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Abstract

Causal inference with interference is a rapidly growing area. The literature has begun to relax the 

“no-interference” assumption that the treatment received by one individual does not affect the 

outcomes of other individuals. In this paper we briefly review the literature on causal inference in 

the presence of interference when treatments have been randomized. We then consider settings in 

which causal effects in the presence of interference are not identified, either because 

randomization alone does not suffice for identification, or because treatment is not randomized 

and there may be unmeasured confounders of the treatment-outcome relationship. We develop 

sensitivity analysis techniques for these settings. We describe several sensitivity analysis 

techniques for the infectiousness effect which, in a vaccine trial, captures the effect of the vaccine 

of one person on protecting a second person from infection even if the first is infected. We also 

develop two sensitivity analysis techniques for causal effects in the presence of unmeasured 

confounding which generalize analogous techniques when interference is absent. These two 

techniques for unmeasured confounding are compared and contrasted.
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1. Introduction

Cox (1958, p. 19) wrote that there is no interference between different units if the 

observation on one unit is unaffected by the particular assignment of treatment to the other 

units. The assumption of no interference is a key component of Rubin’s “stable unit 

treatment value assumption”, called SUTVA (Rubin, 1986), that is often required for 

potential outcomes to be well-defined. However, in many settings, the assumption of no 

interference obviously does not hold. Consider an individual who, if not vaccinated, would 

have infected another person, but who, if vaccinated, would not infect that other person. In 

this case, the infection outcome of the second person depends on the treatment of the first 

individual, and there is thus interference. Under the assumption of no interference, the effect 

of a treatment compares two potential outcomes the individual would exhibit under 

treatment and control. With interference, an individual could have many potential outcomes 

depending on the treatments assigned to the other individuals (Rubin 1978, 1990).
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In some settings, interference is a nuisance while in other settings it creates effects of 

scientific, public health, or social science interest. An example of the former includes 

agricultural experiments where treatments in neighboring plots can interfere with one 

another (Kempton 1997). Fallow rows between treatment plots can sometimes eliminate 

interference between plots, but more often the interference must be taken into account. In 

infectious diseases, interference is inherent in the biology of transmission, it cannot be 

eliminated, and it produces intrinsically interesting effects. Social interaction is a primary 

source of interference in studies with humans subjects and often cannot be eliminated.

Progress in causal inference with interference has been made recently in different contexts, 

including those in the social sciences, econometrics, and infectious diseases. Several causal 

effects can be defined in the presence of interference, and sometimes similar effects have 

different names in different contexts. Social scientists have long been interested in the 

effects of neighborhoods on the economic, sociological, and psychological well-being of 

their inhabitants, resulting in the term neighborhood effects (Sobel 2006). The consequences 

of interference between individuals in this context are also known as spillover effects. In 

infectious diseases, these effects were generally called indirect effects of interventions 

(Halloran and Struchiner 1991).

In Section 1.1 we present informally some examples of studies on causal inference with 

interference in different contexts. In Section 2, we present formal definitions of direct, 

indirect, total and overall effects as well as infectiousness effects in the presence of 

interference. In Section 3 we develop a number of new sensitivity analysis techniques in 

settings in which causal effects are not identified, either because the effect estimand itself 

relies on assumptions beyond randomization or because treatment is not randomized and 

there may be unmeasured confounding. The sensitivity analysis techniques help address 

these issues of identification in these settings. Section 3 contains the new results of the paper 

and, as will be seen below, many of these new results in the context of interference build on 

approaches of Robins et al. (2000) outside the context of interference. Section 4 offers some 

concluding remarks on directions for future research on interference. A reader who is 

primarily interested in the technical development can skip Section 1.1 and move on directly 

to Section 2.

1.1. Motivating examples

1.1.1. Interference and housing mobility—Sobel (2006) considered interference in the 

Moving to Opportunity (MTO) demonstration sponsored by the U.S. Department of Housing 

and Urban Development. In this housing mobility experiment in poor neighborhoods in five 

cities, eligible ghetto residents were randomly assigned to receive one of two forms of 

relocation assistance or no assistance (control). Sobel argued that the no interference 

assumption is not plausible for the MTO demonstration because many of the participants 

likely knew other participants at each of the five sites. Thus, the participants could have 

influenced each other through social interaction. For example, a family that decided to move 

to a new neighborhood could give rise to worse outcomes for a family that stayed in the 

original neighborhood because of the decline in social support for the family that stayed.
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Sobel (2006) defined causal estimands and estimators for indirect/spillover effects for the 

MTO randomized trial of housing vouchers, taking compliance into account. He assumed 

that interference could occur within the sites, but not across sites, which he called partial 

interference. He made a key contribution in proposing causal estimands for assessing effects 

in the presence of interference by averaging causal effects over all possible treatment 

assignments for a particular allocation strategy compared to a benchmark strategy wherein 

no units received the treatment assignment. Although his language is different, he essentially 

defined causal estimands analogous to the direct, indirect, total and overall effects defined in 

the next section.

He then compared his causal estimands to what is usually estimated in studies of housing 

mobility not taking interference into account. He showed that what is usually estimated 

actually gives the difference between (i) the average effect of the voucher on those who 

received them and (ii) the average effect on those not receiving vouchers of having people 

leave the neighborhood. Both effects could be negative (detrimental) with the difference 

positive, thus making it important to take potential interference into account.

1.1.2. Interference in vaccination programs—Motivated by an interest in the effects 

of vaccination and vaccination programs, Struchiner, Halloran, Robins and Spielman (1990) 

and Halloran and Struchiner (1991, 1995) conceptually defined direct, indirect, total and 

overall effects in the presence of interference. The direct effect of a treatment on an 

individual was defined as the difference between the potential outcome for that individual 

given treatment compared to the potential outcome for that individual without treatment if 

the treatment assignment in the others in the population was held fixed. In contrast to direct 

effects, an indirect effect describes the effect on an individual of the treatment received by 

others in the group when that individual’s treatment was held fixed. In particular, the 

indirect effect of a treatment on an individual was defined as the difference between the 

potential outcomes for that individual without treatment when the group (i) receives an 

intervention program and (ii) receives a benchmark program of no intervention. Total effects 

describe the combination of direct and indirect effects of a particular treatment assignment 

on an individual. The total effect of a treatment on an individual is the difference between 

the potential outcomes for that individual (i) with treatment when the group receives an 

intervention program and (ii) without treatment when the group receives no intervention. 

Overall effects describe the average effect of an intervention relative to no intervention.

Halloran and Struchiner (1995) proposed individual-level causal estimands of direct, 

indirect, total, and overall in the presence of interference by letting the potential outcomes 

for any individual depend on the vector of treatment assignments to other individuals in the 

group (Rubin 1978, 1990). However, they did not propose population level causal 

estimands.

A number of studies have been conducted to estimate indirect, total, or overall effects of 

vaccination programs outside of the causal inference framework. In the United Kingdom, 

the indirect effect of a new program of meningococcal C vaccination was estimated by 

comparing the attack rates in unvaccinated children and adolescents before and after 

introduction of the program (Ramsay et al. 2003). The United Kingdom introduced routine 
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meningococcal serogroup C vaccination for infants in November 1999. The vaccine was 

also offered to all children and adolescents aged <18 years in a phased catch-up program. 

Adolescents were vaccinated first and the program was completed by the end of 2000. 

About 75% of the children and adolescents were vaccinated. The attack rate in unvaccinated 

infants through adolescents per 100,000 unvaccinated population in July 1998{June 1999 

was 4.08 (95% CI 3.7, 4.5) and in July 2001{June 2002 was 1.36 (95% CI 0.86, 1.85). 

Vaccinating about 75% of the children and adolescents thus seemed to produce an indirect 

effect, with a relative reduction in the number of confirmed meningococcal C cases in the 

unvaccinated children and adolescents, of 67% (95% CI: 52, 77).

