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Abstract

In clinical practice, physicians make a series of treatment decisions over the course of a patient’s 

disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set 

of sequential decision rules that operationalizes this process. Each rule corresponds to a decision 

point and dictates the next treatment action based on the accrued information. Using existing data, 

a key goal is estimating the optimal regime, that, if followed by the patient population, would 

yield the most favorable outcome on average. Q- and A-learning are two main approaches for this 

purpose. We provide a detailed account of these methods, study their performance, and illustrate 

them using data from a depression study.

Key words and phrases

Advantage learning; bias-variance tradeoff; model misspecification; personalized medicine; 
potential outcomes; sequential decision making

1. INTRODUCTION

An area of current interest is personalized medicine, which involves making treatment 

decisions for an individual patient using all information available on the patient, including 
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genetic, physiologic, demographic, and other clinical variables, to achieve the “best” 

outcome for the patient given this information. In treating a patient with an ongoing disease 

or disorder, a clinician makes a series of decisions based on the patient’s evolving status. A 

dynamic treatment regime is a list of sequential decision rules formalizing this process. Each 

rule corresponds to a key decision point in the disease/disorder progression and takes as 

input the information on the patient to that point and outputs the treatment that s/he should 

receive from among the available options. A key step toward personalized medicine is thus 

finding the optimal dynamic treatment regime, that which, if followed by the entire patient 

population, would yield the most favorable outcome on average.

The statistical problem is to estimate the optimal regime based on data from a clinical trial 

or observational study. Q-learning (Q denoting “quality,” Watkins, 1989; Watkins and 

Dayan, 1992; Nahum-Shani et al., 2010) and advantage learning (A-learning, Murphy, 2003; 

Robins, 2004; Blatt, Murphy and Zhu, 2004) are two main approaches for this purpose and 

are related to reinforcement learning methods for sequential decision-making in computer 

science. Q-learning is based roughly on posited regression models for the outcome of 

interest given patient information at each decision point and is implemented through a 

backwards recursive fitting procedure that is related to the dynamic programming algorithm 

(Bather, 2000), a standard approach for deducing optimal sequential decisions. A-learning 

involves the same recursive strategy, but requires only posited models for the part of the 

outcome regression representing contrasts among treatments and for the probability of 

observed treatment assignment given patient information at each decision point. As 

discussed later, this may make A-learning more robust to model misspecification than Q-

learning for consistent estimation of the optimal treatment regime.

Examples of the use of Q- and A-learning and alternative methods to deduce optimal 

strategies for treatment of substance abuse, psychiatric disorders, cancer, and HIV infection 

and for dose adjustment in response to evolving patient status have been presented (Rosthøj 

et al., 2006; Murphy et al., 2007a,b; Zhao, Kosorok and Zeng, 2009; Henderson, Ansell and 

Alshibani, 2010). Relevant work includes Thall, Millikan and Sung (2000), Thall, Sung and 

Etsey (2002), Robins (2004), Moodie, Richardson and Stephens (2007), Thall et al. (2007), 

van der Laan and Petersen (2007), Robins, Orellana and Rotnitzky (2008), Almirall, Ten 

Have and Murphy (2010), Orellana, Rotnitzky and Robins (2010), Zhang et al. (2012a,b), 

Zhao et al. (2012), Zhang et al. (2013) and Zhao et al. (2013).

The objective of this article is to provide readers interested in an introduction to estimation 

of optimal dynamic treatment regimes with a self-contained, detailed description of an 

appropriate statistical framework in which to define formally an optimal regime, of some of 

the operational and philosophical considerations involved, and of Q- and A-learning 

methods. Section 2 introduces the statistical framework, and Sections 3 and 4 discuss the 

form of the optimal regime. We describe and contrast Q- and A-learning in Section 5 and 

present systematic empirical studies of their relative performance and the effects of 

misspecification of the postulated models involved in Section 6. The methods are 

demonstrated using data from the Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D, Rush et al., 2004) study in Section 7.
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2. FRAMEWORK AND ASSUMPTIONS

Consider the setting of K prespecified, ordered decision points, indexed by k = 1,…, K, 

which may be times or events in the disease or disorder process that necessitate a treatment 

decision, where, at each point, a set of treatment options is available. Assume that there is a 

final outcome Y of interest for which large values are preferred. The outcome may be 

ascertained following the Kth decision, as with CD4 T-cell count at a prespecified follow-up 

time in HIV infection (Moodie et al., 2007); or may be a function of information accrued 

over the entire sequence of decisions, as in Henderson et al. (2010), where the outcome is 

the overall proportion of time a measure of blood clotting speed is kept within a target range 

in dosing of anticoagulant agents.

In order to define an optimal treatment regime and discuss its estimation based on data from 

an observational study or clinical trial, we define a suitable conceptual framework. For 

simplicity, our presentation is heuristic. Imagine that there is a superpopulation of patients, 

denoted by Ω, where one may view an element ω ∈ Ω as a patient from this population. We 

assume that patients in the population have been treated according to routine clinical 

practice for the disease or disorder prior to the first treatment decision. Consequently, 

immediately prior to this first decision, patient ω would present to the decision-maker with a 

set of baseline information (covariates) denoted by the random variable S1, discussed further 

below. Thus, S1(ω) is the value of his/her information immediately prior to decision 1, 

taking values s1, say, in a set 1. Assume that, at each decision point k = 1,…, K, there is a 

finite set of all possible treatment options k, with elements ak. We do not consider the case 

of continuous treatment and henceforth restrict attention to a finite set of options. Denote by 

āk = (a1, …, ak) a possible treatment history that could be administered through decision k, 

taking values in 𝒜̄
k = 1 × … × k, the set of all possible treatment histories āK through 

all K decisions.

We then define the potential outcomes (Robins, 1986)

(1)

In (1),  denotes the value of covariate information that would arise between 

decisions k − 1 and k for a patient ω ∈ Ω in the hypothetical situation that s/he were to have 

received previously treatment history āk−1, taking values sk in a set k, k = 2, …, K. 

Similarly, Y*(āK)(ω) is the hypothetical outcome that would result for ω were s/he to have 

been administered the full set of K treatments in āK. This notation implies that, for random 

variables such as  is an index representing prior treatment history. Write 

 , where  takes values s̄k in 

𝒮k̄ = 1 × … × k; this definition includes the baseline covariate S1 and is taken equal to S1 

when k = 1. The elements of the  may be discrete or continuous; in 

what follows, for simplicity, we take these random variables to be discrete, but the results 

hold more generally.
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A dynamic treatment regime d = (d1, …, dK) is a set of rules that forms an algorithm for 

treating a patient over time; it is “dynamic” because treatment is determined based on a 

patient’s previous history. At the kth decision point, the kth rule dk(s̄k, āk−1), say, takes as 

input the patient’s realized covariate and treatment history prior to the kth treatment decision 

and outputs a value ak ∈ Ψk (s̄k, āk−1) ⊆ k; for k = 1, there is no prior treatment (a0 is null), 

and we write d1(s1) and Ψ1(s1). Here, Ψk(s̄k, āk−1) is a specified set of possible treatment 

options for a patient with realized history (s̄k, āk−1), discussed further below. Accordingly, 

although we suppress this in the notation for brevity, the definition of a dynamic treatment 

regime we now present depends on the specified Ψk(s̄k, āk−1), k = 1, …, K. Because dk(s̄k, 

āk−1) ∈ Ψk(s̄k, āk−1), ⊆ k, dk need only map a subset of 𝒮 ̄
k × 𝒜̄

k−1 to k. We define these 

subsets recursively as

(2)

determined by Ψ = (Ψ1, …, ΨK). The Γk contain all realizations of covariate and treatment 

history consistent with having followed such Ψ-specific regimes to decision k. Define the 

class  of (Ψ-specific) dynamic treatment regimes to be the set of all d for which dk, k = 1,

…, K, is a mapping from Γk into k satisfying dk (s̄k, āk−1) ∈ Ψk (s̄k, āk−1) for every (s̄k, 

āk−1) ∈ Γk.

Specification of the Ψk (s̄k, āk−1), k = 1,…, K, is dictated by the scientific setting and 

objectives. Some treatment options may be unethical or impossible for patients with certain 

histories, making it natural to restrict the set of possible options for such patients. In the 

context of public health policy, the focus may be on regimes involving only treatment 

options that are less costly or widely available unless a patient’s condition is especially 

serious, as reflected in his/her covariate information. In what follows, we assume that a 

particular fixed set Ψ is specified, and by an optimal regime we mean an optimal regime 

within the class of corresponding Ψ-specific regimes.

