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We have previously shown that ablation of the three N-linked glycosylation sites in the West Nile virus NS1 protein completely
attenuates mouse neuroinvasiveness (>1,000,000 PFU). Here, we compared the replication of the NS1130-132QQA/175A/207A mutant
to that of the parental NY99 strain in monkey kidney Vero cells. The results suggest that the mechanism of attenuation is a lack
of NS1 glycosylation, which blocks efficient replication, maturation, and NS1 secretion from the endoplasmic reticulum and re-
sults in changes to the virus-induced ultrastructure.

West Nile virus (WNV) is a mosquito-borne flavivirus and is
distributed in many parts of the world. The WNV genome

consists of a 5= and 3= untranslated region (UTR), three structural
protein (capsid, premembrane/membrane, and envelope [E])
genes, and seven nonstructural protein (NS1, NS2A, NS2B, NS3,
NS4A, NS4B, and NS5) genes. Using site-directed mutagenesis,
we have shown that the ablation of the NS1 N-linked glycosylation
(N-X-S/T) sites at residues 130 to 132, 175 to 177, and 207 to 209
of the WNV NY99 infectious clone attenuates mouse neuroinva-
siveness and neurovirulence phenotypes (1, 2). The nonstructural
NS1 protein is a multifunctional glycoprotein found in the cyto-
plasm in association with the cell membrane that is secreted, nec-
essary for replication, and involved in virus maturation (3–10).
Because this protein is critical in many aspects of the replica-
tion cycle, we investigated the mechanism of attenuation of the
NS1130-132QQA/175A/207A mutant strain by comparison to the NY99
strain in cell culture. This mutant virus was chosen as it was pre-
viously shown to be stable in vitro and in vivo (i.e., no reversion)
and was fully attenuated for neuroinvasiveness (�6 log10 PFU).

The multiplication kinetics of the parental NY99 and the
NS1130-132QQA/175A/207A mutant were compared (in triplicate) in
Vero cells at a multiplicity of infection (MOI) of 0.1 (Fig. 1). Sig-
nificant differences in multiplication kinetics were observed for
the NS1130-132QQA/175A/207A mutant compared to those of the pa-
rental NY99 virus at 12, 24, and 48 h postinfection, with the great-
est differences (4 log10 PFU/ml) at 24 h postinfection. The peak
infectivity titer was at 48 h postinfection for both viruses (Fig. 1).

Protein localization was determined for the E and NS1 pro-
teins. Confluent monolayers of Vero cells were infected with ei-
ther the NS1130-132QQA/175A/207A mutant or the parental NY99
strain at an MOI of 0.1 and fixed at 24 or 48 h postinfection (p.i.)
(Fig. 2). Confocal microscopy showed that the E (rabbit anti-en-
velope domain III [EDIII] antibody; 1:500 [11]) and NS1 (mono-
clonal antibody [MAb] 8152, 1:100; Millipore) proteins were co-
localized in NY99 virus-infected Vero cells. At 24 h p.i., both E and
NS1 proteins displayed diffuse cytoplasmic staining with areas of
intense fluorescence in apparent vesiclelike structures, and the
intensity of the E protein fluorescence correlated with the inten-
sity of the NS1 fluorescence. The NS1130-132QQA/175A/207A mutant
virus, however, showed major differences in the staining patterns

of both the E and NS1 proteins compared to those of the parental
NY99 strain. Specifically, the NS1130-132QQA/175A/207A mutant
showed less intense vesiclelike NS1 protein and E protein staining,
with an absence of diffuse cytoplasmic staining for NS1. Further-
more, there was a significant lack of colocalization of the NS1 and
E proteins in the NS1130-132QQA/175A/207A mutant-infected cells
due to the intense diffuse cytoplasmic staining of the E protein but
reduced, focal staining of the NS1 protein. At 48 h p.i., the
staining patterns were similar for both viruses except that, for
the NS1130-132QQA/175A/207A mutant, more cells showed NS1 and E
staining.

