex and PMI (depends on tissue availability). All the

control subjects have been optimized for comparisons and were

selected by the brain bank to match the cases. The case–control

pairs are listed in Supplementary Table S5. We also biologically

replicated our experiments on 6 out of 12 individuals by sectioning

different areas of the tissue blocks. In addition to the corpus callo-

sum, we also sequenced three brain sections (NICHD) for a control

subject #5407 (Supplementary Table S5), including Brodmann areas

9, 40, and also the amygdala.

Sequencing protocols

Total RNA was extracted from flash-frozen tissue samples using

Trizol reagent. Then, the total RNA was treated with RNase-Free

DNase (Qiagen) followed by purification with RNeasy MinElute
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Cleanup Kit (Qiagen) following the manufacturer’s instructions.

2 lg of total RNA each sample was subject to RNA-Seq library

preparation with ScriptSeqTM Complete Gold Kit from Epicentre

(Cat. #SCL24EP, Madison, WI) following the manufacturer’s

instructions. In brief, ribosomal RNA was depleted from total

RNA using Ribo-Zero magnetic beads, and then, the ribosomal

RNA-depleted RNA was purified and fragmented. Random primer

tailed with Illumina adaptor was used to perform reverse tran-

scription to get cDNA library. Adaptor sequence was added to the

other end of cDNA library with a Terminal-Tagging step. cDNA

library was amplified with Illumina primers provided with this kit.

The product was size selected (350–500 bp) from 2% agarose

E-gels (Invitrogen) and sequenced in 1 lane per sample on Illumina’s

HiSeq 2000 platform.

Analysis

The sequenced 101 × 2 pair-end fragments were mapped against

the human RefSeq transcriptome using TopHat v2.0.8 (http://

tophat.cbcb.umd.edu). Quantitation of expression levels was

computed with CuffLinks v2.0.2 (http://cufflinks.cbcb.umd.edu).

We excluded genes with low expression in both cases and controls

(FPKM < 1) to avoid numerical fluctuations by small numbers and

retained ~12,000 highly expressed genes in this study (with “OK”

status from Cufflinks calculation), which were likely more relevant

to the physiology of this particular tissue type. We also retrieved the

medical and neuropathology records of these patients and found

that three patients had no documented medication history related to

ASD. The other three patients took medications to correct their

ASD-related behaviors; however, the potential drug targets (deter-

mined by microarray study upon drug exposure or literature cura-

tion, data not shown) were not present in our module. Therefore,

medication cannot fully explain the dys-regulated genes in our

module.

Human subjects

This study was exempt from Stanford IRB review since only post-

mortem brain tissues from de-identified and deceased individuals

were examined in this study. Brain tissues/DNA extracts were

obtained from ATP and NICHD, where informed consent was

obtained from all subjects. The experiments conformed to the prin-

ciples set out in the WMA Declaration of Helsinki and the Depart-

ment of Health and Human Services Belmont Report.

Data availability

RNA-sequencing data are deposited in GEO with the accession iden-

tifiers: GSE62098 and GSE63513. DNA-sequencing data are depos-

ited in SRA with the accession identifiers SRP050187.

Supplementary information for this article is available online:

http://msb.embopress.org
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