An optimal regime should represent the “best” way to intervene to treat patients in Ω. To 

formalize, for any d ∈ , writing d̄
k = (d1,… ,dk), k = 1, …, K, d̄

K = d, define the potential 

outcomes associated with d as  such that, for 

any ω ∈ Ω, with S1(ω) = s1,

(3)

The index d̄
k−1 emphasizes that  represents the covariate information that would 

arise between decisions k − 1 and k were patient ω to receive the treatments sequentially 

dictated by the first k − 1 rules in d. Similarly, Y*(d)(ω) is the final outcome that ω would 

experience if s/he were to receive the K treatments dictated by d.
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With these definitions, the expected outcome in the population if all patients with initial 

state S1 = s1 were to follow regime d is E{Y*(d)|S1 = s1}. An optimal regime, dopt ∈ , say, 

satisfies

(4)

Because (4) is true for any fixed s1, in fact E{Y*(d)} ≤ E{Y*(d(1)opt)} for any d ∈ . In 

Section 3, we give the form of dopt satisfying (4).

Alternative specifications of Ψ may lead to different classes of regimes across which the 

optimal regime may differ. We emphasize that the definition (4) is predicated on the 

particular set Ψ, and hence class , of interest. In principle, the class  of interest is 

conceived based on scientific or policy objectives without reference to data available from a 

particular study.

Of course, potential outcomes for a given patient for all d ∈  are not observed. Thus, the 

goal is to estimate dopt in (4) using data from a study carried out on a random sample of n 

patients from Ω that record baseline and evolving covariate information and treatments 

actually received. Denote these available data as independent and identically distributed 

(i.i.d.) time-ordered random variables (S1i, A1i, …, SKi, AKi, Yi), i = 1, …, n, on Ω. Here, S1 

is as before; Sk, k = 2, …, K, is covariate information recorded between decisions k − 1 and 

k, taking values sk ∈ k; Ak, k = 1, …, K, is the recorded, observed treatment assignment, 

taking values ak ∈ k; and Y is the observed outcome, taking values y ∈ . As above, 

define S̄
k = (S1, …. Sk) and Āk = (A1, …, Ak), k = 1, …, K, taking values s̄k ∈ 𝒮 ̄

k and āk ∈ 

𝒜 ̄
k.

The available data may arise from an observational study involving n participants randomly 

sampled from the population; here, treatment assignment takes place according to routine 

clinical practice in the population. Alternatively, the data may arise from an intervention 

study. A clinical trial design that has been advocated for collecting data suitable for 

estimating optimal treatment regimes is that of a so-called sequential multiple-assignment 

randomized trial (SMART, Lavori and Dawson, 2000; Murphy, 2005). In a SMART 

involving K pre-specified decision points, each participant is randomized at each decision 

point to one of a set of treatment options, where, at the kth decision, the randomization 

probabilities may depend on past realized information s̄k, āk−1.

In order to use the observed data from either type of study to estimate an optimal regime, 

several assumptions are required. As is standard, we make the consistency assumption (e.g., 

Robins, 1994) that the covariates and outcomes observed in the study are those that 

potentially would be seen under the treatments actually received; that is, 

, and Y = Y*(ĀK). We also make the stable unit treatment value 

assumption (Rubin, 1978), which ensures that a patient’s covariates and outcome are 

unaffected by how treatments are allocated to her/him and other patients. The critical 

assumption of no unmeasured confounders, also referred to as the sequential randomization 

assumption (Robins, 1994), must be satisfied. A strong version of this assumption states that 

Ak is conditionally independent of W* in (1) given {S̄
k, Āk−1}, k = 1,…,K, where A0 is null, 
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written Ak ⫫ W*|S̄
k, Āk−1. In a SMART, this assumption is satisfied by design; in an 

observational study, it is unverifiable from the observed data. The strong version is 

sufficient for identification of the distribution of not only Y*(āK) but of the joint distribution 

of Y*(āK) and  and allows the results of Section 4 to hold. Although in the 

population patients and their providers may make decisions based only on past covariate 

information available to them, the issue is whether or not all of the information that is 

related to treatment assignment and future covariates and outcome is recorded in the Sk; see 

Robins (2004, Sections 2–3) for discussion and a relaxation of the version of the sequential 

randomization assumption given here. We assume henceforth that these assumptions hold.

Whether or not it is possible to estimate dopt from the available data is predicated on the 

treatment options in Ψk (s̄k, āk−1), k = 1,…, K, being represented in the data. For a 

prospectively-designed SMART, ordinarily, Ψ defining the class  of interest would dictate 

the design. At decision k, subjects would be randomized to the options in Ψk (s̄k, āk−1), 

satisfying this condition. If the data are from an observational study, all treatment options in 

Ψk (s̄k, āk−1) at each decision k must have been assigned to some patients. That is, if we 

define recursively  satisfying (i) 

, and (ii) 

, we must have 

. The class of regimes dictated by 

 is the largest that can be considered based on the data, sometimes 

referred to as the class of “feasible regimes” (Robins, 2004). If this inclusion condition does 

not hold for all k = 1, …, K, dopt cannot be estimated from the data, and the class of regimes 

 of interest must be reevaluated or another data source found.

3. OPTIMAL TREATMENT REGIMES

Q- and A-learning are two approaches to estimating dopt satisfying (4) under the foregoing 

framework. Both involve recursive fitting algorithms; the main distinguishing feature is the 

form of the underlying models. To appreciate the rationale, one must understand how dopt is 

determined via dynamic programming, also known as backward induction. We demonstrate 

the formulation of dopt in terms of the potential outcomes and then show how dopt may be 

expressed in terms of the observed data under assumptions including those in Section 2. We 

sometimes highlight dependence on specific elements of quantities such as āk, writing, for 

example, āk as (āk−1, ak).
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At the Kth decision point, for any s̄K ∈ 𝒮 ̄
K, āK−1 ∈ 𝒜̄

K−1 for which (s̄K, āK−1) ∈ ΓK, define

(5)

(6)

For k = K − 1, …, 1 and any s̄k ∈ 𝒮 ̄
k, āk−1 ∈ 𝒜̄

k−1 for which (s̄k, āk−1) ∈ Γk, which clearly 

holds if (s̄K, āK−1) ∈ ΓK, let

(7)

(8)

thus, for 

. Conditional expectations are well-defined by (2)(ii).

Clearly,  is a treatment regime, as it comprises a set of rules that 

uses patient information to assign treatment from among the options in Ψ. The superscript 

(1) indicates that d(1)opt provides K rules for a patient presenting prior to decision 1 with 

baseline information S1 = s1; Section 4 considers optimal treatment of patients presenting at 

subsequent decisions after receiving possibly sub-optimal treatment at prior decisions. Note 

that d(1)opt is defined in a backward iterative fashion. At decision K, (5) gives the treatment 

that maximizes the expected potential final outcome given the prior potential information, 

and (6) is the maximum achieved. At decisions k = K − 1,…, 1, (7) gives the treatment that 

maximizes the expected outcome that would be achieved if subsequent optimal rules already 

defined were followed henceforth. In Section A.1 of the supplemental article [Schulte et al. 

(2012)], we show that d(1)opt defined in (5)–(8) is an optimal treatment regime in the sense 

of satisfying (4).

The foregoing developments express optimal regimes in terms of the distribution of 

potential outcomes. If an optimal regime is to be identifiable, it must be possible under the 

assumptions in Section 2 to express d(1)opt in terms of the distribution of the observed data. 

To this end, define

(9)

(10)
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(11)

and for k = K − 1,…, 1, define

(12)

(13)

(14)

.

The expressions in (9)–(14) are well-defined under assumptions we discuss next. In (9) and 

(12), Qk(s̄k,āk) are referred to as “Q-functions,” viewed as measuring the “quality” 

associated with using treatment ak at decision k given the history up to that decision and then 

following the optimal regime thereafter. The “value functions” Vk(s̄k, āk−1) in (11) and (14) 

reflect the “value” of a patient’s history sk̄, āk−1 assuming that optimal decisions are made in 

the future. We emphasize that the , defined (9)–(14) may not be optimal 

unless the sequential randomization, consistency, and positivity assumptions hold.

As in Section 2, the treatment options in Ψ must be represented in the data, i.e., 

, in order to estimate an optimal regime. 