The NS1 protein has been previously demonstrated to have a
role in flavivirus RNA replication in association with the endo-
plasmic reticulum (ER) (12–14). Therefore, virus-infected Vero
cells (as described for E/NS1 staining above) were probed with
anti-PDI (protein disulfide isomerase) (C81H6, 1:200; Cell Sig-
naling) and anti-WNV NS1 antibodies. Mock-infected cells
showed a diffuse staining pattern with anti-PDI antibody, indicat-
ing that ER was located throughout the cell. Anti-PDI staining of
both the NY99 and NS1130-132QQA/175A/207A virus-infected cells at
24 and 48 h p.i. showed many areas of vesiclelike staining patterns,
suggesting that WNV infection induced large ER vesicle forma-
tions, consistent with previous reports (Fig. 3A) (14, 15). Co-
localization of PDI and NS1 was observed in both NY99- and
NS1130-132QQA/175A/207A-infected cells at 24 and 48 h p.i.; how-
ever, the NS1130-132QQA/175A/207A-infected cells showed increases
in colocalization and PDI staining intensity at 24 h p.i. and, more
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dramatically, at 48 h p.i., indicating an accumulation of NS1 in the
ER compared to its localization in the parental NY99 strain, which
showed minimal colocalization of NS1 and PDI. This relative shift
in the intensity of PDI staining was confirmed by Western blotting
in a separate experiment, in which the PDI protein density was
greater in the whole-cell lysates of NS1130-132QQA/175A/207A-in-
fected cells than in those of mock- and NY99-infected cells (MOI
of 0.1) at 24 h p.i. (Fig. 3B). Also, the PDI level did not increase
over time for NY99. Previous studies have shown that the NS1
protein localizes with the virus replication complex within the ER
(14, 16). Thus, an increase in ER in NS1 glycoylation mutant-
infected cells may indicate a block at this stage of the replication
cycle.

Following virus replication in the ER, virus particles are then
secreted through the Golgi apparatus. Since NS1 is a secreted pro-
tein, a block in the ER would impede its subsequent secretion.
Thus, we propose that reduced replication at early time points

FIG 1 Multiplication kinetics of parental NY99 and mutant
NS1130-132QQA/175A/207A viruses in Vero cells. Supernatants were collected for
both viruses in triplicate, and infectivity titers were determined by plaque
titration. Statistically significant differences as determined by Student’s t test
(P � 0.01) occurred at 12, 24, and 48 h p.i. and are noted by asterisks above the
time points. Several 48-h time point samples were analyzed for sequencing,
and no mutations were detected in the NS1 gene.

FIG 2 Localization of NS1 and E protein in mock-, NY99-, and NS1130-132QQA/175A/207A-infected Vero cells (MOI of 0.1) at 24 h p.i. and 48 h p.i. Images were
captured with a Zeiss confocal microscope at �100 magnification. NS1 was detected by anti-mouse Alexa Fluor 488-conjugated antibody, and E was detected by
anti-rabbit Alexa Fluor 568-conjugated antibody. In the images obtained at 24 h p.i., arrows show areas of little NS1/E colocalization in the NY99-infected cells,
whereas in mutant NS1130-132QQA/175A/207A-infected cells, NS1 colocalizes to E but not exclusively. At 48 h p.i., E and NS1 colocalize in most NY99-infected cells;
however, less colocalization is seen in NS1130-132QQA/175A/207A-infected cells, as indicated by arrows.
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and the accumulation of NS1 in the ER contributes to the
mechanism of attenuation of the NS1130-132QQA/175A/207A mu-
tant. Despite increased replication at the 48-h time point, there
was a dramatic difference in PDI levels between the NY99- and
NS1130-132QQA/187A/207A-infected cells, including increased PDI
levels and PDI/NS1 colocalization in NS1130-132QQA/175A/207A-in-
fected cells. We previously showed that there is reduced NS1 pro-
tein secretion from cells at 48 h p.i. (2) and hypothesize that the
block of NS1 protein in the ER prevents efficient secretion of this
protein.

Transmission electron microscopy (TEM) has implicated the
ER in the biogenesis of virus-induced ultrastructures in WNV-

infected cells (14). The ultrastructure of flavivirus-infected mam-
malian cells is distinct from that of uninfected cells, with the for-
mation of virus-induced structures, including paracrystalline
arrays (PC), convoluted membranes (CM), vesicle packets, and
vesicles (also referred to as smooth membrane vesicles in previous
publications) (17–20). Using the same experimental conditions as
described above for the confocal studies, the ultrastructural dif-
ferences of cells infected with the NS1130-132QQA/175A/207A mutant
and the parental NY99 virus were compared using TEM (Fig. 4A,
B, E, and F).