To obtain group- and population-level causal estimands for direct, indirect, total, and overall 

causal effects of treatment, Hudgens and Halloran (2008) proposed a two-stage 

randomization scheme, the first stage at the group level, the second at the individual level 

within groups based on Sobel’s approach of averaging over all possible treatment 

assignments. As did Sobel (2006), they assumed interference can occur within groups but 

not across groups. The causal estimands defined by Hudgens and Halloran (2008) are 

applicable to other situations with interference in fixed groups of individuals where 

treatment can be assigned to individuals within groups. A brief formal development is given 

in Section 2.

As an example, Hudgens and Halloran (2008) presented a hypothetical two-stage 

randomized placebo-controlled trial of cholera vaccines (Table 1). Suppose in the first stage 

five geographically separate groups were randomized so two were assigned to vaccinate 

50% and three were assigned to vaccinate 30% of individuals, then individuals were 

randomly assigned to be vaccinated or not. Causal effect estimates (estimated variance) are 

given in the change in number of cases per 1000 individuals per year. The estimated indirect 

effect of vaccinating 50% versus 30% in the unvaccinated individuals is 2.81 (3.079). This 

suggests that vaccinating 50% of the population would result in 2.8 fewer cases per 1000 

unvaccinated people per year compared with vaccinating only 30%. Similarly, the estimated 

total effect is 4.11 (0.672). This suggests that vaccinating 50% of the population would 

result in 4.1 fewer cases per 1000 vaccinated people per year compared with vaccinating 

only 30%. The estimated overall effect is 2.37 (1.430). The estimated overall effect is a 

summary comparison of the two strategies, suggesting that, on average, 50% vaccine 

coverage results in 2.4 fewer cases of cholera per 1000 individuals per year compared to 

30% vaccine coverage. A public health professional could use these estimates in evaluating 

the cost-benefit of vaccinating more people and preventing more cases versus vaccinating 

fewer people. The direct effect under 30% coverage is 3.64 (0.178), nearly three times 

greater than the direct effect under 50% coverage, which is 1.30 (0.856). The difference 

shows that even the direct effects can depend on the level of coverage due to interference 

between individuals.

1.1.3. Interference in the context of kindergarten retention—Hong and 

Raudenbush (2006) considered interference in the context of the effect on reading scores of 

children of being retained in kindergarten versus being promoted to the first grade. 

Interference was assumed possible through the dependence of the potential outcomes of 

reading test scores of one child on whether other children were retained or not. Hong and 

VanderWeele et al. Page 4

Stat Sci. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Raudenbush were principally interested in the effect of a child’s being retained and how this 

varied with being in schools with low retention and versus those with high retention. They 

used a sample of data from 1080 schools with 471 kindergarten retainees and 10,255 

promoted students. In their application, students are clustered in schools. Individual 

treatment assignment was whether a student is retained. They used a school-level scalar 

function based on the proportion of the students that were retained to determine whether a 

school was a ‘high-retention’ or ‘low-retention’ school. The study was observational at two 

levels: schools were not randomized to have high or low retention, and students were not 

randomized to be retained. However, they framed their analysis within a two-stage 

randomization procedure similar to that described in Hudgens and Halloran (2008) in which 

both stages would have been randomized. They also assumed interference was possible 

within schools but not across schools.

Using a propensity-score based approach, accounting for interference, and assuming that 

assignment at both the school and the individual level was ignorable given a number of 

observed individual-level, school-level, and school-aggregated-individual level 

characteristics, Hong and Raudenbush (2006) obtained estimates of the effect on reading 

scores of retention in high-retention and low retention schools. Specifically, in low-retention 

schools, they estimated the effect on reading scores of a student being retained versus being 

promoted, was −8.18 (95% CI : −10.02, −6.34), and in high retention schools the effect 

estimate was −8.86 (95% CI : −11.56, −6.16). A standard deviation in reading test scores in 

this sample is 13.48 points. We will return to this example below to demonstrate sensitivity 

analysis in the context of interference.

1.1.4. Interference between two sides of the face—Rosenbaum (2007) took a 

different approach to causal inference with interference when analyzing randomized 

experiments than those in previous sections. He pointed out that if Fisher’s null hypothesis 

of no effect for any individual in the population is true, then there is no effect and 

consequently no interference. Thus, Fisher’s permutation test of no effect will have the 

correct level, even if, under the alternative hypothesis, there would be interference. He 

presented several examples, including data from a randomized, double-blind experiment in 

which 15 people received different preparations of botulinum A exotoxin on each side of 

their face to treat wrinkles to test which was less painful.

Rosenbaum presented exact nonparametric methods for inverting randomization tests to 

obtain confidence intervals for assessing treatment effect assuming nothing about the 

structure of the interference between units. He assumed that there were a number of blocks 

(groups) with a number of individuals within each group, some of which, but not all, were 

randomized to a treatment, the others to control. He developed a general notation that 

allowed interference across blocks and did not assume a two-stage randomization. 

Rosenbaum (2007) differentiated two null hypotheses. The first null hypothesis is that 

treatment has no primary effect, that is, the response of each unit does not vary under 

different randomization assignments in the collection of the possible assignment matrices 

with fixed number randomized in each block. Analogous to the benchmark allocation of 

Sobel (2006) and the two-stage randomized trials described above where possibly some 

communities receive only the control intervention, Rosenbaum (2007) invoked uniformity 
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trials in which individuals within treatment groups would be randomly assigned to treatment 

and control, but everyone in control groups would receive just control. The second null 

hypothesis is that treatment has no effect, that is, under different randomization assignments 

in the collection of the possible assignment matrices with fixed number randomized in each 

block, each individual’s response equals his response in a uniformity trial. If there is no 

effect, then no benefit is gained from receiving the treatment. If there is no primary effect, 

there is no advantage to being one of the treated individuals, but the benefits could be shared 

by all of the individuals.

Rosenbaum gave conditions using distribution-free tests in which without performing the 

uniformity trials, he was able to get confidence statements about the magnitude of the effect 

and/or primary effect, though not able to distinguish between them. In the botox example, 

the 15 people are the blocks, the two sides of the face the individuals. All 15 people reported 

less pain from the treatment containing alcohol. Using his method, the hypotheses of no 

effect and no primary effect were rejected with a one-sided significance level 0.000031.

Luo et al (2012) extended this approach in the context of a cognitive neuroscience 

experiment in which the brains of a moderate number of subjects are studied using 

functional magnetic resonance imaging while challenged with a rapid fire sequence of 

randomized stimuli. Interference was assumed to occur between units of time in the same 

individual

1.1.5. Interference and infectiousness effects—In vaccine contexts, a vaccinated 

person who becomes infected might have a lower probability of transmitting to a susceptible 

person during a contact than an unvaccinated person who becomes infected. This is called 

the effect of the vaccine on infectiousness. In a study in Niakhar, Senegal, for example, 

Préziosi and Halloran (2003) estimated the relative reduction in infectiousness to household 

contacts of a vaccinated case of pertussis compared to an unvaccinated case to be 67% 

(95%CI 29,86). Estimating reduction in infectiousness can be of considerable public health 

interest, particularly with vaccines that do not protect well against infection.

Developing general methods for causal inference for infectiousness effects poses 

complicated challenges. Even if the vaccine is randomized, the infectiousness effect is 

measured only in people who become infected, a post-randomization variable, so the 

estimate would in general be subject to selection bias. VanderWeele and Tchetgen Tchetgen 

(2011b), and Halloran and Hudgens (2012a, 2012b) proposed causal quantities 

corresponding to the infectiousness effect in the simple situation of households of size two. 

The general approach combines causal inference with interference with principal 

stratification (Frangakis and Rubin, 2002). The latter accounts for the fact that the 

comparison in the groups who become infected may be subject to selection bias. The causal 

infectiousness effect is not identifiable without further assumptions. In Section 2.6, we 

present the bounds that were developed previously. In Section 3.2, we present new results 

for sensitivity analyses for causal infectiousness effects.

1.1.6. Other approaches—Manski (2012) studied identification of potential outcome 

distributions when treatment response may have social interactions. He called the no 
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interference assumption the individualistic treatment response to differentiate it from other 

forms of treatment response that depend on social interaction. VanderWeele et al. (2012a) 

discussed the relation between causal interactions and interference and how under 

randomization it is possible to test for specific forms of interference. They show that the 

theory for causal interactions provides a conceptual apparatus for assessing interference as 

well.

