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ABSTRACT

Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chim-
panzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is
overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More dis-
tantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vector-
ization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors
was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to
that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clus-
tered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenovi-
ruses represent a new class of candidate vaccine vectors.

IMPORTANCE

Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses,
far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel
rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as po-
tential candidate vaccine vectors for both HIV-1 and other pathogens.

Recombinant adenoviruses (Ads) are currently being explored
as candidate vaccine vectors for multiple pathogens (1–6), as a

result of their safety profile, manufacturability, and ability to in-
duce broad and strong immune responses (7–16). Multiple hu-
man and chimpanzee adenovirus vectors have been developed to
date (8, 9, 11–13). The majority of these adenovirus vectors are
from species B, C, D, and E. Adenovirus vectors from avian, bo-
vine, and other species have also been constructed, but their dif-
ferent genomic structures may necessitate the development of a
novel manufacturing platform for clinical development (17, 18).
Old World monkey adenoviruses have been hypothesized to be
distinct from both human and chimpanzee adenoviruses and may
offer unique advantages, such as the ability to more efficiently
bypass preexisting immunity to human adenoviruses (12, 19–24),
while maintaining the genomic structure and growth properties of
human adenoviruses.

We isolated simian adenoviruses from fecal samples from rhe-
sus monkeys (Macaca mulatta) that were positive for adenoviruses
by metagenomics sequencing (25). We performed whole-genome
sequencing of these novel adenoviruses and determined their phy-
logeny in comparison with that of other human and simian ad-
enoviruses. The basic genetic structure of these novel rhesus mon-
key adenoviruses proved similar to that of human adenoviruses
(7, 16, 26). We vectorized three rhesus monkey adenoviruses and
then assessed humans in sub-Saharan Africa for seroprevalence of
these adenoviruses and assessed these vectors for immunogenicity
in mice. In addition, we assessed receptor usage, innate immune
stimulation, and adaptive immune responses.

MATERIALS AND METHODS

Isolation and vectorization of novel Old World monkey adenoviruses.
Stool samples from rhesus monkeys (Macaca mulatta) were resuspended
in unsupplemented Dulbecco modified Eagle medium (DMEM) and fil-
tered through a 0.45-�m-pore-size filter. Human E1-complementing
cells were infected with the filtrates, incubated at 37°C with 10% CO2, and
monitored for cytopathic effects (CPEs). The crude lysates were subjected
to two rounds of plaque purification, and adenovirus cultures were ex-
panded and purified by cesium chloride density gradient centrifugation as
previously described (16). At each step, the lysates were tested for the
presence of adenovirus using primers that were defined by metagenomics
sequencing (25). The growth of purified wild-type rhesus monkey adeno-
viruses was assessed on human complementing and noncomplementing
cell lines, including the HEK293, Per55K, and A549 cell lines (data not
shown). Viral DNA was extracted by standard phenol-chloroform extrac-
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tion, and whole-genome shotgun sequencing was done at GE Seqwright
(Houston, TX).

Vectorization of wild-type adenoviruses was performed essentially as
previously described (7). Briefly, the left region of the adenovirus genome
was cloned into a pBR322 bacterial backbone. The E1 gene was deleted
and replaced with a transgene expression cassette consisting of a cytomeg-
alovirus (CMV) promoter, a multiple-cloning site, and a simian virus 40
(SV40) polyadenylation signal. The remainder of the adenovirus genome
was cloned into a pWE15 cosmid backbone from which the E3 gene was
deleted. Virus was grown in E1-complementing cell lines and purified by
CsCl density gradient centrifugation.

Phylogeny and recombination. For phylogenetic analysis, we used the
software FastTree (27) to infer a maximum likelihood (ML) phylogenetic tree
using a data set of 115 full genome sequences for adenoviruses infecting hu-
man and nonhuman primate hosts. We used the general time-reversible
(GTR) model (which was inferred by maximizing likelihood) and a gamma
distribution for variable mutation rates with 20 categories. Bootstrap support
was calculated for phylogenetic splits using 10,000 bootstrap replicates. The
unrooted tree was rooted using midpoint rooting.

The sequences were aligned using the default settings of the web server
MAFFT (http://mafft.cbrc.jp/alignment/server/) (28).