Formally, this implies that

(15)

for all k = 1,…, K. In Section A.2 of the supplemental article [Schulte et al. (2012)], under 

the consistency and sequential randomization assumptions and the positivity assumption 

(15), we show that, for any (s̄k, āk−1) ∈ Γk and ak ∈ Ψk (s̄k, āk−1), k = 1,…, K,

(16)

(17)

(18)

for j = 1,…, k, where (18) with j = k is the same as the right-hand side of (17), SK+1 = Y and 

, and when j = 1 the conditioning events do not involve treatment. By 

(16), the quantities in (9)–(14) are well-defined. Under (17)–(18), the conditional 

distributions of the observed data involved in (9)–(14) are the same as the conditional 

distributions of the potential outcomes involved in (5)–(8). It follows that
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(19)

for (s̄k, āk−1) ∈ Γk, k = 1, …, K. The equivalence in (19) shows that, under the consistency, 

sequential randomization, and positivity assumptions, an optimal treatment regime in the (Ψ-

specific) class of interest  may be obtained using the distribution of the observed data.

There may not be a unique dopt. At any decision k, if there is more than one possible option 

ak maximizing the Q-function, then any rule  yielding one of these ak defines an optimal 

regime.

4. OPTIMAL “MIDSTREAM” TREATMENT REGIME

In Section 3, we define a (Ψ-specific) optimal treatment regime starting at decision point 1 

and elucidate conditions under which it may be estimated using data from a clinical or 

observational study collected through all K decisions on a sample from the patient 

population. The goal is to estimate the optimal regime and implement it in new such patients 

presenting at the first decision.

In routine clinical practice, however, a new patient may be encountered subsequent to 

decision point 1. For definiteness, suppose a new patient presents “midstream,” immediately 

prior to the ℓth decision point, ℓ = 2,…, K. A natural question is how to treat this patient 

optimally henceforth. For such a patient, the first ℓ − 1 treatment decisions presumably have 

been made according to routine practice, and s/he has a realized past history that may be 

viewed as realizations of random variables . Here, 

, represent the treatments received by such a patient according to the 

treatment assignment mechanism governing routine practice; and , 

denote covariate information collected up to the ℓth decision. Write 

.

As k denotes the set of all possible treatment options at decision k,  takes on values 

āℓ−1 ∈ 𝒜 ̄
ℓ−1. To define Ψ-specific regimes starting at decision ℓ, at the least,  must 

contain the same information as Sk in the data, k = 1, …,ℓ. Because the available data dictate 

the covariate information incorporated in the class of regimes , if  contains additional 

information, it cannot be used in the context of such regimes. We thus take  and Sk to 

contain the same information, stated formally as the consistency assumption 

. Moreover, we can only consider treating new patients with 

realized histories (s̄ℓ, āℓ−1) that are contained in Γℓ; that is, that could have resulted from 

following a Ψ-specific regime through decision ∓ − 1. If the data arise from a SMART 

including only a subset of the treatments employed in practice, this may not hold.
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We thus desire rules , say, that dictate how to treat such 

midstream patients presenting with realized past history . In the 

following, we regard (s̄ℓ, āℓ−1) as fixed, corresponding to the particular new patient. Let 

be all elements of Γk with (s̄ℓ, āℓ−1) fixed at the values for the given new patient. Write 

 to denote regimes starting at the ℓth decision point, and define the 

class (ℓ) of all such regimes to be the set of all d(ℓ) for which  for 

 and ak ∈ Ψk (s̄k, āk−1) for k = ℓ,…, K. Then, by analogy to (4), we seek 

d(ℓ)opt satisfying

(20)

for all d(ℓ) ∈ (ℓ) and s̄ℓ ∈ 𝒮 ̄
ℓ, āℓ−1 ∈ 𝒜 ̄

ℓ−1 for which . Viewing 

this as a problem of making K − ℓ+1 decisions at decision points ℓ, ℓ +1,…, K, with initial 

state , by an argument analogous to that in Section A.1 of the 

supplemental article [Schulte et al. (2012)] for ℓ = 1 and initial state S1 = s1 letting 

, it may be shown that 

d(ℓ)opt satisfying (20) is given by

(21)

(22)

for any s̄K ∈ 𝒮 ̄
K, āK−1 ∈ 𝒜̄

K−1 for which ; and, for k = K − 1,… ℓ,

(23)

(24)

for any s̄k ∈ 𝒮 ̄
k, āk−1 ∈ 𝒜̄

k−1 for which , so that

Comparison of (5)–(8) to (21)–(24) shows that the ℓth to Kth rules of the optimal regime 

d(1)opt that would be followed by a patient presenting at the first decision are not necessarily 

the same as those of the optimal regime d(ℓ)opt that would be followed by a patient 

presenting at the ℓth decision. In particular, noting that the conditioning sets in (5)–(8) are 

1,K and 1,k, the rules are ℓ-dependent through dependence of the conditioning sets ℓ,k, ℓ 
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= 1, …, K, k = ℓ,…, K, on ℓ. However, we now demonstrate that these rules coincide under 

certain conditions.

Make the consistency, sequential randomization, and positivity (15) assumptions on the 

available data required to show (19) in Section 3, along with the consistency assumption on 

the  above and the sequential randomization assumption 

, which ensures that the  include all information 

related to treatment assignment and future covariates and outcome up to decision ℓ. Note 

that (21)–(24) are expressed in terms of the conditional distributions 

. 

We can then use (18) with j = ℓ to deduce that these conditional distributions can be written 

equivalently as , so solely in terms of the 

distribution of the potential outcomes. By (17) and (18) with j = 1, this can be written as 

pr(Sk+1 = sk+1| S̄
k = s̄k, Āk = āk). This shows that (21)–(24) can be reexpressed in terms of the 

observed data, so that, for (s̄k, āk−1) ∈ Γk for ℓ = 1,…, K and k = ℓ,…, K,

(25)

Note that (25) subsumes (19) when ℓ = 1. The equivalence in (25) not only demonstrates that 

an optimal treatment regime can be obtained using the distribution of the observed data but 

also that the corresponding rules dictating treatment do not depend on ℓ under these 

assumptions. Thus, the single set of rules  defined in (10) and (13) is 

relevant regardless of when a patient presents. That is, treatment at the ℓth decision point for 

a patient who presents at decision 1 and has followed the rules in dopt to that point would be 

determined by  evaluated at his/her history up to that point, as would treatment for a 

subject presenting for the first time immediately prior to decision ℓ. See Robins (2004, pages 

305–306) for more discussion.

5. Q- AND A-LEARNING

5.1 Q-Learning

From (10), (13) and (19), an optimal (Ψ-specific) regime dopt may be represented in terms of 

the Q-functions (9), (12). Thus, estimation of dopt based on i.i.d. data (S1i, A1i,…, SKi, AKi, 

Yi), i = 1,…, n, may be accomplished via direct modeling and fitting of the Q-functions. This 

is the approach underlying Q-learning. Specifically, one may posit models Qk(s̄k,āk;ξk), say, 

for k = K,K − 1,…, 1, each depending on a finite-dimensional parameter ξk. The models may 

be linear or nonlinear in ξk and include main effects and interactions in the elements of s̄k 

and āk.

Estimators ξ̂
k may be obtained in a backward iterative fashion for k = K, K −1,…, 1 by 

solving suitable estimating equations [e.g., ordinary (OLS) or weighted (WLS) least 

squares]. Assuming the latter, for k = K, letting Ṽ(K+1)i = Yi one would first solve
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(26)

in ξK to obtain ξ̂
K, where ΣK(s̄K, āK) is a working variance model. Substituting the model QK 

(s̄K, āK; ξK) in (10) and accordingly writing , substituting ξ̂
K for ξK yields 

an estimator for the optimal treatment choice at decision K for a patient with past history S̄
K 

= s̄K, ĀK−1 = āK−1. With ξ̂
K in hand, one would form for each i, based on (11), ṼKi = 

maxaK∈ΨK(S̄
Ki,Ā(K−1)i) QK(S̄

Ki,Ā(K−1)i,aK;ξ̂
K). To obtain ξ̂

K−1, setting k = K − 1, based on 

(12) and letting Σk(s̄k, āk) be a working variance model, one would then solve for ξk

(27)

The corresponding  yields an estimator for the optimal treatment 

choice at decision K − 1 for a patient with past history S̄
K−1 = s̄K−1, ĀK−2 = āK−2, assuming 

s/he will take the optimal treatment at decision K. One would continue this process in the 

obvious fashion for k = K − 2,…, 1, forming Ṽki = maxak∈Ψk(S̄ki,Ā(k−1)i) Qk(S̄
ki,Ā(k−1)i,ak;ξ̂

k), 

and solving equations of form (27) to obtain ξ̂
k and corresponding .