2. Formalization

In this section we present previously developed formalizations of the direct, indirect, total 

and overall effects as well as the infectiousness effects as background for the development 

of the new sensitivity analyses under interference in Section 3.

2.1. Notation

Suppose there are N ≥ 1 groups of individuals, or blocks of units. For i = 1, …, N, let ni 

denote the number of individuals in group i and let Zi = (Zi1, …, Zini) denote the treatments 

those ni individuals receive. Assume Zij is a dichotomous random variable having values 0 

or 1 such that Zi can take on 2ni possible values. Let Zi(j) denote the ni−1 subvector of Zi 

with the jth entry deleted. The vector Zi is referred to as an intervention or treatment 

program, to distinguish it from the individual treatment Zij. Let zi and zij denote possible 

values of Zi and Zij. Define Rj to be the set of vectors of possible treatment programs of 

length j, for j = 1, 2, …, ni. For example, R2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Denote the potential outcome of individual j in group i under treatment zi as Yij(zi). Denote 

Yi(zi) as the vector of such outcomes under treatment zi for group i. The notation Yij(zi) 

allows for the possibility that the potential outcome for the individual j may depend on 

another individual’s treatment assignment in group i, i.e., it allows for interference between 

individuals within a group. The Yij(zi) potential responses can be assumed fixed, since they 

do not depend on the realized random assignment of treatments Zi, whereas the observed 

responses Yij(Zi) do depend on Zi and thus are random variables. We also consider potential 

outcomes Yi(zi) that are independent and identically distributed across blocks. Partial 

interference is assumed to hold, that is, the outcome of one individual can depend on 

treatment of other individuals in the same block, but not those in different blocks. The form 

of the interference within groups is assumed unknown and can be of arbitrary form.

2.2. Treatment assignment mechanisms

Following Hudgens and Halloran (2008) consider a two-stage randomization scheme, the 

first stage at the group level, the second at the individual level within groups. Let ψ and φ 

denote parameterizations that govern the distribution of Zi for i = 1, …, N. Corresponding to 

the first stage of randomization, let S ≡ (S1, …, SN) denote the group assignments with Si = 

1 if the group is assigned to ψ and 0 if assigned to φ. Let ν denote the parameterization that 

governs the distribution of S and let C ≡ Σi Si denote the number of groups assigned ψ. 

Following Sobel (2006), Hudgens and Halloran (2008) focused on a mixed group and mixed 

individual assignment strategy, whereby a fixed number of groups were allocated to ψ, and 

within each group, a fixed number of individuals were allocated to treatment versus control. 
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VanderWeele and Tchetgen Tchetgen (2011a) and Tchetgen Tchetgen and VanderWeele 

(2012) considered what we call a simple randomization scheme whereby treatment is 

randomly assigned to different individuals within group i according to a Bernoulli 

probability mass function. The causal estimands defined below have the same form under 

either randomization scheme, though the different randomization schemes result in subtle 

differences of interpretation.

2.3. Average potential outcomes

Causal estimands are typically defined in terms of averages of potential outcomes which are 

identifiable from observable random variables. Following this approach, the potential 

outcomes for individual j in group i under zij = z can be written

(1)

for z = 0, 1. Because (1) depends on zi(j), following Sobel (2006), Hudgens and Halloran 

(2008) defined the individual average potential outcome for individual j in group i under zij 

= z by

In other words, the individual average potential outcome is the conditional expectation of 

Yij(Zi) given Zij = 1 under assignment strategy ψ. In contrast, under the simple allocation 

strategy of VanderWeele and Tchetgen Tchetgen (2011a), the potential outcomes are 

averaged over the unconditional distribution of Zi(j). Averaging over individuals, define the 

group average potential outcome under treatment assignment z as 

. Finally, averaging over groups, define the population 

average potential outcome under treatment assignment z as . 

The causal estimands in the next section are defined in terms of the individual, group, and 

population average potential outcomes. The individual estimands were defined in Halloran 

and Struchiner (1995), the individual average, group average and population average 

estimands in Hudgens and Halloran (2008).

2.4. Direct, indirect, total, and overall causal effects

The individual direct causal effects of treatment 0 compared to treatment 1 for the individual 

j in group i were defined by

(2)

The individual average direct causal effect for the jth individual in the ith group was defined 

by
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(3)

i.e., the difference in individual average potential outcomes when zij = 1 and when zij = 0 

under ψ. The group average direct causal effect as defined by 

, and the population average direct 

causal effect by .

The individual indirect causal effects of treatment program z compared with z′ on individual 

j in group i were defined by

(4)

where z′ is another ni dimensional vector of treatment random variables. (Note z′ does not 

denote the transpose of z). Similar to direct effects, the individual average indirect causal 

effect were defined by . Clearly if ψ= φ, then 

; that is, there will be no individual average indirect causal effects. Finally, 

the group average indirect causal effect were defined as 

. and the population average 

indirect causal effect as .

The individual total causal effects for individual j in group i were defined as

(5)

The individual average total causal effect was defined by 

, the group average total causal effect was defined by 

, and the population average total 

causal effect was defined by . It 

follows by simple addition and subtraction that a total effect is the sum of the direct and 

indirect effects at the individual, individual average, group average and population average 

levels. For example: 

.

The overall causal effect was defined to be the average effect of an intervention program 

relative to no intervention. The individual overall causal effect of treatment zi compared to 

treatment  for individual j in group i was defined by . 

Similarly, for the comparison of φ to ψ, the individual average overall causal effect was 

defined by , the group overall causal effect by 
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, and the population overall causal effect by 

 where  and 

and Yij(ψ) ≡ Σω∈{0,1}ni Yij(zi = ω)Prψ(zi = ω). VanderWeele and Tchetgen Tchetgen (2011a) 

showed that the overall effect decomposes into the sum of an indirect effect and a contrast of 

two direct effects on the individual average, group average and population average levels. 

For example, .

The quantities defined above under interference have two important distinctions from those 

used in causal inference without interference. First they quantify causal effects only for 

participants in the randomized study. Second, they depend on the randomization 

probabilities (through Prψ(Zi(j) = ω|Zij = z)). Although the causal estimands here depend on 

the assignment mechanism (e.g. comparing two different proportions vaccinated), we could 

alternatively compare allocation strategies of always vaccinate versus never vaccinate to 

recover traditional causal estimands that do not depend on the assignment mechanism.

The estimands defined above simplify under the assumption of no interference between 

individuals within a group since the potential outcomes of the jth individual in group i can be 

written as Yij(1) and Yij(0). In turn, the individual direct causal effect is no longer dependent 

on the treatment assignment vector zi(j) and simply equals Yij(1) − Yij(0). The corresponding 

group average direct causal effect becomes , i.e., the usual 

average causal effect estimand. By (4), the individual indirect causal effect equals zero for 

all individuals assuming no interference. That is, assuming no interference implies the 

treatment has no indirect effects. Similarly, by (2) the individual total causal effect equals 

the individual direct causal effect. Likewise, at the group average level, under the no 

interference assumption the indirect causal effect is zero and the direct causal effect equals 

the total causal effect.

2.5. Inference and challenges

Assuming the two-stage randomization and mixed allocation strategy, Hudgens and Hal-

loran proposed unbiased estimators for the various population average effects. They 

provided variance estimates under the assumption of stratified inference, that is, if it matters 

only how many people are allocated to treatment, not exactly which ones. Tchetgen 

Tchetgen and VanderWeele (2012) provided conservative variance estimators (i.e. 

guaranteed to be no smaller than the true variance in expectation), under more general 

assumptions and provided finite sample confidence intervals for the various effects without 

the assumption of stratified interference. Liu and Hudgens (2014) further developed large 

sample randomization inference for the direct, indirect, total, and overall causal effects in 

the presence of interference when either the number of groups or the number of individuals 

within groups grows large, but not necessarily both.

2.6. Interference and infectiousness effects

To develop causal estimands for the infectiousness effects presented in Section 1.1.5, we 

follow the development of VanderWeele and Tchetgen Tchetgen (2011b) and Halloran and 
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Hudgens (2012a). Consider a setting with N households (groups) indexed by i = 1,…, N. 