The following adenovirus types were included in the phylogenetic
analysis (GenBank accession numbers are given in parentheses): for human
adenoviruses, adenovirus type 1 (Ad1; AC_000017), Ad2 (AC_000007), Ad3
(AY599834), Ad4 (AY594253), Ad5 (AC_000008), Ad6 (FJ349096), Ad7
(AY594255), Ad8 (AB448769), Ad9 (NC_010956), Ad10 (JN226746),
Ad11 (AY163756), Ad12 (NC_001460), Ad13 (JN226747), Ad14 (AY803
294), Ad15 (JN226748), Ad16 (AY601636), Ad17 (AC_000006), Ad18
(GU191019), Ad19 (JQ326209), Ad20 (JN226749), Ad21 (AY601633), Ad22
(FJ619037), Ad23 (JN226750), Ad24 (JN226751), Ad25 (JN226752), Ad26
(EF153474), Ad27 (JN226753), Ad28 (FJ824826), Ad29 (JN226754), Ad30
(JN226755), Ad31 (AM749299), Ad32 (JN226756), Ad33 (JN226758),
Ad34 (AY737797), Ad35 (AY271307), Ad36 (GQ384080), Ad37 (DQ90
0900), Ad38 (JN226759), Ad39 (JN226760), Ad40 (NC_001454), Ad41
(DQ315364), Ad42 (JN226761), Ad43 (JN226762), Ad44 (JN226763), Ad45
(JN226764), Ad46 (AY875648), Ad47 (JN226757), Ad48 (EF153473),
Ad49 (DQ393829), Ad50 (AY737798), Ad51 (JN226765), Ad52 (DQ92
3122), Ad53 (AB605245), Ad54 (NC_012959), Ad55 (FJ643676), Ad56
(HM770721), Ad57 (HQ003817), Ad58 (HQ883276), Ad60 (JN162672),
Ad61 (JF964962), Ad62 (JN162671), Ad63 (JN935766), Ad64 (JQ326
206), Ad65 (AP012285), Ad66 (JN860676), Ad67 (AP012302), and Ad68
(JN860678) and for simian adenoviruses, simian adenovirus type 1 (sAd1;
AY771780), sAd3 (AY598782), sAd6 (JQ776547), sAd7 (DQ792570), sAd18
(NC_022266), sAd20 (HQ605912), sAd21 (AC_000010), sAd22 (AY53
0876), sAd23 (AY530877), sAd24 (AY530878), sAd25 (AC_000011),
sAd26 (FJ025923), sAd27.1 (FJ025909), sAd28.1 (FJ025914), sAd29
(FJ025916), sAd30 (FJ025920), sAd31.1 (FJ025906), sAd32 (FJ025911),
sAd34 (FJ025905), sAd35.1 (FJ025912), sAd36 (FJ025917), sAd37.1
(FJ025921), sAd38 (FJ025922), sAd39 (FJ025924), sAd40.1 (FJ025907),
sAd41.1 (FJ025913), sAd42.1 (FJ025903), sAd43 (FJ025900), sAd44
(FJ025899), sAd45 (FJ025901), sAd46 (FJ025930), sAd47 (FJ025929), sAd48
(HQ241818), sAd49 (HQ241819), sAd50 (HQ241820), simian adenovirus
type A1139 (JN880448), simian adenovirus type A1163 (JN880449), simian
adenovirus type A1327 (JN880455), simian adenovirus type A1335
(JN880456), simian adenovirus type A1296 (JN880453), simian adenovirus
type A1312 (JN880454), simian adenovirus type A1173 (JN880450), simian
adenovirus type A1285 (JN880452), simian adenovirus type A1258
(JN880451), baboon Ad1 (KC693021), baboon Ad2 (KC693022), and chim-
panzee adenovirus type Y25 (NC_017825. Novel sequences for rhesus mon-
key adenovirus type Ad51 (RhAd51), RhAd52, and RhAd53 were used in this
study.

We investigated potential across-species recombination events for the
novel vectors using the program RIP (29) at the Los Alamos National
Laboratory (LANL) HIV database (http://www.hiv.lanl.gov/content
/sequence/RIP/RIP.html). We constructed consensus full-length ge-

nomes for each species, human adenovirus species A to G, and simian
adenovirus species A, using the sequences from the data set mentioned
above and the Consensus Maker tool at the LANL HIV database (http://
www.hiv.lanl.gov/content/sequence/CONSENSUS/consensus
.html). For species G, the consensus sequence was constructed using the
Ad52, sAd1, and sAd7 sequences. Using RIP, the similarity of the se-
quences of novel vectors was compared to the consensus sequence of each
species in sliding windows of 1 kb, with the significance threshold for best
similarity being set to 0.01.