We may now summarize the estimated optimal regime as , where

(28)

It is important to recognize that, even under the sequential randomization assumption, the 

estimated regime (28) may not be a consistent estimator for the true optimal regime unless 

all the models for the Q-functions are correctly specified.

We illustrate the approach for K = 2, where at each decision there are two possible treatment 

options coded as 0 and 1; i.e., Ψ1(s1) = 1 = {0,1} for all s1 and Ψ2(s̄2, a1) = 2= {0,1} for 

all s̄2 and a1 ∈ {0,1}. Let . As in many modeling 

contexts, it is standard to adopt linear models for the Q-functions; accordingly, consider the 

models

(29)

where . In (29), Q2(s̄2, ā2; ξ2) is a model for E(Y|S̄
2 = s̄2, Ā2 = ā2), a 

standard regression problem involving observable data, whereas Q1(s1, a1;ξ1) is a model for 

the conditional expectation of V2(s̄2, a1 = maxa2∈{0,1} E(Y|S̄
2 = s2, A1 = a1, A2 = a2) given S1 

= s1 and A1 = a1, which is an approximation to a complex true relationship; see Section 5.3. 

Under (29), 

and . Substituting the 
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Q-functions in (29) in (10) and (13) then yields  and 

.

We have presented (26) and (27) in the conventional WLS form, with leading term in the 

summand ; taking Σk to be a constant yields OLS. At 

the Kth decision, with responses Yi, standard theory implies that this is the optimal leading 

term when var(Y|S̄
K = sK, ĀK = aK) = ΣK(s̄K, āK), yielding the (asymptotically) efficient 

estimator for ξK. For k < K, with “responses” Ṽ(k+1)i, this theory may no longer apply; 

however, deriving the optimal leading term involves considerable complication. 

Accordingly, it is standard to fit the posited models Qk (s̄k, āk; ξk) via OLS or WLS; some 

authors define Q-learning as using OLS (Chakraborty, Murphy and Strecher, 2010). The 

choice may be dictated by apparent relevance of the homoscedasticity assumption on the 

Ṽ(k+1)i, k = K, K − 1, …, 1, and whether or not linear models are sufficient to approximate 

the relationships may also be evaluated, but see Section 5.3.

5.2 A-Learning

Advantage learning (A-learning, Blatt et al., 2004) is a term used to describe a class of 

alternative methods to Q-learning predicated on the fact that the entire Q-function need not 

be specified to estimate the optimal regime. For simplicity, we consider here only the case of 

two treatment options coded as 0 and 1 at each decision; i.e., Ψk(s̄k, āk−1) = k = {0,1}, k = 

1,…, K.

To fix ideas, consider (29). Note that  implied by (29) depends only on 

; likewise,  depends only on 

. This reflects the general result that, for purposes 

of deducing the optimal regime, for each k = 1,…, K, it suffices to know the contrast 

function Ck(s̄k, āk−1) = Qk(s̄k, āk−1, 1) − Qk(s̄k, āk−1, 0). This can be appreciated by noting 

that any arbitrary Qk(s̄k, āk) may be written as hk(s̄k, āk−1) + akCk(s̄k, āk−1), where hk(s̄k, 

āk−1) = Qk(s̄k, āk−1, 0), so that Qk(s̄k, āk−1, ak) is maximized by taking ak = I{Ck(s̄k, āk−1) > 

0}; and the maximum itself is the expression hk(s̄k, āk−1) + Ck(s̄k, āk−1)I{Ck(s̄k, āk−1) > 0}. In 

the case of two treatment options we consider here, the contrast function is also referred to 

as the optimal-blip-to-zero function (Robins, 2004; Moodie et al., 2007). Murphy (2003) 

considers the expression Ck(S̄
k, Āk−1)[I{Ck(S̄

k, Āk−1) > 0} − Ak], referred to as the advantage 

or regret function, as it represents the “advantage” in response incurred if the optimal 

treatment at the kth decision were given relative to that actually received (or, equivalently, 

the “regret” incurred by not using the optimal treatment). See Robins (2004) and Moodie et 

al. (2007) for discussion of the relationship between regrets and optimal blip functions in 

this and settings other than binary treatment options.

We discuss here an A-learning method based on explicit modeling of the contrast functions, 

which we refer to as contrast-based A-learning. This approach is implemented via recursive 

solution of certain estimating equations given below developed by Robins (2004), often 

referred to as g-estimation. See Moodie et al. (2007) and the supplementary material to 

Zhang et al. (2013) for details. Contrast-based A-learning is distinguished from the regret-
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based A-learning methods of Murphy (2003) and Blatt et al. (2004), which rely on direct 

modeling of the regret functions and are implemented using a different estimating equation 

formulation called Iterative Minimization for Optimal Regimes by Moodie et al. (2007).

All of these methods are alternatives to Q-learning, which involves modeling the full Q-

functions. For k = K − 1,…, 1, the Q-functions involve possibly complex relationships, 

raising concern over the consequences of model misspecification for estimation of the 

optimal regime. As identifying the optimal regime depends only on correct specification of 

the contrast or regret functions, A-learning methods may be less sensitive to mismodeling; 

see Sections 5.3 and 6.

Although we consider these methods only in the case of binary treatment options here, they 

may be extended to more than two treatments at the expense of complicating the 

formulation; see Robins (2004) and Moodie et al. (2007).

Contrast-based A-learning proceeds as follows. Posit models Ck(s̄k, āk−1; ψk), k = 1,…, K, 

for the contrast functions, depending on parameters ψk. Consider decision K. Let πK(s̄K, 

āK−1) = pr(AK = 1|S̄
K = s̄K, ĀK−1 = āK−1) be the propensity of receiving treatment 1 in the 

observed data as a function of past history and Ṽ(K+1)i = Yi. Robins (2004) showed that all 

consistent and asymptotically normal estimators for ψK are solutions to estimating equations 

of the form

(30)

for arbitrary functions λK(s̄K, āK−1) of the same dimension as ψK and arbitrary functions 

θK(s̄K, āK−1). Assuming that the model CK(s̄K, āK−1; ψK) is correct, if var(Y|S̄
K = sk, ĀK−1 = 

ak−1) is constant, the optimal choices of these functions are given by λK(s̄K, āK−1; ψK) = ∂/

∂ψK CK(s̄K, āK−1; ψK) and θK (s̄Ki, ā(K−1)i) = hK (s̄K, āK−1); otherwise, if the variance is not 

constant, the optimal λK is complex (Robins, 2004).

To implement estimation of ψK via (30), one may adopt parametric models for these 

functions. Although A-learning obviates the need to specify fully the Q-functions, one may 

posit models for the optimal θK, hK(s̄K, āK−1; βK), say. Moreover, unless the data are from a 

SMART study, in which case the propensities πK(s̄K, āK−1) are known, these may be 

modeled as πK(s̄K, āK−1; ϕK) (e.g., by a logistic regression). These models are only adjuncts 

to estimating ψK; as long as at least one of these models is correctly specified, (30) will yield 

a consistent estimator for ψK, the so-called double robustness property. In contrast, Q-

learning requires correct specification of all Q-functions; see Section 5.3 and Section A.5 of 

the supplemental article [Schulte et al. (2012).]

Substituting these models in (30), one solves (30) jointly in  with
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and the usual binary regression likelihood score equations in ϕK. We then have 

; as in Q-learning, substituting ψK̂ yields an 

estimator for the optimal treatment choice at decision K for a patient with past history S̄
K = 

sK, ĀK−1 = āK−1.

With ψK̂ in hand, the contrast-based A-learning algorithm proceeds in a backward iterative 

fashion to yield ψ̂
k, k = K − 1,…, 1. At the kth decision, given models hk(s̄k, āk−1;βk) and 

πk(s̄k, āk−1; ϕk), one solves jointly in  a system of estimating equations 

analogous to those above. The kth set of equations is based on “optimal responses” Ṽ(k+1)i, 

where, for each i, Ṽki estimates Vk(S̄
ki, Ā(k−1),i). It may be shown (see Section A.3 of the 

supplemental article [Schulte et al. (2012)]) that E(Vk+1(S̄
k+1, Āk) + Ck(S̄

k, Āk−1)[I{Ck(S̄
k, 

Āk−1) > 0} − Ak]| S̄
k, Āk−1) = Vk(S̄

k, Āk−1). Accordingly, define recursively Ṽki = 

Ṽ(k+1)i+Ck(S̄
ki, Ā(k−1)i; ψ̂

k)[I(Ck(S̄
ki, Ā(k−1)i;ψ̂

k) > 0}− Aki], k = K,K − 1,…1, Ṽ(K+1)i = Yi. 