Each household consists of two persons indexed by j = 1, 2. We let Zij denote the vaccine 

status for individual j in household i, where Zij = 1 if the individual received vaccine and Zij 

= 0 if the individual did not. For each household, Zi = (Zi1, Zi2) denotes the vaccine status of 

the two individuals in the household. We let Yij denote the infection status of individual j in 

household i after some suitable follow up in the study. We let Yij(zi1, zi2) denote the potential 

outcome for individual j in household i if the two individuals in that household i had vaccine 

status of (zi1, zi2); we treat the potential outcome vector Yi(zi1, zi2) as a random variable that 

is independent and identically distributed across households.

We assume partial interference, that is, the exposure status of persons in one household in 

the study do not affect the outcomes of individuals in other study households. The 

assumption that clusters constitute isolated pairs would be reasonable in a vaccine trial 

conducted with a relatively small number of households in a very large city so that it is 

unlikely that the various households in the study would interact with one another. We will 

assume that the two individuals in each household are distinguishable (e.g. a husband and 

wife pair) and we will consider a simple randomized experiment in which only one of the 

two individuals (e.g. the wife) is predetermined to be randomized to receive a vaccine or 

control and the second person (e.g. the husband) is predetermined to be always 

unvaccinated. We let j = 1 denote the individual who may or may not be vaccinated (e.g. the 

wife) and j = 2 the individual who is always unvaccinated (e.g. the husband). In other 

settings in which the individual (husband or wife) who is subject to vaccination is itself 

randomized (i.e. two-stage randomization) the analysis below could be done separately in 

those households in which the wife was selected for vaccine randomization versus those in 

which the husband was selected. Halloran and Hudgens (2012a) generalized that case to the 

situation where either person can be randomized to vaccine or exposed outside the 

household.

The crude (or net) estimator for the infectiousness effect on the risk difference scale was 

defined as:

(6)

where the expectation is taken over all households. This is a comparison of the infection 

rates for individual 2 in the subgroup in which individual 1 was vaccinated and infected 

versus in the subgroup in which individual 1 was unvaccinated and infected. Even though 

the vaccine status for individual 1 is randomized, conditioning on a variable that occurs after 

treatment, e.g., the infection status of individual 1, in effect breaks randomization. The net 

estimator for the infectiousness effect could be subject to selection bias. We are computing 

infection rates for individual 2 for subpopulations that may be quite different with respect to 

individual 1.

Consider a second contrast proposed by VanderWeele and Tchetgen Tchetgen (2011b) and 

Halloran and Hudgens (2012a):

(7)
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This contrast compares the infection status for individual 2 if individual 1 was vaccinated, 

Yi2(1, 0), versus unvaccinated, Yi2(0, 0), but only among the subset of households for whom 

individual 1 would have been infected irrespective of whether individual 1 was vaccinated 

i.e. Yi1(1, 0) = Yi1(0, 0) = 1. Such a subgroup is sometimes called a principal stratum 

(Frangakis and Rubin, 2002). The contrast in (7) is not subject to selection bias, so it can be 

considered a formal causal contrast for the infectiousness effect.

Unfortunately, we do not know which households fall into the subpopulation in which 

individual 1 would have been infected irrespective of whether individual 1 was vaccinated. 

The contrast (7) is, in general, unidentified, even when treatment is randomized, though the 

observable data do provide some information about (7). Bounds and sensitivity analysis are 

further facilitated by other assumptions.

Assumption 1. For all i, Yi1(1, 0) ≤ Yi1(0, 0)—Assumption 1, usually called a 

monotonicity assumption, states there is no one who would be infected if vaccinated but 

uninfected if unvaccinated. Under Assumption 1, there are three principal strata, or 

subgroups of households defined by the joint potential infection outcomes of individual 1 

under vaccine and control. They are (i) the doomed principal stratum in which individual 1 

is infected whether vaccinated or not, (ii) the protected stratum in which individual 1 is 

infected if unvaccinated and uninfected if vaccinated, and (iii) the immune stratum, in which 

individual 1 does not become infected whether vaccinated or not. The causal contrast (7) is 

defined in the doomed principal stratum.

To simplify notation, let pv = E[Yi2(1, 0)|Yi1(1, 0) = Yi1(0, 0) = 1], pu = E[Yi2(0, 0)|Yi1(1, 0) = 

Yi1(0, 0) = 1], p1 = E[Yi2|Zi1 = 1, Yi1 = 1] and p0 = E[Yi2|Zi1 = 0, Yi1 = 1]. The crude (net) 

infectiousness effect (6) is then just p1 − p0, and the causal infectiousness effect (7) is pv − 

pu. Under randomization and monotonicity, any household where individual 1 is infected if 

vaccinated must be in the doomed stratum, so pv = p1. Thus, one component of the causal 

infectiousness effect (7) is identified.

However, any household where individual 1 becomes infected if unvaccinated could be in 

the doomed or protected stratum. Thus pu is not identified without further assumptions. 

However, under monotonicity, the ratio ρ of the proportion in the protected stratum to the 

sum of the proportions in the protected and doomed strata is identified by the observed data. 

Thus, we know what proportion of the households in which individual 1 received control 

and was infected is in the doomed stratum, just not which ones, so we do not know what 

proportion of secondary transmissions occurred in the doomed strata. Under Assumption 1, 

Halloran and Hudgens (2012a, 2012b) derived upper and lower bounds for causal effects on 

infectiousness that are constrained by the relation in the data between ρ and p0.

A further possible assumption is

Assumption 2. E[Yi2(0, 0)|Zi1 = 0, Yi1 = 1] ≤ E[Yi2(0, 0)|Zi1 = 1, Yi1 = 1]—
Assumption 2 states that the average infection rate for individual 2 if both individuals 1 and 

2 were unvaccinated would be lower in the subgroup of households for which individual 1 

would be infected and unvaccinated than in the subgroup of households for which individual 
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1 would be infected and vaccinated. The assumption might be thought plausible insofar as 

the subgroup for which individual 1 was vaccinated and infected might be less healthy than 

the subgroup for which individual 1 was unvaccinated and infected; thus, if both people are 

unvaccinated, individual 2 is more likely to be infected in the first subgroup than in the 

second.

Under Assumptions 1 and 2, VanderWeele and Tchetgen Tchetgen (2011b) showed the 

crude contrast in (6) is conservative for the causal contrast in (7) in that E[Yi2(1, 0) − Yi2(0, 

0)|Yi1(1, 0) = Yi1(0, 0) = 1] ≤ E[Yi2|Zi1 = 1, Yi1 = 1] − E[Yi2|Zi1 = 0, Yi1 = 1] i.e. pv − pu ≤ p1 

− p0. Analogous results in fact also hold for the risk ratio, odds ratio, and vaccine efficacy 

scales (VanderWeele and Tchetgen Tchetgen, 2011b).

The approach may be employed outside of the vaccine context. For example, in an 

observational study in which the treatment is a smoking cessation program in which one of 

two persons in a household participated. The participation of the first person might affect the 

smoking behavior of the second. This might occur either (i) because smoking cessation for 

the first person encourages the second to stop smoking or because (ii) even if the first person 

does not stop smoking, the second person might nevertheless be exposed to some of the 

smoking cessation program materials. One could evaluate this second type of effect (the 

analogue of the infectiousness effect) by applying the approach described above.

3. Interference and Sensitivity Analysis

3.1. Overview

In this section we develop sensitivity analysis techniques that can help assess the presence of 

causal effects in two settings where these effects in the presence of interference are not 

identified. These causal effects may not be identified either because the treatments are not 

randomized or because, even if the treatments are randomized, the spillover effects of 

interest involve conditioning on a post-treatment variable thereby breaking randomization. 

Building on the previous sections, we first consider the setting of a randomized trial where 

the spillover effect of interest is not identified by randomization alone because of 

conditioning on a post-randomization variable as in the infectiousness effect described in 

Section 2.6. We present sensitivity analysis methods for assessing this infectiousness effect. 