Seroprevalence. The seroprevalence of the novel rhesus monkey ade-
novirus vectors in 80 South African and 64 Rwandan serum samples as
well as in 108 naive rhesus monkey serum samples was tested using a
luciferase-based neutralization assay, as previously described (30). Hu-
man samples were obtained with informed consent, and studies were
approved by the Beth Israel Deaconess Medical Center Institutional Re-
view Board (IRB). Briefly, serum was serially diluted in a 96-well plate,
with the exception that the last column served as maximum infectivity.
Virus was added, which was followed by addition of A549 cells. The plates
were incubated for 24 h before the medium was removed and 100 �l
phosphate-buffered saline (PBS) and 100 �l Steady-Glo substrate (Pro-
mega) were added to the wells. Luminescence was read on a Victor 3
multilabel counter (PerkinElmer, Waltham, MA). The seroprevalence ti-
ter was determined to be the dilution of serum where 90% of the virus was
neutralized in the presence of serum.

Transgene expression. Transgene expression of purified virus was
determined by Western blotting. A549 cells were infected with 1 � 109

viral particles (vp) of purified virus encoding a human immunodeficiency
virus type 1 (HIV-1) envelope (Env) antigen and incubated at 37°C in
10% CO2. After a 48-h incubation period, the cells were washed with 1�
PBS and harvested on ice in a lysis buffer containing a protease inhibitor
tablet (Roche). Samples were centrifuged and frozen at �20°C. For the
Western blotting assay, sample reducing agent was added to the samples
and the mixture was heated to 96°C for 10 min, after which it was run on
a 10% SDS-polyacrylamide reducing gel (NuPAGE; Invitrogen). Proteins
were transferred from the gel to a polyvinylidene difluoride (PVDF)
membrane using an iBlot system (Life Technologies, Grand Island, NY).
Monoclonal antibody (MAb) 5F3 (Polymun, Austria) was used as the
primary antibody. Horseradish peroxidase (HRP)-conjugated anti-hu-
man IgG (Jackson ImmunoResearch, West Grove, PA) was used as the
secondary antibody, and then chemiluminescence detection, using the
ECL Plus substrate (GE Healthcare), was performed. Light-sensitive films
were exposed to the membranes and developed and fixed using a Kodak
X-OMAT 2000A processor.

Immunogenicity in mice. To determine the ability of these novel rhe-
sus monkey adenovirus vectors to induce humoral immune responses,
BALB/c mice (n � 4) were immunized intramuscularly with 1 � 109 or
1 � 108 vp of vectors expressing HIV-1 459C Env gp140 at day 0. Vectors
expressing HIV-1 Env were utilized in this experiment, as Env is consid-
ered an important antibody target. Serum was taken at day 0 preimmuni-
zation and at day 28 postimmunization. Purified 459C gp140 was used as
a positive control and formulated in 15% (vol/vol) Emulsigen oil-in-wa-
ter emulsion (MVP Laboratories) and 50 �g CpG (Midland Reagent
Company) as adjuvants. The titers of antibodies to heterologous HIV-1
MosI or C97ZA012 Env gp140 or to homologous 459C Env gp140 in these
sera were assayed by enzyme-linked immunosorbent assay (ELISA), in
which the proteins were developed with SureBlue tetramethylbenzidine
microwell peroxidase substrate (KPL). Log10 values were plotted using
GraphPad Prism (version 6) software.

To assess the cellular immunogenicity of these novel rhesus monkey
adenovirus vectors, C57BL/6 mice (n � 8) were immunized with 109, 108,
or 107 vp of vectors expressing simian immunodeficiency virus (SIV)
mac239 Gag. SIV Gag-specific CD8� T lymphocytes were assessed at
weekly intervals by major histocompatibility complex class I-restricted
Db/AL11 tetramer staining as described previously (31). Further assess-
ment was done using gamma interferon (IFN-�) enzyme-linked immu-
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nosorbent spot (ELISPOT) assays with splenocytes from spleens har-
vested at day 28. Splenocytes were isolated and stimulated in vitro with a
SIV mac239 Gag peptide pool, the CD8� T-lymphocyte epitopes AL11
(AAVKNWMTQTL) and KV9 (KSLYNTVCV), and the CD4� T-lym-
phocyte epitope DD13 (DRFYKSLRAEQTD), as described previously
(32). Results reflect those from at least two separate experiments. All an-
imal studies were approved by the Beth Israel Deaconess Medical Center
Institutional Animal Care and Use Committee (IACUC).

