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The advent of high-throughput sequencing has led to a tremendous increase in the rate of discovery of viral sequences. In some
instances, novel pathogens have been identified. What has been less well appreciated is that novel virus discoveries in distinct
hosts have led to the establishment of unique experimental systems to define host-virus interactions. These new systems have
opened new frontiers in the study of fundamental virology and infectious disease.

NEXT-GENERATION SEQUENCING (NGS) CATALYZES THE
RATE OF VIRUS DISCOVERY

In the past decade, new developments in sequencing technology,
along with commensurate bioinformatic capability and tools

and their application to interrogate samples for the presence of
virus-derived nucleic acids, have led to a dramatic increase in the
rate at which novel virus sequences have been discovered. In single
studies of diverse specimen types, evidence for literally tens to
hundreds of novel viruses can now be generated. This has resulted
in a near-quadrupling of the number of unique virus species in
GenBank since 2005 (Fig. 1). These observations have demon-
strated that the world of viruses is vastly greater than previously
recognized. For the past half-century, the predominant viruses
that were known and studied were those that could be grown in
cell culture systems, and it was only on rare occasions that viruses
were identified that could not be cultured (e.g., human norovirus
or hepatitis C). Thus, our perspective on the diversity of viruses
has been heavily biased toward those that could be propagated in
a very limited set of experimental culture systems. In many re-
gards, this situation parallels the 1990-era observations in the bac-
terial world when consensus 16S rRNA gene sequencing demon-
strated a much greater diversity of bacterial taxa than had been
previously identified by culturing.

The goal of this Gem is to describe the most substantive fruits
arising from the NGS revolution. Technical aspects of viral discov-
ery by NGS are not discussed here. Rather, the focus is on provid-
ing exemplars of novel pathogens and novel model systems that
have emerged from the first decade of NGS-based virus-discovery
efforts.

IDENTIFICATION OF NOVEL PATHOGENS

Many novel viruses have been identified by application of NGS to
diseased specimens, thereby generating candidate agents that may
play causal roles in the disease in question. Two examples that
illustrate new paradigms emerging from virus-discovery efforts
are presented.

Merkel polyomavirus and human cancer. For decades, there
has been controversy as to whether polyomaviruses, which have
well-defined transforming properties in animal models, play
causal roles in any human tumors. In 2008, NGS analysis of spec-
imens collected from Merkel cell carcinoma, a rare tumor that
develops more frequently in immunocompromised individuals,
identified a novel polyomavirus. Merkel polyomavirus was clon-
ally integrated in multiple tumors, and subsequent analyses dem-

onstrated the presence of this virus in �80% of Merkel cell carci-
nomas tested (1). The data accumulated to date provide the
strongest evidence implicating a polyomavirus in the etiology of a
human cancer. Furthermore, detailed analysis of the Merkel ge-
nome led to the identification of a novel open reading frame
termed ALTO (2). While its function is still cryptic, comparative
genomic analyses suggest that there is an entire clade of polyoma-
viruses that encode ALTO. Thus, from this discovery, not only was
a novel pathogen identified, but new insights into the fundamen-
tal virologic and evolutionary properties of polyomaviruses that
were not previously recognized were gleaned.

Astrovirus VA1 and PS. Astroviruses have traditionally been
associated with gastrointestinal disease in humans and animals.
Therefore, it was not surprising when application of NGS to stool
samples from an unexplained outbreak of gastroenteritis in a Vir-
ginia day care center led to the discovery of a novel astrovirus,
astrovirus VA1, that was present in multiple samples from the
outbreak (3). More surprising was the identification of astrovirus
PS, a virus that shares 95% nucleotide identity with astrovirus
VA1, in brain tissue of an immunocompromised child with unex-
plained encephalitis (4). The detection of this novel astrovirus in
brain tissue strongly implicates this virus as the cause of the pa-
tient’s symptoms and represents the first example of astrovirus-
associated neurologic disease in humans. Interestingly, additional
NGS studies have also identified other novel astroviruses associ-
ated with neurologic diseases of cows and mink (5, 6). Taken
together, these NGS-based studies have expanded our under-
standing of the tissue tropism and potential disease spectrum of
astroviruses.

ESTABLISHMENT OF NEW ANIMAL EXPERIMENTAL MODELS

Aside from identifying novel pathogens, a key benefit from the
flurry of virus discovery activities has been the establishment of
new animal model systems for understanding viral pathogenesis
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and virus-host interactions. This includes model systems for spe-
cific pathogens and more generalized models to examine broader
questions of fundamental host-virus interactions.