We then consider the setting of observational data such as in Hong and Raudenbush (2006) 

in which causal effects and spillover effects may not be identified due to one or more 

unmeasured confounding variables. We present two sensitivity analysis techniques for 

causal effects in the presence of interference that extend analogous results for causal effects 

under no-interference (Robins et al., 2000; VanderWeele and Arah, 2011) to the setting of 

causal effects and spillover effects in the presence of interference.

3.2. Sensitivity Analysis for the Infectiousness Effect

In Section 2.6, we described two previously developed approaches to bounds on the 

infectiousness effects. Here we develop methods for sensitivity analysis for the 

infectiousness effect. We follow the development first in VanderWeele and Tchetgen 

Tchetgen (2011b) and Halloran and Hudgens (2012a) and then in Hudgens and Halloran 

(2006); further technical development is given in the Appendix. See also VanderWeele and 
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Tchetgen Tchetgen (2011b) and Hudgens and Halloran (2006) for concrete applications. A 

simple sensitivity analysis approach also follows from the development of VanderWeele and 

Tchetgen Tchetgen (2011b). We use the same notation as in Section 2.6. As noted in Section 

2.6, under monotonicity Assumption 1, we have that pv = p1, and thus to obtain the causal 

infectiousness effect we need to express pu in terms of the observed data and sensitivity 

analysis parameters. We will describe three different parameterizations.

First, let θ = E[Yi2(0, 0)|Zi1 = 1, Yi1 = 1] − E[Yi2(0, 0)|Zi1 = 0, Yi1 = 1] denote the sensitivity 

parameter which contrasts the average counterfactual infection rates for individual 2 if both 

individuals 1 and 2 were unvaccinated in the subgroup of households for which individual 1 

is vaccinated and infected versus the subgroup of households for which individual 1 is 

unvaccinated and infected. It follows from the development in VanderWeele and Tchetgen 

Tchetgen that, under monotonicity, pu = p0 + θ and thus:

In other words to obtain the infectiousness effect under monotonicity, we can calculate the 

crude infectiousness effect in (6), specify the sensitivity parameter θ, and subtract the 

sensitivity parameter θ from the crude estimate to obtain the infectiousness effect. We can 

vary θ over a range of plausible values in a sensitivity analysis to produce a range of 

plausible values for the infectiousness effect. The sensitivity analysis parameter is subject to 

certain empirical constraints as described below. However, because of the simple 

relationship above, a corrected confidence interval under sensitivity parameter θ can be 

obtained simply by subtracting θ from both limits of the confidence interval for the crude 

estimate in (6).

We can also use a similar approach but with a different parameterization of the sensitivity 

analysis parameters. Following Hudgens and Halloran (2006), we can vary γ = E[Yi2(0, 0)|

Yi1(1, 0) = 0, Yi1(0, 0) = 1], the probability of secondary transmission in the protected 

stratum when individual 1 receives control with bounds set by constraints of the data 

(Halloran and Hudgens 2012a, 2012b). The quantity γ is not identifiable from the observed 

data without further assumptions, but once a value of γ is assumed, then the probability of 

secondary transmission in the doomed stratum is fixed, and thus pu is identified. Varying γ, 

the infectiousness effect (7) on the risk difference scale can be obtained as p1 − pu where pu 

is given by

and where γ can vary between
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with the left side giving rise to the upper bound for the causal infectiousness effect and the 

right side giving rise to the lower bound on the risk difference scale. Note that a drawback of 

this approach is that the parameter γ is constrained by the observed data and similar 

restrictions are imposed on θ above by virtue of the identity .

As a third parameterization, we could follow an approach to sensitivity analysis developed 

in Scharfstein et al. (1999) and Robins et al. (2000). This approach performs sensitivity 

analysis with a bias parameter β on the ratio scale. Gilbert et al. (2003) and Hudgens and 

Halloran (2006) adapted this approach for sensitivity analysis for causal effects on post-

infection outcomes, the former in the continuous post-infection outcome scenario, the latter 

for binary post-infection outcomes. Hudgens and Halloran (2006) and Halloran and 

Hudgens (2012a) suggested that this approach to sensitivity analysis could be used for 

infectiousness effects taking as the intermediate infection outcome the infection status of 

individual 1 and as the potential post-infection outcome the infection status of individual 2. 

Within the context of the infectiousness effect, again under monotonicity assumption 1, the 

bias parameter β can be expressed as:

The bias parameter β is the log of odds ratio comparing the risk of infection if individual 1 is 

not vaccinated among (i) the doomed stratum and (ii) the protected. Note this is not simply a 

different scale than the bias parameter θ above (odds ratio versus risk difference) but also a 

comparison of different subpopulations. Once this bias parameter is specified then it can be 

shown that pu = E[Yi2(0, 0)|Yi1(1, 0) = Yi1(0, 0) = 1] is the positive root of 

, where

For further discussion of inference for this approach to sensitivity analysis see Hudgens and 

Halloran (2006) and Jemiai et al. (2007).

In each of the three parameterizations above, once we have obtained pu = E[Yi2(0, 0)|Yi1(1, 

0) = Yi1(0, 0) = 1] we can obtain the infectiousness effect on the difference, risk ratio, odds 

ratio, or infectiousness effect scales by pv − pu, pv/pu, pv(1 − pu)/{pu(1 − pv)} and 1 − pv=pu, 

respectively.

We have focused here on the setting of a randomized trial, but the approach is potentially 

applicable to observational studies as well if, conditional on some set of covariates C, the 

treatment was jointly independent of the counterfactual outcomes (i.e. effectively 

randomized within strata of C). The sensitivity analysis parameters would have to be 

conditional on C.
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3.3. Sensitivity Analysis for Spillover Effects Under Unmeasured Confounding: Approach 1

We now consider a setting in which causal effects and spillover effects under interference 

are not identified due to unmeasured confounding. Adjustment is often made for covariates 

to attempt to control for such confounding. However, in an observational study we can never 

be sure that the control is adequate. One or more unmeasured confounders may bias effect 

estimates. Confounding control becomes even more complex in settings with interference 

since when one individual’s outcome is under consideration, control will often need to be 

made for the covariates of other individuals in the same cluster (Tchetgen Tchetgen and 

VanderWeele, 2012; Ogburn and VanderWeele, 2012, Perez-Heydrich et al 2013). 

Unmeasured confounding can thus operate either through the unmeasured covariates for the 

focal individual or for other individuals in the same cluster. In this sub-section, we apply and 

extend the sensitivity analysis approach of VanderWeele and Arah (2011) to allow for 

settings with interference and spillover effects. In the next sub-section we consider an 

extension of the sensitivity analysis approach of Robins et al. (2000) to allow for 

interference and spillover effects.

We consider a general observational setting such as that employed by Hong and Raudenbush 

(2006) wherein individuals are clustered in groups such that individuals within groups may 

influence one another but there is no interference between groups. We make the stratified 

interference assumption above and further assume, following Hong and Raudenbush, that 

the potential outcome of person j, Yij (zi), depends on the treatment received by the 

individuals in cluster i other than person j, zi(j), only through some known many-to-one 

scalar function g(zi(j)) so that Yij (zi) can be written as Yij(zij, g(zi(j)). For example, g(zi(j)) 

might be the mean of zi(j). Let Gij = g(Zi(j)). For all i, j, Zij is determined by simple 

randomization. We then have that

Hong and Raudenbush (2006) considered a variation on this assumption in the context of 

observational data. Specifically, for some covariate vector Lij, they assumed that

(8)

and from this it follows that

where the right hand side can be estimated with observed data. Hong and Raudenbush 

(2006) also allowed Lij to contain cluster level covariates along with cluster aggregates of 

individual level covariates. Note, however, that (8) requires that Yij (z, g) be mean 

independent of both Zij and g(Zi(j)) conditional on Lij. If, for each individual, Zij is 

randomized conditional on Lij, although this will imply that Yij (z, g) is mean independent of 

Zij conditional on Lij, it does not necessarily guarantee that Yij (z, g) is mean independent of 

VanderWeele et al. Page 16

Stat Sci. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



g(Zi(j)) conditional on Lij. Let Li(j) denote the vector of all covariates Lij for all individuals 

in cluster i other than individual j. We might, instead of (8), consider

(9)

where h(Li(j)) is a known function of Li(j). However once again, with (9), even if, for each 

individual, Zij were randomized conditional on Lij, h(Li(j)), this would not guarantee that Yij 

(z, g) is mean independent of g(Zi(j)) conditional on Lij, h(Li(j)) unless h(Li(j)) = Li(j). See 

Ogburn and VanderWeele (2012) for discussion of causal structures for which assumptions 

(8) or (9) will hold. Under assumption (9), we have

where again the right hand side can be estimated with observed data. From this one could 

obtain conditional direct, indirect and total effects, namely,

These contrasts are important insofar as they allow one to assess the relative importance for 

an individual’s outcome of changing an individual’s own treatment versus the treatment of 

other individuals. In other words, the effects allow one to assess the relative importance of 

spillover. Marginal effects, involving counterfactuals of the form E[Y (z, g)] could be 

obtained by averaging over the distributions of Lij and h(Li(j)).