Receptor binding. Receptor binding was tested in the A549 human
carcinoma cell line (CCL-185; American Type Culture Collection
[ATCC]). Cells were maintained in DMEM supplemented with 10% fetal
bovine serum (Seradigm, UT, USA). Cells were infected with enhanced
green fluorescent protein (eGFP)-expressing vectors in the absence or
presence of various concentrations of anti-CAR antibodies (antibodies
E1-1 and 3C100; Santa Cruz) or anti-CD46 antibodies (antibodies M177
[Hycult Biotech] and MEM-258 [Abnova]). After 24 h incubation at
37°C, cells were harvested in 10% CO2 (TryplE Select; Invitrogen), washed
with magnetically activated cell sorting buffer, and collected by centrifu-
gation. The cells were resuspended in 2% formaldehyde and subjected to
flow cytometry. FlowJo (version 8) software (Tree Star, Inc.) was used to
gate eGFP-positive cells, and counts were normalized to 100% transduc-
tion in the absence of any antibody.

Simian Ad cytokine elicitation. Stimulation of innate cytokines by the
novel rhesus monkey adenoviruses was assessed by Luminex assays (Mil-

liplex nonhuman primate premix 23-plex), as previously described (33,
34). Fresh rhesus monkey peripheral blood mononuclear cells (PBMCs)
were isolated by Ficoll-Hypaque density gradient centrifugation. Rhesus
monkey PBMCs rather than human PBMCs were utilized in this experi-
ment to assess the natural biology of these viruses. Cells (1 � 106) were
stimulated with adenovirus vectors at a multiplicity of infection (MOI) of

FIG 1 Adenovirus identification and genomic structure. (A) PCR-amplified regions in the first crude lysate after infection of cells with filtered stool samples
(crude lysate), 4 separate plaques after the second round of plaque purification, and CsCl density gradient-purified virus. Listed are the targeted regions in the
adenovirus genome and their expected band sizes. First lane, a 1-kb-plus DNA ladder. (B) The layout of the early (E) and late (L) genes of the novel simian
adenoviruses is similar to that of known human adenoviruses. (C) The AdApter plasmid comprises the left end of the adenovirus genome in which E1 is replaced
with a transgene cassette (TGC). The cosmid contains the remaining right end of the adenovirus genome in which E3 is deleted. �, virus packaging signal.

TABLE 1 Adenovirus subtypesa

Subtype Sourceb Virus growthc

ChAd23 (VR-592) ATCC No growth
ChAd24 (VR-593) ATCC Growth
sAd16 (VR-941) ATCC No growth
sAd19 (VR-275) ATCC No growth
sAd33 (VR-206) ATCC Slow growth
RhAd51 Novel Growth
RhAd52 Novel Growth
RhAd53 Novel Growth
a 	 vector from which E1 and E3 were deleted was used for cloning.
b Indicated is whether the virus was obtained from our metagenomics screen (Novel) or
from ATCC.
c Growth of the replication-incompetent virus was determined after transfection into an
E1-complementing cell line.
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1,000. At 24 h postinfection, the supernatants were harvested and ana-
lyzed for cytokine and chemokine levels by Luminex assays according to
the manufacturer’s protocol.

Nucleotide sequence accession numbers. The sequences of RhAd51,
RhAd52, and RhAd53 were submitted to GenBank and can be found
under accession numbers KM591901, KM591902, and KM591903, re-
spectively.

RESULTS
Isolation of rhesus monkey adenoviruses. Metagenomics se-
quencing was used to define the enteric virome of SIV-infected
rhesus monkeys, as previously reported (25). In the 25 rhesus
monkeys studied, 19 possible novel adenoviruses were detected.
We isolated three novel rhesus monkey adenoviruses, RhAd51,
RhAd52, and RhAd53, from stool samples that tested positive for
adenovirus by two rounds of plaque purification. Primers for
screening of the viral cultures were designed from the meta-
genomics sequence reads, and PCR results were assessed by gel
electrophoresis, as shown in Fig. 1A. Plaques that tested positive
for adenovirus by PCR were amplified, and virus was purified by
CsCl density gradient purification as previously described (7). In
addition, we propagated several additional simian adenoviruses
obtained from ATCC, including sAd16, sAd19, chimpanzee Ad24
(ChAd24; also known as sAd24 or chimpanzee AdC7), and sAd33.
Whole-genome sequencing of the novel rhesus monkey adenovi-
ruses as well as the adenoviruses obtained from ATCC revealed a
genetic structure similar to that of other known adenoviruses, as
shown in Fig. 1B (7, 14, 16, 26).

