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Amplification of human papillomaviruses (HPV) is dependent on the ATM DNA damage pathway. In cells with impaired p53
activity, DNA damage repair requires the activation of p38MAPK along with MAPKAP kinase 2 (MK2). In HPV-positive cells,
phosphorylation of p38 and MK2 proteins was induced along with relocalization to the cytoplasm. Treatment with MK2 or p38
inhibitors blocked HPV genome amplification, identifying the p38/MK2 pathway as a key regulator of the HPV life cycle.

Human papillomaviruses (HPV) infect stratified epithelium
and induce a variety of lesions (1). A subset of HPV types,

referred to as high risk, are the causative agents of cervical and
other anogenital malignancies as well as many oral cancers (2–4).
Papillomaviruses infect basal epithelial cells of stratified epithe-
lium that become exposed through microwounds and establish a
latent infection, in which viral genomes are maintained in the
nucleus as low-copy-number episomes. As infected basal cells di-
vide and one daughter cell leaves the basal layer, the cell differen-
tiation program is initiated, which results in activation of viral
gene expression and replication. HPV genomes do not encode
DNA polymerases or replication factors except for the DNA heli-
case E1, and viral replication is dependent largely on host factors
(5). It is, therefore, necessary for HPV-positive cells to retain the
ability to reenter S/G2 upon differentiation (6). This process is
mediated through the action of the E6 and E7 proteins that mod-
ulate the function of p53, Rb, and a number of other cell cycle
regulators (7–9). In addition to maintaining cells active in the cell
cycle, HPV genome amplification requires activation of the ATM
(ataxia telengiectasia mutated) DNA damage pathway (10–14).

The ATM pathway is responsible for the DNA damage response
(DDR) to double-strand DNA breaks and is mediated through the
action of downstream kinases, such as CHK2 (15). The ATR pathway
is activated by single-strand breaks as well as replication fork collapse
and functions through CHK1 (16). While these two pathways gener-
ally act independently of each other, some overlap exists, such as
when one pathway is deficient or compromised. A third DDR path-
way has recently been described in cells with reduced or impaired p53
activity, and this pathway is mediated by the p38MAPK kinases (17–
21). The p38MAPK pathway is activated in response to a variety of
stress-induced signals, including DNA damage, osmotic shock, or
cytokine signaling. p38MAPK phosphorylates a number of down-
stream effectors, such as c-Myc, c-Jun, and ATF2, but it specifically
induces DDR through the phosphorylation of mitogen-activated
protein (MAP) kinase-activated protein kinase 2 (MAPKAPK 2, or
MK2) (20, 22–26). Activation of MK2 leads to phosphorylation of a
series of downstream targets that results in G2/M arrest and DNA
repair (21). While the DNA repair portion of the p38MAPK/MK2
pathway is activated by ATM or ATR kinases, it functions indepen-
dently and in parallel to the activities of CHK1 and CHK2 (19, 21).
Furthermore, p38MAPK/MK2 has been shown to be important for
DDR in cells that have impaired p53 function, such as U2OS, HeLa,
or immortalized fibroblasts with diminished p53 function (18). MK2
is relocalized to the cytoplasm upon activation, while activated CHK1

and CHK2 are retained in the nucleus (18). Keratinocytes that stably
maintain high-risk HPV genomes have reduced levels of p53 through
the action of E6/E6AP complexes, as well as altered levels of acetylated
p53 through E6 modulation of p300 activity (8). We therefore inves-
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FIG 1 p-38 and p-MK2 levels are increased in HPV-positive cells. (A) Western
blot analysis for p-p38, p38, p-MK2, and MK2 in undifferentiated monolayer
cultures of normal human foreskin keratinocytes (HFK), HPV-16, HPV-18,
HPV-31, and CIN-612 cells. The HPV-16, -18, and -31 cells were generated
by transfection of HFKs with recircularized HPV genomes as previously de-
scribed (11, 27), followed by selection for a cotransfected drug resistance
marker. �-Actin was used as a loading control. The following antibodies were
used: p-p38(T180/Y182, D3F9; catalog number 4511), p38(D13E1; catalog
number 8690), p-MK2(T334, 27B7; catalog number 3007), and MK2 (catalog
number 3042) (all from Cell Signaling Technologies, San Diego, CA). Second-
ary antibodies included horseradish peroxidase-linked anti-rabbit (Santa Cruz
Biotechnology, Santa Cruz, CA). Levels of p-p38, p38, p-MK2, and MK2 fol-
lowing differentiation in high-calcium medium for 0, 48, and 96 h were deter-
mined by Western blotting. Calcium-induced differentiation was performed
as described previously (27). The 0-h data represent results for undifferenti-
ated cells. TG (transglutaminase) was used as a differentiation marker. �-Actin
was used as a loading control.
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tigated if p38MAPK/MK2 played any role in the genome amplifica-
tion of HPV-positive cells.