Suppose now that we have unmeasured confounding by one or more unmeasured 

confounders Uij and let Ui(j) denote the vector of Uij for all individuals in cluster i other than 

individual j. Suppose that the analogue of assumption (9) holds conditional on observed Lij, 

h(Li(j)) and unobserved Uij, v(Ui(j)) for some scalar function v so that

(10)

but that (9) does not hold when we do not condition on Uij, v(Ui(j)). Without data on Uij 

causal effects are not identified. Let H = h(Li(j)) and V = v(Ui(j)).

Following the sensitivity analysis approach of VanderWeele and Arah (2011) for causal 

effects under no-interference, we express the difference between the causal effect
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and the biased estimand

in terms of sensitivity analysis parameters. Let B = {E[Y|z, g, l, h] − E[Y|z′, g′, l, h]} − 

{E[Y(z, g)|l, h] − E[Y(z′, g′)|l, h]} denote this difference. Technical development is given in 

the appendix.

Let u* and v* denote arbitrary reference values for U and V, respectively. Under assumption 

(10) we have that:

(11)

To obtain the bias factor B one could thus specify the effect of the unmeasured confounders 

U and V on the outcome, E(Y|z, g, l, h, u, v) − E(Y|z, g, l, h, u*, v*), for (Z, G) = (z, g) and (Z, 

G) = (z′, g′), and also how the distribution of U and V differs when (Z, G) = (z, g) versus (Z, 

G) = (z′; g′), i.e., P(u, v|z, g, l, h) and P(u, v|z′, g′, l, h). One can use these sensitivity analysis 

parameters to calculate the bias factor in (11) and then subtract the bias factor B from the 

estimate of the causal effect using the observed data E[Y|z, g, l, h] − E[Y|z′, g′, l, h] to obtain 

a corrected effect estimate for E[Y (z, g)|l, h] − E[Y (z′, g′)|l, h].

Note that the expression for the bias factor in (11) makes no assumption beyond assumption 

(10) that control for observed (L, H) and unobserved (U, V) would suffice to control for 

confounding of the effect of (Z, G) on Y; it allows for multiple unmeasured confounders. 

However, the use of the bias formula in (11) requires specifying a large number of 

parameters: E(Y|z, g, l, h, u, v) − E(Y|z, g, l, h, u*, v*) for every value of u, v and the 

distributions P(u, v|z, g, l, h) and P(u, v|z′, g′, l, h).

Under some simplifying assumptions expression (11) reduces to a much easier to use 

formula. In particular, suppose that there is a single unmeasured confounder U and that V = 

v(Ui(j)) is scalar. Suppose also that the effects of U and V = v(Ui(j)) are additive in the sense 

that E(Y|z, g, l, h, u, v) − E(Y|z, g, l, h, u*, v*) = λ(u−u*) + τ(v−v*) for (Z, G) = (z, g) and (Z, 

G) = (z′, g′). In the appendix it is shown that under these assumptions:

(12)

To use this simplified bias formula one only needs to specify the effect, λ, for a one unit 

increase in the unmeasured confounder Uij, the effect τ of a one unit increase in the scalar 

functional of the unmeasured confounders of the other members of the group, v(Ui(j)), and 

how the means of Uij and v(Ui(j)) differ when (Z, G) = (z, g) versus when (Z, G) = (z′, g′). 

Once these sensitivity analysis parameters are specified the bias factor B can be calculated 

using formula (12) above and then B could be subtracted from the estimate of the causal 
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effect using the observed data E[Y|z, g, l, h] − E[Y|z′, g′, l, h] to obtain a corrected effect 

estimate for E[Y (z, g)|l, h] − E[Y (z′, g′)|l, h]. Under this simplified approach because the 

bias factor involves only the sensitivity analysis parameters and not the observed data, a 

corrected confidence interval could be obtained by subtracting B from both limits of a 

confidence interval for E[Y|z, g, l, h] − E[Y |z′, g′, l, h]. A sensitivity analysis consists of 

reporting the causal contrasts under a range of plausible values of τ and λ. The values τ = λ 

= 0 correspond to the assumption of no unmeasured confounders. Selecting a plausible range 

of parameters could be done using subject matter expertise, by external data from other 

studies, or by including a very wide range of parameters that are thought to include those 

that would constitute very extreme values. Alternatively, one could examine the most 

important measured confounder and assess the magnitude of the corresponding parameters 

for the most important measured confounder; one could then consider whether an additional 

unmeasured confounder with parameters set equal to that of the most important measured 

confounder would substantially alter results. This would allow an investigator to assess 

whether an unmeasured confounder would have to be stronger than the most important 

measured confounder to substantially alter the results.

Consider again the substantive example of Hong and Raudenbush (2006) described in 

Section 1.1.3. As noted above, Hong and Raudenbush (2006) examined the effect of 

kindergarten retention on reading test scores allowing for interference by allowing the 

retention of other students at the school to affect a child’s reading test scores. They assumed 

that treatment assignment at both the school and the individual level was ignorable given a 

number of observed individual-level, school-level, and school-aggregated-individual level 

characteristics. Using a propensity-score based approach they estimated, in the notation 

above, the contrasts E[Y (z = 1, g = 1)] − E[Y (z = 0, g = 1)] and E[Y (z = 1, g = 0)] − E[Y (z 

= 0, g = 0)] where g = 1 denotes high-retention school and g = 0 a low retention school. 

They found that, in low-retention schools, their estimates indicated that the effect on reading 

scores of a student being retained versus being promoted, was −8.18 (95%CI : −10.02, 

−6.34), and in high retention schools the effect estimate was −8.86 (95%CI : −11.56, −6.16). 

A standard deviation in reading test scores in this sample is 13.48 points.

Hong and Raudenbush also went through a sensitivity analysis argument for their results. 

They noted that the strongest predictor of current test scores were lagged test scores, but that 

it was unlikely that there was any unmeasured covariate that would predict their outcomes 

so strongly. They considered instead whether unmeasured individual and school covariates 

that had effects on readings scores that were equal to those of the measured covariates with 

second strongest association with reading scores would suffice to explain away the effect 

estimates. Using an argument based on a formula similar to (12), they reported that 

unmeasured individual and school confounders that had an effect as large as the second most 

important measured individual and school level covariates would shift the estimate in high 

retention schools to −4.25 (95%CI : −6.95, −1.54) and thus not suffice to bring the 

confidence interval to include 0. However, in low-retention schools, unmeasured individual 

and school confounders that had an effect as large as the second most important measured 

covariates would shift the confidence interval in low retention schools to −0.60 (95%CI : 

−2.44, 1.24) and thus would suffice to bring their confidence interval for the effect in low 
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retention schools below 0. The effects in high retention schools seem more robust to the 

possibility of unmeasured confounding. In their analyses, Hong and Raudenbush (2006) 

used a similar expression to (12), but in their paper they did not provide a derivation of this 

formula and did not articulate the assumptions needed for the use of the formula. We have 

provided the derivations and assumptions required here. Moreover, we have also provided a 

more general expression, that in (11), that is applicable under much weaker assumptions.