Vectorization of rhesus monkey adenoviruses. Adenovirus
vectors with an E1/E3 deletion were produced as previously de-
scribed (7, 16, 26) and as shown in Fig. 1C. The left end of the
adenovirus from the left inverted terminal repeat (lITR) through
pIX was placed into an AdApter plasmid in which E1 was deleted
and was replaced by a transgene cassette containing a CMV pro-
moter, a multiple-cloning site, and an SV40 poly(A) tail. The re-
mainder of the adenovirus genome from pIX through the right
inverted terminal repeat (rITR) was placed into a cosmid in which
the E3 region was deleted. The adapter plasmid and the cosmid
have approximately 2.5 kb of overlap that facilitates homologous
recombination during transfection in an E1-complementing cell
line. Table 1 shows the source and growth characteristics of these
simian adenoviruses. The novel rhesus monkey adenovirus vec-
tors were viable and grew to high titers, with ratios ranging from 3
to 30 vp/PFU, similar to those seen with human adenovirus vec-
tors (data not shown), suggesting that these vectors might be suit-
able for large-scale production in the standard cell lines that are
currently being utilized to manufacture human adenovirus vac-
cine vectors (1, 35). We also constructed vectors that expressed
various transgenes, including HIV/SIV Gag, Pol, Env, luciferase,
and eGFP (data not shown), suggesting the generalizability of
these vector platforms.

Phylogeny of rhesus monkey adenoviruses. We inferred a
maximum likelihood phylogenetic tree using full-length genome
sequences for the novel vectors and 115 reported human and sim-
ian adenoviruses, which included adenoviruses that were classi-
fied into species A to G, as well as unclassified viruses, as shown in
Fig. 2. Whereas previous typing has primarily been done using
hemagglutination or sequence alignment of only hexon, fiber, or
other regions, we used whole-genome alignments to determine
placement in the phylogenetic tree. The three novel rhesus mon-

FIG 2 Maximum likelihood phylogenetic tree of adenovirus genomes. Full-
length genomes from classified (species A to G) and unclassified human and
simian adenoviruses, in addition to the novel vectors, were used to infer an ML
phylogenetic tree. The different species are highlighted by colored rectangles
(sA, simian species A), and in the case of simian vectors, the host species are
noted (Rh, rhesus macaque; Cy, cynomolgus macaque; Go, gorilla; Ve, vervet
monkey; Ba, baboon; Bo, bonobo; Ch, chimpanzee). The novel vectors were
closest to species G adenoviruses (red arrows). Other vaccine candidates are
highlighted with a V.
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key adenoviruses all clustered with the poorly studied species G,
which includes human Ad52, sAd1, sAd7, and sAd11. The rhesus
monkey adenoviruses similarly clustered with species G if we
compared hexon or fiber sequences alone (data not shown).

Given that recombination can occur among adenoviruses (36–
39), we wanted to test whether these novel vectors were species G
throughout their complete genomes. The similarity of the se-
quences of the novel vectors to the consensus sequence for each
species, obtained using sliding windows of 1 kb along the genome,

is shown in Fig. 3. Throughout their genomes, the sequence of
each of the novel vectors was most closely related to species G
sequences. The similarity to species G adenoviruses was higher
than that to the unclassified adenoviruses as well (data not
shown).

Studies of seroprevalence in sub-Saharan African human
sera and rhesus monkey sera. The seroprevalence of the novel
rhesus monkey adenoviruses was determined by luciferase-based
neutralization assays as previously described (30). A set of 80