To determine what effect, if any, the p38/MK2 pathway plays in
HPV replication, we first examined the levels and activation status
of p38 and MK2 in normal and HPV-positive human keratino-
cytes in undifferentiated cells grown as monolayer cultures. For
this analysis, the levels of p38/MK2 proteins were examined in a
series of HPV-positive human keratinocyte cell lines that were
generated by transfection with recircularized genomes from HPV-
16, -18, and -31, as previously described (27), as well as a biopsy
sample-derived cell line that is HPV-31 positive, CIN-612. All
these HPV-positive lines stably maintain episomal copies of HPV

genomes in undifferentiated monolayer cultures. As shown in
Fig. 1A, the levels of total p38 were similar in both HPV-positive
and normal keratinocyte cells. In contrast, the phosphorylated
form of p38 (p-p38) was only detected in HPV-positive cells.
Slightly increased levels of total MK2 were seen in HPV-positive
cells, with minimal levels of phosphorylated MK2 (p-MK2) de-
tected in undifferentiated cultures of either normal or HPV-pos-
itive cells.

It was next important to investigate if the levels of p38/MK2
proteins were altered upon differentiation. For this analysis, we
used calcium-induced differentiation, as this method allows for
isolation of uniformly differentiated populations of cells (27).
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FIG 2 The ATM pathway is activated in HPV-positive cells, and addition of ATM inhibitors blocks induction of p-p38 and p-MK2. (A) Levels of total and
phosphorylated p-ATM upon differentiation of HPV-positive cells as well as HFKs. Cells were seeded as monolayer cultures, followed by the addition of medium
containing 1.5 mM Ca2� for 96 h (27), as previously described (11). Extracts were harvested at the indicated times and examined by Western blotting using the
corresponding antibodies. Anti-ATM (S1981, D6H9) was obtained from Cell Signaling Technologies. (B) Levels of p-p38, p38, p-MK2, and MK2 following
differentiation in high-calcium medium in the presence or absence of an ATM inhibitor. Undifferentiated cells were grown as monolayer cultures in the presence
or absence of 5 �M ATM inhibitor KU-55933, and protein levels were determined by Western blotting. Lanes designated with Ca were induced to differentiate
by the addition of high-calcium medium for 96 h with or without the presence of 5 �M KU-55933, and protein levels were examined by Western blotting. (C)
Levels of phosphorylated ATM and total ATM following treatment with an ATM inhibitor. (D) Levels of p-MK2 in the absence or presence of a p38 inhibitor.
Cells were seeded as monolayer cultures (left) or exposed to medium containing 1.5 mM Ca2� for 96 h (right) (11). The cells were left untreated or incubated with
10 �M p-p38 inhibitor SB203580 for 96 h. Extracts were harvested and examined by Western blotting using the corresponding antibodies. TG (transglutaminase)
was used as a differentiation marker. �-Actin was used as a loading control.
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Amplification of viral genomes begins within 48 h and plateaus by
96 h after the calcium switch. In both normal and HPV-positive
keratinocytes, the levels of phosphorylated p38 increased upon
differentiation, while the total amounts were largely unchanged
(Fig. 1B). Slightly higher levels of MK2 total proteins were seen in
HPV-positive cells and remained unchanged upon differentia-
tion. In contrast to the minimal levels p-MK2 observed in undif-
ferentiated HPV-positive cells, significant induction of p-MK2
was seen upon differentiation. No activation of p-MK2 was seen in
either undifferentiated or differentiated normal keratinocytes
(Fig. 1B). This indicated that phosphorylation of MK2 is induced
upon differentiation of HPV-positive cells.