The equations at the kth decision are then

(31)

for a given specification λk(s̄k, āk−1; ψk), solved jointly with the maximum likelihood score 

equations for binary regression in ϕk. It follows that 

. As above, the optimal λk is complex (Robins, 

2004); taking λk(s̄k, āk−1; ψk) = ∂/∂ψk Ck(s̄k, āk−1; ψk) is reasonable for practical 

implementation.

Summarizing, the estimated optimal regime  is

(32)

How well  estimates dopt and hence d(1)opt depends on how close the posited Ck(s̄k, 

āk−1;ψk) are to the true contrast functions as well as correct specification of the functions hk 

or πk.

Henceforth, for brevity, we suppress the descriptor “contrast-based” and refer to the 

foregoing approach simply as A-learning.

5.3 Comparison and Practical Considerations

When K = 1, the Q-function is a model for E(Y|S1 = s1, A1 = a1). If in Q-learning this model 

and the variance model Σ1 in (26) are correctly specified, then, as above, the form of (26) is 

optimal for estimating ξ1. Accordingly, even if C1(s1;ψ1) and h1(s1;β1) are correctly 

modeled, (31) with K = 1 is generally not of this optimal form for any choice λ1(s1;ψ1), and 

hence A-learning will yield relatively inefficient inference on ψ1 and the optimal regime. 

However, if in Q-learning the Q-function is mismodeled, but in A-learning C1(s1;ψ1) and 

Schulte et al. Page 15

Stat Sci. Author manuscript; available in PMC 2015 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



π1(s1;ϕ1) are both correctly specified, then A-learning will still yield consistent inference on 

ψ1 and hence the optimal regime, whereas inference on ξ1 and the optimal regime via Q-

learning may be inconsistent. We assess the trade-off between consistency and efficiency in 

this case in Section 6. For K > 1, owing to the complications involved in specifying optimal 

estimating equations for Q- and A-learning, relative performance is not readily apparent; we 

investigate empirically in Section 6.

In special cases, Q- and A-learning lead to identical estimators for the Q-function 

(Chakraborty et al., 2010). For example, this holds if the propensities for treatment are 

constant, as would be the case under pure randomization at each decision point, and certain 

linear models are used for C1(s1;ψ1) and h1(s1;β1); Section A.4 of the supplemental article 

[Schulte et al. (2012)] demonstrates when K = 1 and pr(A1 = 1|S1 = s1) does not depend on 

s1. See Robins (2004, page 1999) and Rosenblum and van der Laan (2009) for further 

discussion.

As we have emphasized, for Q-learning, while modeling the Q-function at decision K is a 

standard regression problem with response Y, for decisions k = K − 1,…, 1, this involves 

modeling the estimated value function, which at decision k depends on relationships for 

future decisions k + 1,…, K. Ideally, the sequence of posited models Qk(s̄k, āk; ξk) should 

respect this constraint. However, this may be difficult to achieve with standard regression 

models. To illustrate, consider (29), and assume S1, S2 are scalar, where the conditional 

distribution of S2 given S1 = s1, A1 = a1 is Normal , say, 1 = (1, s1, a1)T. Recall 

that , where 

. Then, if the model Q2 in (29) were 

correct, from (12), ideally, Q1(s1, a1) = E{V2(s1, S2, a1; ξ2)|S1 = s1, A1 = a1}. Letting φ(·) 

and Φ(·) be the standard normal density and cumulative distribution function, respectively, it 

may be shown (see Section A.5 of the supplemental article [Schulte et al. (2012)]) that

(33)

taking ψ22 > 0. The true Q1(s1, a1) in (33) is clearly highly nonlinear and likely poorly 

approximated by the posited linear model Q1(s1, a1; ξ1) in (29). For larger K, this 

incompatibility between true and assumed models would propagate from K − 1,…, 1. Thus, 

while using linear models for the Q-functions is popular in practice, the potential for such 

mismodeling should be recognized.
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An approach that may mitigate the risk of mismodeling is to employ flexible models for the 

Q-functions; Zhao, Kosorok and Zeng (2009) use support vector regression models. 

Developments in statistical learning suggest a large collection of powerful regression 

methods that might be used. Many of these methods must be tuned in order to balance bias 

and variance, a natural approach to which is to minimize the cross-validated mean squared 

error of the Q-functions at each decision point. An obvious downside is that the final model 

may be difficult to interpret, and clinicians may not be willing to use “black box” rules. One 

compromise is to fit a simple, interpretable model, such as a decision tree, to the fitted 

values of the complex model in order explore the factors driving the recommended treatment 

decisions. This simple model can then be checked against scientific theory. If it appears 

sensible, then clinicians may be willing to use predictions from the complex model. For 

discussion, see Craven and Shavlik (1996).

A-learning represents a middle ground between Q-learning and these approaches in that it 

allows for flexible modeling of the functions hk(s̄k, āk−1) while maintaining simple 

parametric models for the contrast functions Ck(s̄k, āk−1). Thus, the resulting decision rule, 

which depends only on the contrast function, remains interpretable, while the model for the 

response is allowed to be nonlinear. This is also appealing in that it may be reasonable to 

expect, based on the underlying science, that the relationship between patient history and 

outcome is complex while the optimal rule for treatment assignment is dependent, in a 

simple fashion, on a small number of variables. The flexibility allowed by a semi-parametric 

model also has its drawbacks. Techniques for formal model building, critique, and diagnosis 

are well understood for linear models but much less so for semi-parametric models. 

Consequently, Q-learning based on building a series of linear models may be more 

appealing to an analyst interested in formal diagnostics.

A-learning may have certain advantages for making inference under the null hypothesis of 

no effect of any treatment regime in  on outcome. For example, in a SMART, the 

propensities are specified by design, and under the null, the contrast functions are identically 

zero and hence correctly specified. Thus, A-learning will yield consistent estimators for the 

parameters defining the contrast function. See Robins (2004) and the references in Section 8.

6. SIMULATION STUDIES

We examine the finite sample performance of Q- and A-learning on a suite of simple test 

examples via Monte Carlo simulation. We emphasize that the methods are straightforward to 

implement in more complex settings than those here. To illustrate trade-offs between the 

methods, we begin with correctly specified models and systematically introduce 

misspecification of the Q-function, the propensity model, and both. We focus here on 

situations where the contrast function is correctly specified to gain insight into impact of 

other model components. Scenarios with a misspecified contrast model can be constructed to 

include or exclude the target dopt, precluding generalizable conclusions. See Section A.9 of 

the supplemental article [Schulte et al. (2012)], Zhang et al. (2012a,b), and Zhang et al. 

(2013) for simulations involving misspecified contrast functions and Robins (2004, Section 

9) for discussion.
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In all scenarios, 10,000 Monte Carlo replications were used, and, for each generated data set, 

 in (28) and (32) were obtained using the Q- and A-learning procedures in 

Sections 5.1 and 5.2. For simplicity, we consider one (K = 1) and two (K = 2) decision 

problems, where, at each decision point, there are two treatment options coded as 0 and 1. In 

all cases, we used Q-functions of the form Q1(s1, a1;ξ1) = h1(s1; β1) + a1C1(s1; ψ1) and 

Q2(s̄2, ā2; ξ2) = h2(s̄2; ā1; β2) + a2,C2(s̄2, a1; ψ2) to represent both true and assumed working 

models. With the contrast functions correctly specified, ψk, k = 1,2, dictate the optimal 

regime. Thus, as one measure of performance, we focus on relative efficiency of the 

estimators of components of ψk as reflected by the ratio of Monte Carlo mean squared errors 

(MSEs) given by MSE of A-learning/MSE of Q-learning, so that values greater than 1 favor 

Q-learning. Recognizing that E(Y*(dopt)} is the benchmark achievable outcome on average, 

as a second measure, we consider the extent to which the estimated regimes 

achieve E(Y*(dopt)} if followed by the population. Specifically, for regime d indexed by ψ1 

(K = 1) or , let H(d) = E{Y*(d)}, a function of these parameters. Then 

H(dopt) = E{Y*(dopt)} is this function evaluated at the true parameter values, and H(d̂opt) is 

this function evaluated the estimated parameter values for a given data set, where d̂opt is 

. Define R(d̂opt) = E{H(d̂opt)}/H(dopt), where the expectation in the numerator is 

with respect to the distribution of the estimated parameters in d̂opt. We refer to R(d̂opt) as the 

v-efficiency of d̂opt, as it reflects the extent to which d̂opt achieves the “value” of the true 

optimal regime. In Section A.6 of the supplemental article [Schulte et al. (2012); we discuss 

calculation of R(d̂opt).