FIG 3 Novel vectors are most similar to species G throughout their genomes. (A) Gene map for the novel vector RhAd52. For simplicity, some genes are not
shown. (B to D) The similarity of the sequences of the novel vectors to the consensus from each of species A to G is shown in sliding windows of 1 kb along the
genome. The similarity score is shown as a fraction and is plotted at the midpoint of each sliding window. Each subplot has 2 horizontal lines of dots on the top.
The lower line shows the color of the best matching consensus sequence for a sliding window. The consensus species G sequence is shown in red. The top line
shows a dot only when the best match is significant, at a P value of 
0.01. Con, consensus.
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South African and 64 Rwandan human serum samples was tested
for the seroprevalence of the viruses, as shown in Fig. 4A. As pre-
viously reported (10, 19, 40), human Ad5 neutralizing antibody
titers were �200 in 67.4% of individuals in sub-Saharan Africa
and �1,000 in 43.1%. Neutralizing antibody titers to human Ad26
were lower, with titers being �200 in 27.1% of individuals in
sub-Saharan Africa and �1,000 in 6.3% of individuals in sub-
Saharan Africa. For the chimpanzee virus ChAd24, antibody titers
were generally low (
200), but 45% of individuals were still sero-
positive. In contrast, the seroprevalence of the novel rhesus mon-
key adenoviruses was extremely low in these populations, with less
than 10 to 15% being seropositive and nearly all having low titers
of 
200. The seroprevalence of these rhesus monkey adenovirus
vectors was also lower than the published seroprevalence of other
human, chimpanzee, and simian Ad vectors in sub-Saharan Afri-
can human populations (19, 21, 23). We next determined the
seroprevalence in 108 naive rhesus monkey serum samples, as
shown in Fig. 4B. As expected, monkeys showed little to no sero-
prevalence of the human and chimpanzee adenoviruses, but the
rhesus monkey adenoviruses demonstrated intermediate neutral-
izing antibody titers, in particular, for RhAd52.

Transgene expression and immunogenicity in mice. To de-
termine if the novel vectors would express the encoded transgenes,

A549 cells were transduced at an MOI of 4,000 with Ad26,
ChAd24, RhAd51, RhAd52, or RhAd53 expressing HIV-1 459C
Env gp140. Transgene expression in cell lysates was assessed uti-
lizing the MAb 5F3, as shown in Fig. 5. All novel rhesus monkey
adenovirus vectors expressed the full-length transgene at levels
comparable to those at which the Ad26 vector expressed the same
transgene.

To assess Env-specific humoral immune responses, BALB/c
mice were immunized (n � 4) with a single injection of 1 � 109 or
1 � 108 vp of adenovirus vectors expressing HIV-1 459C Env
gp140. Sera from day 0 preimmunization and day 28 postimmu-
nization were evaluated by ELISA. As shown in Fig. 6, all vectors
induced binding antibodies to heterologous HIV-1 C97ZA012
and mosaic Env gp140 and to the homologous HIV-1 459C Env
gp140. The titers were comparable to those induced by immuni-
zation with purified HIV-1 459C Env gp140 with CpG and Emul-
sigen adjuvant for all vectors except that carrying RhAd51, which

FIG 4 Seroprevalence of antibodies to the novel rhesus monkey adenoviruses.
The seroprevalence of the novel rhesus monkey adenoviruses compared to that
of human Ad5 and Ad26 and ChAd24 in 80 South African and 64 Rwandan
human serum samples (A) and in 108 naive rhesus monkey serum samples (B)
was determined. Undetectable and low titers are shown in yellow and red,
respectively; medium and high titers are shown in blue and black, respectively.

FIG 5 Transgene expression by novel rhesus monkey adenovirus vectors. A
Western blot of lysates of cells collected 48 h postinfection with HIV-1 Env-
expressing adenoviruses is shown. MAb 5F3 was used as the primary antibody,
and purified HIV-1 Env protein was used as the positive control.

FIG 6 Humoral immune responses in mice. BALB/c mice (n � 4) received a
single immunization with 108 or 109 vp of Ad vectors expressing HIV-1 459C
Env gp140 at day 0. Immunization with purified protein was used as the pos-
itive control. The titers of antibodies to heterologous HIV-1 C97ZA012 and
Mosaic Env gp140 as well as to homologous 459C Env gp140 in serum were
determined by ELISA on day 0 and day 28. Red lines, medians; dotted lines,
titer cutoff 2 times the average background titer.
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induced antibody titers lower than those induced by the other
vectors.