Animal hepatitis C models. For many years, studies of hepa-
titis C were limited by the absence of a cell culture system and the
lack of small-animal models. The recent discoveries of rodent (7,
8) and canine (9) homologs of hepatitis C virus provide avenues to
develop new small-animal models for the study of these relatives
of hepatitis C virus. While these studies are only in their infancy,
paradigms for the effectiveness of such parallel rodent models
include studies of murine gammaherpesvirus 68 as a surrogate for
understanding Epstein-Barr virus and Kaposi’s sarcoma herpesvi-
rus and the use of murine norovirus as a model for human noro-
virus.

Bats as reservoirs of viral diversity. A major finding of the past
decade has been the identification of bats as a source of tremen-
dous virus diversity. Catalyzed in large part by the discovery of
severe acute respiratory syndrome (SARS)-like coronavirus in
bats, subsequent NGS- and taxon-specific consensus PCR-based
virus-discovery efforts have demonstrated that bats harbor novel
sequences derived from many known viral families (10–12). How-
ever, efforts to progress beyond discovery to experimentally char-
acterize these viruses have been hampered by the general inability
to cultivate the majority of the novel bat viruses in common mam-
malian cell lines. Thus, significant effort in recent years has fo-
cused on developing bat reagents—including genomics, tran-
scriptomics, and new immortalized bat cell lines and primary bat
cultures (13–16). Such tools are critically important for defining
the fundamental aspects of viral infection in bats, which in turn
will help to resolve issues such as what makes bats such permissive
hosts of viral infection and what factors govern cross-species
transmission of viruses from bats. It seems likely that with the
development of appropriate bat cell culture systems, the experi-
mental tractability of bat viruses will mature much as the devel-
opment of insect cell cultures in the 1960s revolutionized the cul-
ture of arboviruses.

Virus infection in the model organism C. elegans. Caeno-
rhabditis elegans is a highly genetically tractable model organism
that has played key roles in the discoveries of broadly conserved
fundamental processes such as the caspase cell death pathways and
RNA interference. However, its utility in the study of virus-host
interactions has been limited due to the absence of any viruses
known to naturally infect C. elegans. In fact, although nematodes
are among the most abundant and diverse animal species on earth,

there were no viruses naturally infecting any nematode that had
been molecularly characterized until 2011, when Orsay virus, the
first and, to date, only known virus capable of infecting C. elegans,
was discovered (17). Orsay virus is a positive-sense RNA virus
most similar to nodaviruses. Experimental conditions for infec-
tion of the laboratory reference C. elegans strain, as well as a viral
reverse genetic system for Orsay virus (18), have now been estab-
lished, providing a robust new model system to define proviral
and antiviral factors against this RNA virus. Such studies may not
only provide new insights into invertebrate virology; because
�40% of the genes in C. elegans are conserved in mammals, the
system also has the potential to identify host pathways that are
broadly evolutionarily conserved. The discovery of Toll in Dro-
sophila and the subsequent characterization of Toll-like receptors
in vertebrates provide a paradigm for the power of model organ-
ism studies of infection and immunity.

FUTURE DIRECTIONS AND CHALLENGES

It is clear that the advent of NGS has triggered a new age of dis-
covery of novel virus sequences. Continued application to hu-
mans, animals, plants, and environmental niches will continue to
uncover novel virus diversity for some time. Recent estimates for
mammals suggest that on the order of 105 novel viruses remain to
be discovered (19), which would provide much fodder for future
studies. These include traditional efforts to define pathogenic
roles of novel viruses in diseases as well as the exploitation of new
genomes to identify novel genes, properties, or host interactions
absent in their previously described relatives by comparative anal-
yses. Furthermore, additional novel experimental models will un-
doubtedly arise from the multitude of new viruses identified. One
limitation is that current NGS-based virus-discovery methods still
rely largely upon alignment to known viruses; thus, truly novel
viruses from previously unrecognized taxa will continue to evade
detection until robust alignment-independent bioinformatic
tools are developed. In addition, the rate of discovery of new viral
sequences has rapidly outpaced the rate at which culture systems
for viruses have been developed, thereby limiting experimental
studies of these new viruses. To maximally benefit from the wealth
of viruses being discovered, there must be commensurate effort
and resources dedicated to building fundamental tools and re-
agents for propagating these novel viruses. Despite these chal-
lenges, there will clearly be more low-hanging fruit to be picked
and exploited to advance our understanding of fundamental vi-
rology and viral pathogenesis.
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FIG 1 Novel virus sequences deposited in GenBank based upon NCBI taxonomy
criteria. The cumulative numbers of unique virus species nodes are plotted.
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