6.1 One Decision Point

In this and the next section, n = 200. Here, the observed data are (S1i,A1i,Yi), i = 1,…, n. 

With expit(x) = ex/(1 + ex), we used the class of generative models

(34)

indexed by , so that 

. For A-learning, we assumed models h1(s1; β1) = β10 

+ β11s1, C1(s1;ψ1) = ψ10 + ψ11s1, and π1(s1;ϕ1) = expit(ϕ10 + ϕ11s1), and for Q-learning we 

used Q1(s1, a1;ξ1) = h1(s1;β1) + a1C1(s1;ψ1). These models involve correctly specified 

contrast functions and are nested within the true models, with h1(s1; β1), and hence the Q-

function, correctly specified when . The propensity model π1(s1; ϕ1) is correctly 

specified when . To study the effects of misspecification, we varied  while 

keeping the others fixed, considering parameter settings of the form 

.

Correctly specified models—As noted in Section 5.3, when all working models are 

correctly specified, Q-learning is more efficient than A-learning, which for (34) occurs when 
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. Here, the efficiency of Q-learning relative to A-learning is 1.06 for estimating 

 and 2.74 for . Thus, Q-learning is a modest 6% more efficient in estimating  but a 

dramatic 174% more efficient in estimating . Interestingly, the v-efficiency of the 

decision rules produced by the methods is similar, with , so 

that inefficiency in estimation of ψ1 via A-learning does not translate into a regime of poorer 

quality than that found by Q-learning.

Misspecified propensity model—Under (34), this situation corresponds to  and 

nonzero . An appeal of A-learning is the double robustness property noted in Section 5.2, 

which implies that ψ1 is estimated consistently when the propensity model is misspecified 

provided that the Q-function is correct. In contrast, Q-learning does not depend on the 

propensity model, so its performance is unaffected. Figure 1 shows the relative efficiency in 

estimating  and the efficiency of  varies from −1 to 1. The 

leftmost panel shows that there is minimal efficiency gain by using Q-learning instead of A-

learning in estimation of . From the center panel, Q-learning yields substantial gains over 

A-learning for estimating . Interestingly, the gain is largest when , which 

corresponds to a correctly specified propensity model. Letting  be the true 

propensity, , a possible explanation for this seemingly contradictory 

result in this scenario is that, as  gets larger, 

becomes more profoundly quadratic. Consequently, the estimator for ϕ11 in the posited 

model π1(s1; ϕ1) = expit(ϕ10 + ϕ11s1) approaches zero, so that the estimated posited 

propensity approaches a constant. Because Q- and A-learning are algebraically equivalent 

under constant propensity here, substituting an estimated propensity that is nearly constant 

leads to an estimator very similar to that from Q-learning. Consequently, empirical 

efficiency gains decrease as . The right panel of Figure 1 shows a small gain in v-

efficiency of ; both achieve good performance.

See Section A.9 of the supplemental article [Schulte et al. (2012)] for evidence 

demonstrating this behavior of the propensity score and for further summaries reflecting the 

relative efficiency of the estimated regimes in all scenarios in this and the next section.

Misspecified Q-function—This scenario examines the second aspect of A-learning’s 

double-robustness, characterized in (34) by  and nonzero . Here, A-learning leads 

to consistent estimation while Q-learning need not. The left panel of Figure 2 shows that the 

gain in efficiency using A-learning is minimal in estimating . The center panel illustrates 

the bias-variance trade-off associated with Q- versus A-learning. For  far from zero, bias 

in the misspecified Q-function dominates the variance, and A-learning enjoys smaller MSE 

while, for small values of , variance dominates bias, and Q-learning is more efficient. The 
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right panel shows that large bias in the Q-function can lead to meaningful loss (~10%) in v-

efficiency of  relative to .

Both propensity model and Q-function misspecified—In our class of generative 

models (34), this corresponds to nonzero values of both . Rather than vary both 

values, (e.g., over a grid), we varied one and chose the other so that it is “equivalently 

misspecified.” In particular, for a given value of , we selected  so that the t-

statistic associated with testing  in the logistic propensity model and the t-statistic 

associated with testing  in the linear Q-function would be approximately equal in 

distribution. Consequently, across data sets, an analyst would be equally likely to detect 

either form of misspecification. Details of this construction are given in Section A.7 of the 

supplemental article [Schulte et al. (2012)].

As in the preceding scenario, Figure 3 illustrates the bias-variance trade-off associated with 

Q- and A-learning. For large misspecification, A-learning provides a large enough reduction 

in bias to yield lower MSE; for small misspecification, Q-learning incurs some bias but 

reduces the variance enough to yield lower MSE. From the right panel of the figure, bias 

seems to translate into a larger loss in v-efficiency of the estimators of dopt than variance.

6.2 Two Decision Points

For K = 2, the observed data available to estimate  are (S1i, A1i, S2i, A2i, Yi), 

i = 1,…, n. For these scenarios, we used a class of true generative data models that differs 

from those of Chakraborty et al. (2010), Song et al. (2010), and Laber et al. (2010) only in 

that S2 is continuous instead of binary; as the model at the first stage is saturated, this allows 

correct specification of the Q-function at decision 1. The generative model is

The model is indexed by , with true 

 and contrast function 

, say. Because A1 and S1 are binary, the true functions 

 are linear in  are derived 
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in terms of parameters indexing the generative model in Section A.8 of the supplemental 

article [Schulte et al. (2012)]. Thus, the true optimal regime has 

.

We assumed working models for A-learning of the form h1(s1;β1) = β10 + β11s1, C1(s1;ψ1) = 

ψ10 + ψ11s1, π1(s1; ϕ1) = expit(ϕ10 + ϕ11s1), h2(s1, s2, a1; β2) = β20 + β21s1 + β22a1 + β23s1a1 

+ β24s2, C2(s1,s2, a1;ψ2) = ψ20 + ψ21a1 + ψ22s2, and π2(s1,s2, a1;ϕ2) = expit(ϕ20 + ϕ21s1 + 

ϕ22a1 + ϕ23s2 + ϕ24a1s2); and, similarly, Q-functions Q1(s1, a1; ξ1) = h1(s1;β1) +a1C1(s1;ψ1) 

and Q2(s1,s2, a1, a2;ξ2) = h2(s1,s2, a1;β2) + a2C2(s1,s2, a1;ψ2) for Q-learning, so that the 

contrast functions are correctly specified in each case. Comparison of the working and 

generative models shows that the former are correctly specified when  are both 

zero and are misspecified otherwise. Thus, we systematically varied these parameters to 

study the effects of misspecification, leaving all other parameter values fixed, taking 

.

Correctly specified models—This occurs when . As discussed previously, 

Q-learning is efficient when the models are correctly specified. Efficiencies of Q- learning 

relative to A-learning for estimating  are 1.07, 1.03, 1.19, 1.44, and 

1.98, respectively. Hence, Q-learning is markedly more efficient in estimating the second 

stage parameters but only modestly so for first stage parameters. More efficient estimators 

of the parameters do not translate into greater v-efficiency of the estimated regimes in this 

scenario, as .

Misspecified propensity model—The propensity model at the second stage is 

misspecified when  is nonzero. To isolate the effects of such misspecification, we set 

 and varied  between −1 and 1. From Figure 4, Q-learning is more efficient than A-

learning for estimation of all parameters in ψ1 and ψ2, and, as in the one decision case, the 

efficiency gain is largest when , corresponding to a correctly specified propensity 

model. From the lower right panel, there appears to be little difference in v-efficiency of 

.

Misspecified Q-function—Under our class of generative models, the Q-function is 

misspecified when  is nonzero. We set  to focus on the effects of such 

misspecification. Figure 5 shows that, for the first stage parameters , there is little 

difference in efficiency between Q- and A-learning. The upper panels illustrate varying 

degrees of the bias-variance trade-off between the methods. In particular, in estimating , 

a small amount of misspecification leads to significant bias, and hence A-learning produces 
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a much more accurate estimator, while, for  the bias-variance trade-off is present but 

attenuated, and there is little difference between Q- and A-learning. In estimation of , 

variance appears to dominate bias, and Q-learning is preferred for the chosen range of 

values. From the lower right panel, relative efficiency for estimating  weakly tracks the 

relative efficiencies of the estimated regimes , suggesting that the efficiency gain 

for A-learning in estimating  leads to improved estimation of dopt.