To assess Gag-specific cellular immune responses, C57BL/6
mice (n � 8) were immunized with a single injection of 1 � 109,
1 � 108, or 1 � 107 vp of ChAd24, RhAd51, RhAd52, RhAd53, or
human Ad26 expressing SIV mac239 Gag. Blood was obtained at
weekly intervals to determine SIV Gag-specific CD8� T-lympho-
cyte responses by Db/AL11 tetramer binding assays as previously
described (31). As seen in Fig. 7A, all the rhesus monkey vectors
induced CD8� T-cell responses comparable to those induced by
Ad26 and ChAd24. With a dose of 1 � 107 vp, cellular immune
responses were low. These results were confirmed by IFN-�
ELISPOT assays with splenocytes harvested at day 28, as shown in
Fig. 7B. All novel rhesus monkey vectors induced comparable cel-
lular immune responses at both 1 � 109 and 1 � 108 vp following
stimulation with a Gag peptide pool, the CD8� T-lymphocyte
epitopes AL11 and KV9, and the CD4� T-lymphocyte epitope
DD13.

Receptor studies. We next assessed whether the novel rhesus
monkey Ads utilized the well-described CAR or CD46 cellular
receptors that are used by Ad5 and Ad26, respectively (41, 42).
A549 cells were infected with human Ad5, human Ad26, RhAd51,
RhAd52, or RhAd53 expressing eGFP and analyzed by flow cy-
tometry. To evaluate receptor usage, cells were preincubated with
various concentrations of anti-CAR (E1-1 and 3C100) and anti-
CD46 (M177 and MEM-258) monoclonal antibodies (41). As
shown in Fig. 8, Ad5 was inhibited by anti-CAR MAbs but not by
anti-CD46 MAbs, as expected (41). RhAd51 was also inhibited by
anti-CAR MAbs, suggesting that RhAd51 can utilize CAR for viral
entry. Ad26 was inhibited by anti-CD46 but not anti-CAR MAbs,
as we have previously reported (41). RhAd52 and RhAd53 were
not inhibited by either anti-CAR or anti-CD46 MAbs under the
experimental conditions tested, suggesting that these viruses may
utilize a different, as yet unidentified receptor for cell entry.

Innate immune cytokine profiles. To assess innate immune

cytokine profiles, rhesus monkey PBMCs were isolated and stim-
ulated at an MOI of 1,000 vp/cell of adenovirus vectors for 24 h,
after which the supernatants were analyzed by Luminex assays, as
previously described (33). As shown in Fig. 9, RhAd52 and
RhAd53 induced significantly higher IFN-� responses than hu-
man Ad5, human Ad26, human Ad35, and ChAd24. RhAd53 also
induced significantly higher interleukin-2 (IL-2) responses than
all other vectors. In addition, trends toward higher levels of mul-
tiple other cytokines were also observed, including tumor necrosis
factor alpha (TNF-�), IL-6, macrophage inflammatory protein 1�
(MIP-1�), and MIP-1. The chemokine and cytokine responses
induced by RhAd51 were consistently lower than those induced by
RhAd52 and RhAd53 for all chemokines and cytokines tested.
These data suggest that the novel rhesus monkey adenoviruses
induced distinct innate immune profiles compared with those in-
duced by the human and chimpanzee adenoviruses that were
tested.

DISCUSSION

In this study, we isolated three novel rhesus monkey adenoviruses
by metagenomics sequencing of stool samples followed by virus
expansion and whole-genome sequencing. These rhesus monkey
adenoviruses proved to be most closely related to adenovirus spe-
cies G, and their genetic structure resembled that of other human
or chimpanzee adenoviruses. We then vectorized these novel ad-
enoviruses, and the resultant vectors exhibited growth character-
istics similar to those of human adenovirus vectors in standard
human complementing and noncomplementing cell lines. Fur-
thermore, they stably expressed multiple transgenes and proved
highly immunogenic in mice. These data suggest that these rhesus
monkey adenoviruses may prove useful as a novel class of vaccine
vectors.

A major research focus over the past several years has been the
development of novel adenovirus vaccine vectors, apart from Ad5,
that exhibit a lower seroprevalence in humans in the developing