We have considered here a sensitivity analysis approach for causal effects and spillover 

effects in the presence of interference. In other contexts, questions concerning whether the 

effect of a treatment on an outcome is mediated by some intermediate may be of interest. In 

settings in which mediation is of interest and interference occurs at the level of the mediator 

so that the mediator for one unit may affect the outcomes for other units (cf. VanderWeele, 

2010a; VanderWeele et al., 2013), a similar sensitivity analysis approach for unmeasured 

confounding of the mediator and the outcome could be developed by applying and extending 

the results of VanderWeele (2010b) for direct and indirect effects from the no-interference 

setting to a setting with interference by following an analogous approach to that presented 

above.

3.4. Sensitivity Analysis for Spillover Effects Under Unmeasured Confounding: Approach 2

In this sub-section we consider an alternative sensitivity analysis approach to assess the 

influence of unobserved confounding for direct and spillover effects in general settings 

similar to those considered by Hong and Raudenbush (2006) described above. The following 

developments follow closely from analogous sensitivity analysis techniques recently 

proposed in the context of mediation analysis (Tchetgen Tchetgen, 2011; Tchetgen Tchetgen 

and Shpitser, 2012). In order to formalize the approach, suppose that we wish to make 

inferences about the following causal effects:

where, unless stated otherwise, throughout, G and H are left unrestricted, i.e. Gi(j) = g(Zi(j)) 

= Zi(j), Hi(j) = h(Li(j)) = Li(j). These effects are versions, allowing for interference, of the so-

called effect of treatment on the treated, which have been studied extensively in the absence 

of interference, by econometricians, epidemiologists and social scientists. The first contrast 

γd (z, g, l, h) captures the direct effect of Zij on Yij conditional on the person’s observed 

exposure Zij, and the cluster’s observed data (Zi(j), Lij, Hi(j)). In contrast, γs (g, l, h) is the 

spillover causal effect of Zi(j) on Yij (zi,j = z0) within levels of (Zi(j), Lij, Hi(j)). Note that γd 

(z0, g, l, h) = γs (g0, l, h) = 0, so that these effects are relative to the reference average 

potential outcome under (z0, g0).

Consider the pair of no unobserved confounding assumptions:
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It is straightforward to show that under these assumptions, γd and γs are identified by:

This shows that the above no unobserved confounding assumption suffices to identify direct 

and spillover effects (on the treated) using a standard regression analysis approach to model 

E[Y|z, g, l, h]. Next, suppose that the no unobserved confounding assumption does not hold, 

we define the following selection bias functions:

(13)

(14)

where, δd (z0, g, l, h) = δs (g0, l, h) = 0. These selection bias functions come about naturally 

upon contrasting, on the additive scale, each of the observational conditional association γd,† 

(z, g, l, h) and γs,† (g, l, h), with their corresponding causal analog, γd (z, g, l, h) and γs (g, l, 

h), respectively. To illustrate in the simple context of binary Z, one can verify that the 

confounding bias quantified on the additive scale is equal to

which makes clear the central role of the selection bias function δd. A generalization of the 

above derivation gives similar expressions for δs (g, l, h), and also extends beyond binary Z. 

Furthermore, this derivation also makes clear that the presence of confounding implies that 

at least one of the following must hold:

The first condition implies γd is not identified, while the second case implies γs is not 

identified. Thus, we may proceed as in Robins et al (2000), and recover causal inferences by 

assuming the selection bias functions, δd (z, g, l, h) and δs (g, l, h), that encode the 

magnitude and direction of unmeasured confounding, are known. Suppose that higher values 

of Y are beneficial to one’s health. If δd (1, g, l, h) > 0, then on average, an individual j in 

cluster i with {Gi(j) = g, Lij = l, Hi(j) = h} and exposure value Zij = 1 has higher potential 

outcomes Yij (z0 = 0, g) than an individual in the same cluster and the same stratum {Gi(j) = 

g, Lij = l, Hi(j) = h} but unexposed Zij = 0; i.e., healthier individuals are more likely to 
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receive the exposure conditional on the exposures of other people in the cluster and the 

observed confounders for the cluster. On the other hand, δd (1, g, l, h) < 0 suggests 

confounding by indication for exposure; i.e. unhealthier individuals are more likely to be 

exposed. Likewise, if δs (g, l, h) > 0 for all g ≠ g0 indicates that on average, an individual in 

a cluster with confounders {Lij = l, Hi(j) = h} and g(Zi(j)) = g* ≠ g0 has higher potential 

outcomes Yij (z0 = 0, g0) than a comparable individual in a comparable cluster with baseline 

exposure value g(Zi(j)) = g0. In the special case where g(Zi(j))= Zi(j) = 0, one has that 

clusters with no exposed individual tend on average, to be less healthy than clusters with one 

or more individuals exposed.

The approach to inference in the presence of confounding involves the following 

reparameterization of the conditional mean function E[Y|z, g, l, h] in terms of the causal 

contrasts γd and γs, and the selection bias functions δd and δs. To state the 

reparameterization, suppose for the moment that f(z, g|l, h) = f(Zi = (z, g) |Li = (l, h)), is 

known, then one can verify that for each unit in cluster i,

where

For fixed δd and δs given by equations (13) and (14), the causal contrasts γd and γs are 

nonparametrically identified and can be estimated by fitting the above regression model.

In practice, due to the high dimensionality of Li often encountered in applications, 

parametric models must be used to reliably estimate γd (z, g, l, h), γs (g, l, h), f(z, g|l, h) and 

q(l, h). The above reparameterization is particularly advantageous in that it ensures variation 

independence of parameters of working models for these various quantities. A description of 

parametric maximum likelihood and generalized estimating equations estimation is given in 

the appendix.

3.5. A comparison of sensitivity analysis techniques

It is instructive to compare the sensitivity analysis techniques given in Sections 3.3 and 3.4. 

We begin by noting that the causal estimand targeted by the two methods differ. The first 

approach aims to make inferences about
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while the second approach targets the causal contrasts

In the absence of confounding, the contrasts targeted by the two approaches coincide, but 

when unmeasured confounding is present, the first approach gives direct and spillover 

effects for the subset of individuals with {l, h}, while the second approach delivers 

inferences about the direct effect for individuals with {z, g, l, h} and the spillover effect for 

individuals with {g, l, h}, i.e. interference effects of treatment on the treated. This distinction 

has implications for the corresponding sensitivity analysis techniques. Although both 

approaches require specifying unidentified parameters, in the first technique the parameters 

correspond to particular causal effects (of U and V), whereas in the second technique the 

parameters do not correspond to causal effects. More specifically, in the first approach, a 

parametrization of the bias expression (11) involves quantifying the causal interaction

of the effect of (Z, G) within levels of (L, H, U, V). The first sensitivity analysis approach 

requires not only making a judgement about the nature of U (i.e. binary, polytomous, 

multivariate, etc.), and the magnitude and the direction of unmeasured confounding, but also 

about the magnitude and direction of effect heterogeneity on the additive scale. In contrast, 

the second sensitivity analysis technique directly quantifies the magnitude and direction of 

unmeasured confounding without making any reference to a specific U, and therefore it does 

not involve making any judgement about unidentified causal effects. While making a 

judgement about the nature of U (i.e. binary, polytomous, multivariate, etc.) in the first 

approach could be difficult in practice, the second approach, to ensure that posited models 

are compatible, requires that the user posit parametric models for f (z|g, l, h) and f (G = g|l, 

h), an additional modeling requirement not needed by the first approach. Both of these 

densities are, however, nonparametrically identified from the observed data and, therefore, 

standard goodness-of-fit tools may be adopted to ensure a reasonable fit to the data. The first 

approach can be of particular use if subject matter expertise can help determine the nature of 

the unmeasured confounders and/or if prior analyses with other data for which these 

confounders are available can be used to help inform the value of the sensitivity analysis 

parameters.