Both the propensity model and Q-function misspecified—This scenario 

corresponds to nonzero values of . Analogous to the one decision case, we chose 

pairs  that are “equivalently misspecified;” see Section A.7 of the supplemental 

article [Schulte et al. (2012)]. From Figure 6, there is no general trend in efficiency of 

estimation across parameters that might recommend one method over the other. 

Furthermore, from the lower right panel, there is little difference in v-efficiency of the 

estimated regimes. One should not expect to draw broad conclusions, as neither Q- nor A-

learning need be consistent here. Interestingly, despite misspecification of both models, 

 still enjoy high v-efficiency in this scenario.

6.3 Moodie, Richardson, and Stephens Scenario

The foregoing simulation scenarios deliberately involve simple models for the Q-functions 

in order to allow straightforward interpretation. To investigate the relative performance of 

the methods in a more challenging setting, we generated data from a scenario similar to that 

in Moodie et al. (2007) in which the true contrast functions are simple yet the Q-functions 

are complex.

The data generating process used mimics a study in which HIV-infected patients are 

randomized to receive antiretroviral therapy (coded as 1) or not (coded as 0) at baseline and 

again at six months, where the randomization probabilities depend on baseline and six 

month CD4 counts. Specifically, we generated baseline CD4 count S1 ~ Normal(450, 1502), 

and baseline treatment A1 was then assigned according to 

. We generated six month CD4 count S2, 

distributed conditional on S1 = s1, A1 = a1 as Normal(1.25s1,602). Treatment A2 was then 

generated according to . In 

contrast to the scenario in Moodie et al. (2007), this allows all possible treatment 

combinations. The outcome Y is CD4 count at one year; following Moodie et al. (2007), Y 

was generated as , where Yopt|S1 = s1, A1 = a1, 

S2 = s2, A2 = a2 ~ Normal(400 + 1.6s1, 602). Here,  are the 

true advantage (regret) functions; we took 

 to be the true contrast functions, so that, 

from Section 5.2,

(35)
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(36)

It follows that the optimal treatment regime  has 

 and . While the true contrast 

functions are linear in , the true implied  are nonsmooth 

and possibly complex.

Following Moodie et al. (2007), for A-learning, we assumed working models h1(s1;β1) = β10 

+ β11s1, C1(s1;ψ1) = ψ10 + ψ11s1, h2(s1, s2, a1; β2) = β20 + β21s1 + β22a1 + β23s1a1 + β24s2, 

and C2(s1, s2, a1; ψ2) = ψ20 + ψ21s2, and propensity models π1(s1;ϕ1) = expit(ϕ10 + ϕ11s1) 

and π2(s1, s2, a1; ϕ2) = expit(ϕ20 + ϕ21s2). For Q-learning, we analogously assumed Q-

functions Q1(s1, a1; ξ1) = h1(s1; β1) + a1C1(s1; ψ1) and Q2(s1, s2, a1, a2; ξ2) = h2(s1, s1, a1; 

β2) + a2C2(s1, s2, a1;ψ2). Note that the contrast functions in each case are correctly specified, 

as are the propensity models; however, the Q-functions are misspecified, as the linear 

models h1(s1; β1) and h2(s1, s1, a1; β2) are poor approximations to the complex forms of the 

true .

We report results for n = 1000 with  in Table 1. Because 

the Q-functions are misspecified, the Q-learning estimators for  are biased, while 

those obtained via A-learning are consistent owing to the double robustness property. This 

leads to the dramatic relative inefficiency of Q-learning reflected by the MSE ratios. Under 

the assumed models, the estimated optimal regime for Q-learning dictates that, at baseline, 

therapy be given to patients with baseline CD4 count less than 199.7, while that estimated 

using A-learning gives treatment to those with baseline CD4 count less than 249.1, almost 

perfectly achieving the true optimal CD4 threshold of 250. Under the data generative 

process, using the baseline decision rule estimated via Q-learning may result in as many as 

4.4% of patients who would receive therapy at baseline under the true optimal regime being 

assigned no treatment. Similarly, at the second decision, the estimated optimal regimes 

obtained by Q- and A-learning dictate that therapy be given to patients with six month CD4 

count less than 320.2 and 360.1, respectively. Again, A-learning yields an estimated 

threshold almost identical to the optimal value of 360. Although that obtained via Q-learning 

is lower, 4.3% of patients who should receive therapy at six months would not if the 

estimated six month rule from Q-learning were followed by the population.
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By Section A.6 of the supplemental article [Schulte et al. (2012)], H(dopt) = 1120, whereas 

 (estimated standard error 1.3) and , so that 

 are virtually equal to one. Thus, although Q-learning yields poor 

estimation of parameters in the contrast functions, loss in v-efficiency of the estimated 

optimal regime is negligible. A possible explanation is as follows. For (35) and (36), some 

patients near the true treatment decision boundary would have , close 

to zero. Thus, even if a regime improperly assigns treatment to these patients, they would 

experience only a small loss in outcome and hence have little effect on the overall average. 

For other patients for whom the true contrast is not close to zero, improper assignment could 

result in considerable degradation of outcome. Because the proportion of patients receiving 

improper assignment is small in this scenario, the effect of these latter patients on the overall 

expected outcome is not substantial, leading to the relatively good expected outcome under 

the estimated Q-learning regime.

7. APPLICATION TO STAR*D

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a randomized 

clinical trial enrolling 4041 patients designed to compare treatment options for patients with 

major depressive disorder. The trial involved four levels, where each level consisted of a 12 

week period of treatment, with scheduled clinic visits at weeks 0, 2, 4, 6, 9, 12. Severity of 

depression at any visit was assessed using clinician-rated and self-reported versions of the 

Quick Inventory of Depressive Symptomatology (QIDS) score (Rush et al., 2003), for which 

higher values correspond to higher severity. At the end of each level, patients deemed to 

have an adequate clinical response to that level’s treatment did not move on to future levels, 

where adequate response was defined by 12-week clinician-rated QIDS score ≤ 5 

(remission) or showing a 50% or greater decrease from the baseline score at the beginning of 

level 1 (successful reduction). During level 1, all patients were treated with citalopram. 

Patients continuing to level 2 due to inadequate response, conferring with their physicians, 

expressed preference to (i) switch or (ii) augment citalopram and within that preference were 

randomized to one of several options: (i) switch: sertraline, bupropion, venlafaxine, or 

cognitive therapy, or (ii) augment: citalopram plus one of either bupropion, buspirone, or 

cognitive therapy. Patients randomized to cognitive therapy (alone or augmented with 

citalopram) were eligible, in the case of inadequate response, to move to a supplementary 

level 2A and be randomized to switch to bupropion or venlafaxine. All patients without 

adequate response at level 2 (or 2A) continued to level 3 and, depending on preference to (i) 

switch or (ii) augment, were randomized within that preference to (i) switch: mirtazepine or 

nortriptyline or (ii) augment with either: lithium or triiodothyronine. Patients without 

adequate response continued to level 4, requiring a switch to tranylcypromine or mirtazepine 

combined with venlafaxine (determined by preference). Thus, although the study involved 

randomization, it is observational with respect to the treatment options switch or augment. 

For a complete description see Rush et al. (2004); see Section A.10 of the supplemental 

article [Schulte et al. (2012)] for a schematic of the design.

To demonstrate formulation of this problem within the framework of Sections 2 and 3, we 

take level 2A to be part of level 2 and consider only levels 2 and 3, calling them stages 
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(decision points) 1 and 2, respectively (K = 2). Some patients in stage 1 without adequate 

response dropped out of the study without continuing to stage 2. Hence, we analyze 

complete case data, excluding dropouts, from 795 patients entering stage 1; 330 of these 

subsequently continued to stage 2. Let Ak, k = 1, 2, be the treatment at stage k, taking values 

0 (augment) or 1 (switch); both options are feasible for all eligible subjects. Let S10 denote 

baseline (study entry) QIDS score and S11 denote the most recent QIDS score at the 

beginning of stage 1, respectively, so that S1 = (S10, S11)T is information available 

immediately prior to the first decision. Similarly, let S2 be the information available 

immediately prior to stage 2; here, S2 is the most recent QIDS score at the end of stage 1/

beginning of stage 2. Finally, let T be QIDS score at the end of stage 2. Because some 

patients exhibited adequate response at the end of stage 1 and did not progress to stage 2, we 

define the outcome of interest to be −S2 (negative QIDS score at the end of stage 1) for 

patients not moving to stage 2 and −(S2 + T)/2 (average of negative QIDS scores at the end 

of stages 1 and 2) otherwise. Thus, writing L0 = max(5, S10/2), Y = −S2I(S2 ≤ L0) − (S2 + 

T)I(S2 > L0)/2, the cumulative average negative QIDS score. Thus, this demonstrates the 

case where outcome is a function of accrued information over the sequence of decisions.