FIG 7 Cellular immune responses in mice. (A) A single immunization of C57BL/6 mice with 1 � 109, 1 � 108, or 1 � 107 vp of vectors expressing SIV Gag at
day 0. Gag-specific CD8� T cells were detected in serum by Db/AL11 tetramer binding assays at weekly intervals. (B) Spleens were harvested at day 28 and
evaluated by IFN-� ELISPOT assays after stimulation with the DDR13, KV9, and AL11 epitopes as well as a whole SIV Gag peptide pool. SFC, number of
spot-forming cells.
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world. Most efforts to date have focused on alternative serotypes
of human adenovirus vectors and chimpanzee adenovirus vectors,
both of which are currently being evaluated in clinical trials (1, 13,
43, 44). However, these vectors still show a degree of seropreva-
lence in the developing world, and human and chimpanzee ad-
enoviruses exhibit interdigitating phylogeny. Bovine and avian
adenovirus vectors have also been produced and are more dis-
tantly related to human and chimpanzee adenovirus vectors, but
the clinical development of these vectors may be slowed by the

potential need to develop novel production cell lines (17, 18). In
contrast, the novel rhesus monkey adenoviruses that we describe
here show the unique combination of extremely low seropreva-
lence in sub-Saharan Africa and efficient growth in typical human
complementing cell lines, which provide both theoretical and
practical advantages.

The novel rhesus monkey adenovirus vectors expressed trans-
genes and induced humoral and cellular immune responses in
mice comparable to the immunogenicity observed with human

FIG 8 Receptor binding assays. A549 cells were infected with eGFP-labeled adenovirus vectors alone or after 1 h preincubation with anti-CAR (E1-1, 3C100) or
anti-CD46 (M177, MEM-258) antibodies. Cells were washed, harvested, fixed after a 48-h incubation period, and analyzed by flow cytometry. Antibody
concentrations are in �g/ml. The value for transduced cells in the absence of antibody was normalized to 100%.

FIG 9 Cytokine and chemokine responses elicited in rhesus monkey PBMCs. PBMCs (n � 3) were stimulated with 1 � 103 vp/cell of various adenovirus vectors
and incubated for 24 h. Cytokine and chemokine responses were measured by Luminex assays. Lipopolysaccharide at 1 ng/ml was used as a positive control.
Statistical analysis was done with one-way analysis of variance between all groups. ***, P � 0.0001; *, P 
 0.03.
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adenovirus vectors. However, their biology was substantially dif-
ferent, as RhAd52 and RhAd53 did not utilize CAR or CD46 for
cell entry. Moreover, the cytokine and chemokine profiles in cells
transduced with the RhAd vectors were markedly different from
those in cells transduced with Ad5, although the impact of these
differential innate immune profiles remains unclear.

Evaluations of a wide variety of adenovirus vectors in preclin-
ical models and phase I clinical trials for multiple pathogens have
shown promising results, although HIV-1 vaccine efficacy trials
using human Ad5 in humans have failed (45, 46). We have re-
ported partial protection against repeated challenges with the
difficult-to-neutralize simian-human immunodeficiency virus
(SHIV) SF162P3 by the use of human Ad26 vectors in combina-
tion with modified vaccinia Ankara (MVA) vectors expressing
HIV-1 antigens in rhesus monkeys (3). In a comparative study in
mice, the ChAd3 vector was shown to be more immunogenic than
Ad28, sAd11, ChAd63, sAd16, and Ad35 vectors in terms of the
magnitude, quality, phenotype, and protective capacity of CD8�

T-cell responses (23). In addition, a ChAd3 hepatitis C virus vac-
cine vector in a phase I clinical trial has been shown to induce
strong T-cell responses with a good safety profile (44). ChAd3 is
also currently being explored as a vaccine vector in a clinical trial
for Ebola virus disease (www.ClinicalTrials.gov registration no.
NCT02231866). Moreover, a single immunization with ChAd68
induced long-lasting protection against rabies virus by the induc-
tion of neutralizing antibodies in nonhuman primates (47). The
Ad vector PanAd3, which was isolated from bonobos and which
was engineered to express an influenza A virus matrix 1 and nu-
cleoprotein fusion antigen, provided significant protection
against a lethal dose of a highly pathogenic challenge influenza
virus in mice (48). The novel rhesus monkey adenovirus vectors
described in the present study represent a new class of vaccine
vectors with unique advantages and distinct biology.

In conclusion, we have produced and characterized a set of
novel rhesus monkey adenovirus vaccine vectors which phyloge-
netically cluster as adenovirus species G and which have not pre-
viously been investigated as vaccine candidates. The immunoge-
nicity of these novel vectors is comparable to that of other highly
immunogenic human and chimpanzee adenovirus vectors. These
novel vectors will likely not be subject to preexisting immunity in
human populations and are biologically different from existing
human and chimpanzee adenoviruses. Further studies are there-
fore warranted to examine their potential as vaccine candidates.
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