We previously demonstrated that the ATM DNA damage
pathway is constitutively activated in HPV-positive cells and that
it plays a critical role in controlling amplification upon differen-
tiation (11). To investigate if ATM activation is linked to p38/
MK2 activation in HPV-positive cells, the levels of ATM and its
phosphorylated form (p-ATM) were examined by Western blot-
ting. Consistent with previous studies, total ATM levels were rel-
atively unchanged between normal and HPV-positive cells, while
p-ATM was detected only in HPV-positive cells (Fig. 2A). The
ATM inhibitor KU-55933 blocks phosphorylation of ATM along
with its downstream targets and is specific (28). To determine if
ATM was responsible for activating phosphorylation of MK2,
HPV-positive cells were induced to differentiate in high-calcium
medium and treated with KU-55933, and the levels of phosphor-
ylated MK2 were examined by Western analysis. As seen in Fig. 2B,
treatment of cells with KU-55933 blocked phosphorylation of
p-p38 without affecting total levels of p38. Similarly, phosphory-
lation of MK2 was blocked following treatment of HPV-positive
cells that had been induced to differentiate (Fig. 2B). Treatment of
cells with KU-55933 also inhibited p-ATM (Fig. 2C). This dem-
onstrated that phosphorylation of both p38 and MK2 is depen-
dent on ATM in HPV-positive cells. Cells were also treated with an
inhibitor of p38 (Fig. 2D), and MK2 phosphorylation was signif-
icantly reduced, demonstrating a dependence on p-p38 activity.

Neither the p38 nor MK2 inhibitors had any effect on the expres-
sion of transglutaminase, a marker of epithelial differentiation
(Fig. 2C) or proliferation (data not shown).

Upon DNA damage, the p38/MK2 complex relocalizes from
the nucleus to the cytoplasm to target a series of factors, some of
which regulate the stability of a number of mRNAs (18, 29). We
therefore investigated the cellular localization of p-MK2 during
the differentiation of HPV-positive cells by using immunofluores-
cence with cells induced to differentiate in high-calcium medium.
As shown in Fig. 3, very low levels of p-MK2 were found in undif-
ferentiated cells. Upon differentiation, we observed induction of
MK2 phosphorylation and localization of p-MK2 to the cyto-
plasm (Fig. 3). Similar localization was seen with p-p38, which
formed a complex with p-MK2. One target of cytoplasmic p-MK2
kinase activity is the chaperone protein HSP-27 (30, 31), and we
observed via Western blotting that it became phosphorylated
upon differentiation of HPV-positive cells (Fig. 4). Furthermore,
the addition of MK2 inhibitors blocked phosphorylation of
HSP-27 (Fig. 4). This confirmed that p-MK2 is active in differen-
tiated HPV-positive cells. Many of the factors described as MK2
targets, including HSP-27, contribute to cell cycle arrest in G2/M
(32) and work in parallel with factors targeted by the nuclear DNA
damage kinases CHK1 and CHK2 (19).

Our results indicate the p38/MK2 pathway is activated upon
differentiation of HPV-positive cells but not normal cells. Next, it
was important to investigate if the p38/MK2 pathway had any role
in the regulation of HPV replication in undifferentiated and dif-
ferentiated cells. In undifferentiated HPV-positive cells, treatment
with either p38 or MK2 inhibitors showed no effect on genome
copy number (Fig. 5A), indicating the p38/MK2 pathway is not
involved in the stable maintenance of HPV genomes, even though
ATM and p38 are activated. Upon calcium-induced differentia-
tion, only about a quarter of cells amplify viral DNA, and the total
amount of HPV DNA is increased (11). When HPV-positive cells
were differentiated in the presence of either a p38 or MK2 inhib-
itor, genome amplification was significantly suppressed (Fig. 5B

FIG 3 Immunofluoresence of p-p38 and p-MK2 in HPV-positive cells upon differentiation. Undifferentiated cells were stained for p-p38 or p-MK2 using
appropriate antibodies. 4=,6-Diamidino-2-phenylindole (DAPI) staining was used to identify nuclei (ProLong Gold antifade reagent with DAPI; catalog number
P36931; Life Technologies, Thermo Fisher Scientific, Waltham, MA). Induction and localization of p-MK2 as well as of p-p38 to the cytoplasm following
Ca2�-induced differentiation for 72 h is shown. Normal human keratinocytes (HFK) and HPV-31-positive CIN 612 cells were examined.
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and C). Similar effects were seen in multiple independent experi-
ments. Treatment of cells with these inhibitors did not affect the
phosphorylation of ATM (data not shown). These results indi-
cated that the p38/MK2 pathway is activated in HPV-positive cells
and plays an important role in the differentiation-specific genome
amplification of HPV.