From (9), Q2(s̄2, ā2) = E(Y|S̄
2 = s̄2, Ā2 = ā2) = −s2{I{s2 ≤ l0) + I(s2 > l0)/2} + E(−T|S̄

2 = s̄2, 

Ā2 = ā2, S2 > l0)I(s2 > l0)/2, so that V2(s̄2, a1) = −s2I(s2 ≤ l0) + {−s2 + U2(s̄2, a1)}I(s2 > l0)/2, 

where U2(s̄2, a1) = maxa2 E(−T|S̄
2 = s̄2, Ā1 = ā1, A2 = a2, S2 > l0). Thus, from (12),

We describe implementation for Q-learning. At the second decision point, we must posit a 

model for Q2(s̄2, ā2). From the form of Q2(s̄2, ā2), we need only specify a model for E(−T|S̄
2 

= s̄2, Ā2 = ā2, S2 > l0); given the form of the conditioning set, this may be carried out using 

only the data from patients moving to stage 2. Based on exploratory analysis, defining s22 to 

be the slope of QIDS score over stage 1 based on s11 and s2, we took this model to be of the 

form β20 + β21s2 + β22s22 + ψ20a2, so that the posited Q-function is

(37)

ξ2 = (β20, β21, β22, ψ20)T. Under (37), V2(s̄2, a1;ξ2) = −s2{I(s2 ≤ l0) + I(s2 > l0)/2} + I(s2 > l0)

{β20 + β21s2 + β22s22 + ψ20I(ψ20 > 0)}/2, and the “responses“ Ṽ2,i for use in (27) may then 

be formed by substituting the estimate for ξ2. Based on exploratory analysis, we took the 

posited Q-function at the first stage to be Q1(s1, a1; ξ1) = β10 + β11 s11 + β12s12 + a1 (ψ10 + 

ψ11s12), where s12 is the slope of QIDS score prior to stage 1 based on s10 and s11; and ξ1 = 

(β10, β11, β12, ψ10, ψ11)T. For A-learning, we posited models for the functions hk(s̄k, āk−1) 

and Ck(s̄k, āk−1), k = 1,2, in the obvious way analogous to those above, and we took the 

propensity models to be of the form π2(s̄2, a1; ϕ2) = expit(ϕ20 + ϕ21s2 + ϕ22s22 + ϕ23a1) and 

π1(s1; ϕ1) = expit(ϕ10 + ϕ11s11 + ϕ12s12). Section A.11 of the supplemental article [Schulte 

et al. (2012)] presents model diagnostics.

The results are given in Table 2. To describe implementation, we consider interactions 

significant based on a test at level α = 0.10. At the first stage, Q-learning suggests a 
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treatment switch for those with QIDS slope prior to stage 1 greater than −1.09 (obtained by 

solving 1.11 + 1.02S12 = 0); A-learning assigns a treatment switch for those with this QIDS 

slope greater than −1.66. At stage 2, the results suggest that all patients should switch and 

not augment their existing treatments.

8. DISCUSSION

We have provided a self-contained account of Q- and A-learning methods for estimating 

optimal dynamic treatment regimes, including a detailed discussion of the underlying 

statistical framework in which these methods may be formalized and of their relative merits. 

Our discussion of A-learning is limited to the case of two treatment options at each decision. 

Our simulation studies suggest that, while A-learning may be inefficient relative to Q-

learning in estimating parameters that define the optimal regime when the Q-functions 

required for the latter are correctly specified, A-learning may offer robustness to such 

misspecification. Nonetheless, Q-learning may have practical advantages in that it involves 

modeling tasks familiar to most data analysts, allowing the use of standard diagnostic tools. 

On the other hand, A-learning may be preferred in settings where it is expected that the form 

of the decision rules defining the optimal regime is not overly complex. However, A-

learning increases in complexity with more than two treatment options at each stage, which 

may limit its appeal. Interestingly, in the simulation scenarios we consider, inefficiency and 

bias in estimation of parameters defining the optimal regime does not necessarily translate 

into large degradation of average performance of the estimated regime for either method.

Although our simple simulation studies provide some insight into the relative merits of these 

methods, there remain many unresolved issues in estimation of optimal treatment regimes. 

Approaches to address the challenges of high-dimensional information and large numbers of 

decision points are required. Existing methods for model selection focusing on minimization 

of prediction error may not be best for developing models optimal for decision-making. 

When K is very large, the number of parameters in the models required for Q- and A-

learning becomes unwieldy. The analyst may wish to postulate models in which parameters 

are shared across decision points; see Robins (2004), Robins et al. (2008), Orellana et al. 

(2010) and Chakraborty and Moodie (2012).

In our development, we have invoked a strong version of the sequential randomization 

assumption to simplify supporting arguments. Richardson and Robins (2013) allow 

identification of potential outcomes under possibly weaker assumptions via graphical 

representations. These authors also extend the notion of a dynamic treatment regime.

Formal inference procedures for evaluating the uncertainty associated with estimation of the 

optimal regime are challenging due to the nonsmooth nature of decision rules, which in turn 

leads to nonregularity of the parameter estimators; see Robins (2004), Chakraborty et al. 

(2010), Laber et al. (2010), Moodie and Richardson (2010), Song et al. (2010), and Laber 

and Murphy (2011).

We have discussed sequential decision-making in the context of personalized medicine, but 

many other applications exist where, at one or more times in an evolving process, an action 
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must be taken from among a set of plausible actions. Indeed, Q-learning was originally 

proposed in the computer science literature with these more general problems in mind; see 

Shortreed et al. (2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Monte Carlo MSE ratios for estimators of components of ψ1 (left and center panels) and 

efficiencies  for estimating the true dopt (right panel) under 

misspecification of the propensity model. MSE ratios > 1 favor Q-learning
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Fig 2. 
Monte Carlo MSE ratios for estimators of components of ψ1 (left and center panels) and 

efficiencies  for estimating the true dopt (right panel) under 

misspecification of the Q-function. MSE ratios > 1 favor Q-learning
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Fig 3. 
Monte Carlo MSE ratios for estimators of components of ψ1 (left and center panels) and 

efficiencies  for estimating the true dopt (right panel) under 

misspecification of both the propensity model and the Q-function. MSE ratios > 1 favor Q-

learning
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Fig 4. 
Monte Carlo MSE ratios for estimators of components of ψ2 and ψ1 (upper row and lower 

row left and center panels) and efficiencies  for estimating the true dopt 

(lower right panel) under misspecification of the propensity model. MSE ratios > 1 favor Q-

learning
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Fig 5. 
Monte Carlo MSE ratios for estimators of components ofψ2 and ψ1 (upper row and lower 

row left and center panels) and efficiencies  for estimating the true dopt 

(lower right panel) under misspecification of the Q-functions. MSE ratios > 1 favor Q-

learning
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Fig 6. 
Monte Carlo MSE ratios for estimators of components of ψ2 and ψ1 (upper row and lower 

row left and center panels) and efficiencies  for estimating the true dopt 

(lower right panel) under misspecification of both the propensity models and Q-functions. 

MSE ratios > 1 favor Q-learning

Schulte et al. Page 35

Stat Sci. Author manuscript; available in PMC 2015 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Schulte et al. Page 36

Table 1

Monte Carlo average (standard deviation) of estimates obtained via Q- and A-learning and ratio of Monte 

Carlo MSE for the Moodie and Richardson scenario; MSE ratios > 1 favor Q-learning

Parameter (true value) Q-learning A-learning MSE ratio

154.8 (23.2) 249.1 (18.7) 0.036

−0.775 (0.052) −0.998 (0.041) 0.032

507.3 (49.2) 720.3 (48.4) 0.050

−1.584 (0.092) −2.001 (0.085) 0.040
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