The ultrastructure of the NS1130-132QQA/175A/207A-infected cells
was distinct from that of parental NY99-infected cells. Most mu-

FIG 3 ER modifications in WNV-infected (MOI of 0.1) Vero cells at 24 and 48 h p.i. (A) Localization of NS1 and PDI (which recognizes ER) in cells infected with
NY99 or NS1130-132QQA/175A/207A or uninfected (mock). A vesiclelike pattern of staining is seen in NY99-and NS1130-132QQA/175A/207A-infected cells (yellow
arrows) probed with PDI. An apparent lack of colocalization between NS1 and PDI is seen in the NY99-infected cells, while in cells infected with
NS1130-132QQA/175A/207A, NS1 staining colocalizes with intense PDI staining (white arrows) at 24 h p.i. At 48 h p.i., NS1 and PDI colocalize for both viruses, most
dramatically in NS1130-132QQA/175A/207A-infected cells, which display intense staining for both proteins (white arrows). (B) Western blots were used to verify an
increase in PDI staining in the mutant sample compared to the levels in the parental (NY99) and mock-infected cells. The graph shows fold changes in PDI
antibody staining intensity compared to that in mock-infected cells for 24 and 48 h p.i., and a representative Western blot from 24 h p.i. is shown.
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tant-infected cells did not contain CM structures at 24 h p.i.,
whereas these structures were found in almost every NY99-in-
fected cell at the same time point. Interestingly, the vesicles were
frequently more abundant than the CM structures and vesicles
were commonly found without the presence of CM, and yet virus
particles were often identified in these cells. PC were seen in both
NY99 and NS1130-132QQA/175A/207A-infected cells at 24 h p.i. At 48 h
p.i., when both viruses were at peak titers, CM were abundant in
cells infected with either virus (Fig. 4E and F), indicating that CM
form with high-titer virus replication, whereas PC form either at
earlier time points or with lower virus titers or both.

The most striking difference between the ultrastructures of the
parental NY99- and NS1130-132QQA/175A/207A-infected Vero cells
was in the size and shape of the vesicles. The polymorphic vesicles
in the mutant NS1130-132QQA/175A/207-infected cells varied from a
small round shape to a larger tubular shape (120 � 20 nm),
whereas the parental NY99-infected cells showed uniform round

vesicles (90 � 10 nm). Tomograms confirmed that most vesicles
in NS1130-132QQA/175A/207A-infected cells appeared to be polymor-
phic, long, and tubular (Fig. 4D), and although some vesicles ap-
pear in the images to be small and spherical in shape and similar to
the vesicles in NY99-infected cells, this may be due to the orienta-
tion of the vesicle within the section, where a top view appears
round but the side view is tubular in shape (Fig. 4C). The size of
the vesicles in NS1130-132QQA/175A/207A-infected cells was calculated
from several different TEM images (slices), but because two-di-
mensional images were used for this measurement, the higher
standard deviation may reflect the inability to measure the longest
dimension for some vesicles. The tomograms of NY99-infected
cells confirmed that vesicles in different cells were similar in size
and shape.

Overall, these data suggest that the mechanism of attenuation
for the NS1130-132QQA/175A/207A mutant is the focal perinuclear lo-
calization of the NS1 protein and its block in the ER, resulting in

FIG 4 TEM images and tomograms of a WNV-infected (MOI of 0.1) Vero cell. (A) NY99-infected cell at 24 h p.i. showing convoluted membranes (CM)
surrounded by vesicles (V) within vesicle packets (VP) and virus (Vi). Inlay shows a 10% larger VP with vesicles of uniform size and shape. (B) In contrast, an
NS1130-132QQA/175A/207A-infected Vero cell at 24 h p.i. has polymorphic vesicles and VP, represented in the 10% larger inlay, and paracrystalline arrays (PC) with
a lack of CM localized to the perinuclear region. The large diameters of the vesicles were determined by measuring 100 vesicles from several cells for both
NY99- and NS1130-132QQA/175A/207A-infected cells; they averaged 90 nm and 120 nm (P � 0.01), respectively. (C, D) Tomogram sections of NY99- and
NS1130-132QQA/175A/207A-infected cells, respectively, at 24 h p.i. Three hundred-nanometer-thick sections were analyzed using tilt series in the �65° to �65°
angular range with 1° increments using the SerialEM program (21). Three-dimensional tomograms were reconstructed using IMOD software (22). Scale bar �
500 nm. (E, F) The 48-h p.i. time point was also observed by TEM for NY99-infected cells (E) and NS1130-132/175A/207A-infected cells (F). (Nu, nucleus; Mi,
mitochondria).
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reduced replication at early time points. This result may also be
the result of malformed vesicles that consist of double-stranded
RNA and the replication complex, including NS1.
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