Our studies identified a novel role of the p38/MK2 pathway in
the control of HPV amplification. The p38/MK2 pathway was
found to be activated in HPV-positive cells upon differentiation,
and it was observed to be critical for genome amplification. MK2 is
a Ser/Thr kinase that is regulated through phosphorylation by p38
MAPK and ATM. The MK2 kinase has been reported to be in-
volved in many cellular processes, including stress and inflamma-
tory responses (33, 34), nuclear export (29), gene expression reg-
ulation (33, 35, 36), and cell proliferation (37). Recently, the p38/
MK2 pathway was identified as an alternative pathway in the DNA
damage response (17–21). One of the important downstream ef-
fectors of the DDR is the p53 tumor suppressor protein, whose
activation can mediate cell cycle arrest to repair DNA damage or
to induce apoptotic cell death (38). In p53-deficient cells, p38/
MK2 functions as a third member of the DDR pathway (21). In
our studies, we determined that MK2 phosphorylation is specifi-
cally induced upon differentiation of HPV-positive cells. As such,
it is one of only three DNA damage factors that have been identi-
fied to be induced upon differentiation. In addition to p-MK2,
�-H2AX and p-NBS1 are two members of the ATM pathway (39)
whose activation increases upon differentiation; this contrasts
with ATM and CHK2, which are activated in both differentiated
and undifferentiated cells (11). Since the DDR has no role in stable
or transient HPV replication but only affects differentiation-de-
pendent genome amplification, MK2 along with �-H2Ax and
NBS1 are likely to be critical regulators of this process.

The MK2 pathway activates the genome amplification of HPV
but not stable maintenance replication, which is consistent with

our observation that active MK2 kinases are only detected upon
differentiation. MK2 has a broad range of downstream effectors
and is involved in various cellular events. Cytoplasmic MK2 activ-
ity is critical for checkpoint maintenance, and it acts in part by
stabilizing a number of mRNAs (5), so it is possible that MK2
plays a role in regulating the stabilities of a subset of viral tran-
scripts. MK2 also phosphorylates several transcriptional factors,
such as SRF and CREB (40), whose function might be critical for
regulating the late viral promoter. One known target of p-MK2 is the
heat shock protein HSP27 (30, 31), and in our studies we observed
phosphorylation of HSP27 upon differentiation of HPV-positive
cells that was dependent upon p-MK2 action. What role HSP27 plays
in the HPV life cycle will be a focus of future studies. Finally, MK2
appears to act in parallel to CHK1 and CHK2 to activate DNA repair
factors that are necessary for HPV genome amplification. Given the
different cellular localizations of MK2 and CHK1/CHK2, these ki-
nases seem to act coordinately to induce the full spectrum of DNA
damage factors.
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FIG 5 Inhibition of p38 or MK2 blocks HPV genome amplification. (A)
Southern blot analysis of undifferentiated HPV-31 cells, CIN 612 cells,
HPV-16 cells, and HPV-18 cells treated with 10 �M p38 inhibitor (SB203580)
or 10 �M MK2 inhibitor (MK2 inhibitor III). Cells were treated for 72 h prior
to analysis. The 0-h data are results without inhibitor; C designates results after
72-h treatment with DMSO vehicle alone. p38 and MK2 indicate the inhibitor
used. Viral episomes are shown. (B) Southern analysis was performed as pre-
viously described (41), using the digoxigenin (DIG)-High Prime DNA labeling
and detection system (Roche Diagnostics, Mannheim, Germany). The chemi-
luminescent signal was visualized by using a chemiluminescent image analyzer
(Fc Imager; Odyssey, Lincoln, NE) to visualize DNA. Southern blot analysis
results are shown for HPV-positive cells that stably maintained viral episomes
treated and untreated with inhibitors of p38 or MK2 during differentiation
induced by high-calcium medium for 96 h. The viral episomes are shown. (C)
Quantification of the effect on amplification shown in panel B. The signal
strengths were quantified by using ImageJ software (NIH, Bethesda, MD), and
the results are shown in the bar chart. Each relative value was determined based
on setting the signal strength of 96-h incubation with calcium as 100.
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