The difference between the two techniques also has interesting but subtle implications if 

these techniques are used to construct tests of the sharp null of no treatment effects. If an 

investigator were interested in testing the sharp null of no treatment effects using the first 

sensitivity analysis approach, care would need to be taken to ensure that the specification of 

the sensitivity analysis parameters was compatible with the sharp null e.g. by ensuring the 

interaction function in the above display is 0 as, for example, in the simplified expression in 

(12). In contrast, with the second sensitivity analysis approach, any specification of the 
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sensitivity analysis parameters will be compatible with the sharp null, and so this issue of 

compatibility is not similarly a concern.

4. Discussion

In this paper we have reviewed definitions and approaches to causal inference in the 

presence of interference. We have developed various sensitivity analysis approaches when 

the causal effects and spillover effects of interest are unidentified either because 

randomization does not suffice for identification (Hudgens and Halloran, 2006; 

VanderWeele and Tchetgen Tchetgen, 2011b; Halloran and Hudgens, 2012a,b) or because 

of unmeasured confounding in an observational study.

We have extended existing sensitivity analysis approaches (Robins et al., 2000; Vander-

Weele and Arah, 2011) from the setting of no-interference to allow for interference. Many 

settings in the social sciences in which causal effects and spillover effects are of interest are 

observational settings with interference and the results presented here will likely be useful in 

those settings. Further work could be done on sensitivity analysis for unmeasured 

confounding in other settings in which there are not multiple independent clusters (e.g. 

Aronow and Samii, 2013) or in settings involving the assessment of causal effects in social 

networks (Christakis and Fowler, 2007; VanderWeele, 2011).

More generally, numerous further challenges remain in the development of methods for 

causal inference under interference. Inference may become additionally challenging for 

treatment with multiple levels as the number of combinations will increase dramatically. 

Interference patterns might also depend on the covariates of individuals in a cluster in 

complex ways. Furthermore, the approach for defining causal estimands for infectiousness 

where the covariates of individuals in the group are taken into account becomes unwieldly 

when the clusters are larger than two, posing an additional challenge for future research. 

When dealing with cluster-randomized studies in which the clusters are large, the number of 

clusters may be small, making inference difficult. In contrast, in the household studies, the 

number of clusters may be large, but the number in the households small.

One of the limitations of the approaches for causal inference with interference presented in 

this paper is the assumption that there were fixed groups or blocks of individuals. One of the 

challenges for future research will be the issue of interference across groups. More 

generally, recent research on causal inference with interference has been relaxing the 

assumption of fixed groups. Aronow and Samii (2013) presented randomization-based 

methods for estimating average causal effects under arbitrary interference of known form. 

Van der Laan (2012) incorporates network information for each individual under 

consideration that describes the set of other individuals that each individual is potentially 

connected to. Inference is then driven but the number of individuals rather the number of 

communities, which in this case is one. Liu and Hudgens (2013) propose new generalized 

inverse probability weighted estimators of causal effects in the presence of any form of 

interference between individuals. Defining and comparing causal estimands of effects across 

more general forms of interference will be challenging. Much more exciting research is left 

to be done on causal inference under general forms of interference.
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Appendix

Derivations for the Infectiousness Effect

VanderWeele and Tchetgen Tchetgen (2011b) showed that under monotonicity assumption 

1, pv = E[Yi2(1, 0)|Yi1(1, 0) = Yi1(0, 0) = 1] = E[Yi2|Zi1 = 1, Yi1 = 1] = p1 and pu = E[Yi2(0, 0)|

Yi1(1, 0) = Yi1(0, 0) = 1] = E[Yi2|Zi1 = 0, Yi1 = 1] + {E[Yi2(0, 0)|Zi1 = 1, Yi1 = 1] − E[Yi2(0, 

0)|Zi1 = 0, Yi1 = 1]} = p1 + θ. From this it follows that pv − pu = (p1 − p0) − θ and pv/pu = 

p1/(p0 + θ), pv(1 − pu)/{pu(1 − pv)} = p1(1 − p0 − θ)/{(p0 + θ)(1 − p1)}, and 1− pv/pu = 1 − 

p1/(p0 + θ).

Hudgens and Halloran (2006) showed that under monotonicity assumption 1, pu = γB/{1 + 

γ(B − 1)} and p0 = γV + pu(1 − V) where B = exp(β), γ = P {Yi2(0, 0)|Yi1(1, 0) = 0, Yi1(0, 0) 

= 1}, and . Solving pu = γB/{1 + γ(B − 1)} and p0 = γV + pu(1 − V) to 

eliminate γ gives  or 

, a quadratic equation in pu. The 

roots of this equation are  where z = exp(β)p0, 

, and 

.

Derivations for Sensitivity Analysis of Spillover Effect Under Unmeasured 

Confounding: Approach 1

If in the notation of VanderWeele and Arah (2011), we let A, X and U be (Z, G), (L, H) and 

(U, V), respectively, and we let a1 and a0 denote (z, g) and (z′, g′), respectively, then by 

VanderWeele and Arah (2011) we have that

If E(Y|z, g, l, h, u, v) − E(Y|z, g, l, h, u*, v*) = λ(u − u*) + τ(v − v*) then we have
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Maximum Likelihood and GEE Estimation of Direct and Spillover Effects 

Under Unmeasured Confounding: Approach 2

We briefly describe maximum likelihood and generalized estimating equations inference for 

direct and spillover effects in the presence of unobserved confounding under Approach 2. 

As stated in the text, in practice, due to the high dimensionality of Li often encountered in 

applications, parametric models must be used to reliably estimate γd (z, g, l, h), γs (g, l, h), f 

(Zi|Li) and q(l, h). The proposed reparameterization of E[Y |z, g, l, h] is particularly 

advantageous in that it ensures variation independence of parameters of the working models 

for these various quantities making possible a straightforward application of maximum 

likelihood estimation. Specifically, consider the parametric models γd(z, g, l, h; ψd), γs (g, l, 

h; ψs), f (Zi|Li; α) and q(l, h, η); then, provided parameters are not shared across working 

models, a particular choice of one of these models is guaranteed by our parametrization not 

to place any restriction on the other models. Maximum likelihood estimation of unknown 

parameters requires that one posit an additional working model for the conditional density 

f(εi|Li) which we denote f(εi|Li; ω), for εi the vector of possibly correlated residuals Yij− E[Y|

z, g, l, h], j = 1, …, ni. In principle, our choice of parametrization could be used in 

conjunction with standard techniques for modeling clustered outcomes, such as for instance 

by incorporating a random intercept to introduce correlation within a cluster in the 

regression model of Yij. Maximum likelihood estimation then proceeds by maximization of

with respect to(ψd, ψs, η, α, ω). A simple alternative to maximum likelihood estimation 

entails finding α̂ that maximizes the partial log-likelihood

and then finding the parameter value (ψ̂d, ψ̂s, η̂) that solves the following generalized 

estimating equation with independence working correlation structure:
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Note that the dependence of εij on (δd, δs) has been suppressed in the notation used above; 

such dependence is made explicit in a sensitivity analysis which is obtained by repeating 

either maximum likelihood estimation or the estimating equations approach given above as 

(δd, δs) is varied within a finite set of user-specified functions 

indexed by a finite dimensional parameter λ with  corresponding to the 

ignorability assumption, i.e. .

In applying this approach it is helpful to briefly describe possible functional forms for the 

selection bias functions δd, δs. In practice, it may be convenient to specify simple parametric 

models for each of these functions as illustrated in the following display. To illustrate, one 

may set the function g(Zi(j)) = Σj′≠j Zij′ to equal the number of exposed individuals in cluster 

i excluding person j:

where for  and , the scalar parameters λd and ( ) encode the magnitude and 

direction of unmeasured confounding for the effect of person j’s exposure Zij on his outcome 

Yij, and for  and  the scalar parameters λs and ( ) encode the magnitude and 

direction of unmeasured confounding for the causal effect of the total number exposed Σj′≠j 

Zij′ excluding person j, within the cluster i on person j’s outcome Yij.

The functions  and  model interactions between Zij and Σj′≠j Zij′, thus allowing for 

heterogeneity in the selection bias function. Since the functional form of ( ) is not 

identified from the observed data, we generally recommend reporting results for a variety of 

functional forms.
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