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Introduction
Articular cartilage defects and meniscal lesions have a 
reduced capacity for regeneration. The concept of using 
gene transfer strategies for cartilage repair originates from 
the idea of transferring genes encoding therapeutic factors 
into the repair tissue, resulting in a temporarily and spa-
tially defined delivery of the therapeutic molecule. In this 
review, we will focus on gene therapy approaches for the 
repair of articular cartilage and meniscal fibrocartilage, 
including articular cartilage defects resulting from acute 
trauma, osteochondritis dissecans, osteonecrosis, and oste-
oarthritis. Possible applications for meniscal repair will be 
described for meniscal lesions, meniscal sutures, and 
meniscal transplantation. As a discussion of cartilage dam-
age resulting from rheumatoid arthritis is beyond the scope 
of this review, we refer to the many reviews already pub-
lished on this subject.1-9

Principles of Gene Therapy
Gene transfer is the introduction of foreign genes or gene 
sequences into different types of cells. Gene therapy is the 
treatment of diseases using gene transfer techniques. Gene 
transfer via nonviral vectors is named transfection; gene 
transfer using viral vectors is termed transduction. The 
foreign genetic material enters the cell and is next trans-
ferred towards the nucleus, where it either integrates into 

the host genome or remains extrachromosomal as an epi-
some that generally allows only for transient transgene 
expression. For therapeutic applications, gene transfer into 
a sufficiently high number of target cells is essential for the 
secretion of relevant concentrations of the transgene prod-
uct. Current vectors available for use in gene therapy 
include nonviral approaches (naked DNA, physical and 
chemical methods) and various viral (adenoviral, HSV, 
retroviral, lentiviral, rAAV) vehicles (Table 1).

Among the nonviral systems, chemical methods of com-
plexing DNA to various macromolecules include cationic 
lipids and liposomes,10-12 polymers,13 polyamines and poly-
ethylenimines,14,15 and nanoparticles,16 but also calcium 
phosphate coprecipitates17 are mainly used. Nonviral sys-
tems avoid the risk of acquiring replication competence 
inherent to viral vectors, can be repeatedly administered, 
have the capacity to carry large therapeutic genes, are rela-
tively easy to produce on a large scale, and do not elicit a 
detectable immune response. Nevertheless, their efficacy is 
often inferior to those of viral vectors. Moreover, the fact 
that they stay as episomal forms in the target cells often 
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results in short-term transgene expression. To avoid low 
gene transfer efficacy in vivo, nonviral gene transfer strate-
gies are often based on the transplantation of ex vivo–
modified cells to cartilage defects.

Viral vectors utilize natural entry pathways in human 
cells. Adenoviral vectors have been among the most 
employed gene vehicles for cartilage repair in the past.18-22 
They allow for high transduction efficiencies and transgene 
expression in a variety of cells, enabling direct approaches 
in vivo. However, serious concerns about their clinical 
safety were raised after the death of Jesse Gelsinger, a 
patient included in a gene therapy trial employing adenovi-
ral vectors. Moreover, transgene expression via adenoviral 
delivery is limited for about 1 to 2 weeks as the transgenes 
remain episomal and due to the development of host 
immune responses against transduction with most of the 
constructs derived from these viruses.

An advantage of retroviruses is their ability to integrate 
in the genome of the target, allowing for the replication and 
maintenance of the transgene over extended periods of 
time. Yet, this might lead to insertional mutagenesis, with 
the potential for activating tumor genes. Also, retroviral 
vectors do not transduce nondividing cells and have a 
restricted host range. As for nonviral systems, ex vivo 

approaches with selection of transduced cells are usually 
required with retroviral vectors23-27 because they are pro-
duced only at relatively medium titers and do not exhibit 
very high efficiencies. Instead, lentiviral vectors, a subclass 
of retroviruses derived from the human immunodeficiency 
virus (HIV), can integrate in the genome of nondividing 
cells.28 Therefore, such vectors might be good alternatives 
to the use of retroviruses, as they show also higher levels of 
transduction in vivo and avoid the need for cell division.29,30 
Yet, there are common concerns associated with their appli-
cation, including the potential for insertional mutagenesis 
and the psychological problem of introducing genetic mate-
rial carrying HIV sequences.

Herpes simplex virus (HSV)–derived vectors are large 
vehicles that can deliver long transgenes to almost all 
known cell types, including nondividing cells. Although 
first-generation vectors induced high levels of cytoxicity, 
recent work has demonstrated that second-generation HSV 
were less deleterious, in particular for cartilage repair.31 
One problem remains the transient nature of transgene 
expression mediated by this family of vectors.

In any case, the direct application of viral vectors raises 
legitimate safety concerns, as potentially infectious agents 
or sequences (especially lentiviral vectors) might be intro-

Table 1. Nonviral and Viral Gene Vectors Suitable for Gene Transfer to Cartilage Defects

Nonviral Systems Viral Systems

  Liposomes

Others
(Chemical, 

Electrical, and 
Mechanical 
Methods) Adenovirus Retrovirus

Herpes Simplex 
Virus (HSV)

Adeno-Associated 
Virus (AAV)

Advantages Independent from cell cycle
Noninfectious; repeatedly 

applicable
Low toxicity
Large capacity
Easy to manufacture

Very high efficiency
Independent from cell 

cycle
Approved for clinical 

trials

High efficiency
Prolonged transgene 

expression

High efficiency
Independent 

from cell cycle
Large capacity

Very high efficiency
Prolonged 

transgene 
expression

Independent from 
cell cycle

Noninfectious; 
repeatedly 
applicable

Shortcomings Cell-specific efficiency
Short-term transgene 

expression

Infectious with 
induction of immune 
response; single 
application only

Cytotoxicity
Risk of replication 

competence
Short-term transgene 

expression

Insertional 
mutagenesis

Dependent from cell 
cycle

Risk of replication 
competence

Restricted host range

Short-term 
transgene 
expression

Cytotoxicity 
(first-
generation 
HSV)

Difficult to 
manufacture

Integration in 
host genome

No No Yes No No

Note: Properties of nonviral and viral gene vectors currently in clinical and experimental use for gene therapy approaches to cartilage defects.



Madry et al.	 203

duced per se in the body. This is of particular importance 
for the treatment of cartilage and meniscal lesions that are 
not life-threatening disorders. In this regard, adeno-associ-
ated viral vectors (AAV), which are based on the nonpatho-
genic, replication-defective human parvovirus AAV,32 
might prove more adequate in direct gene therapy settings. 
Vectors based on AAV (rAAV) are produced by complete 
removal of the viral gene coding sequences, making them 
less immunogenic than adenoviral vectors and less toxic 
than HSV. Also, the latter vectors generally mediate only 
short-term expression of the transgenes they carry, whereas 
rAAV can be transcribed for months to years due to the 
stabilization of the episomal transgene cassettes by con-
catemer formation.33-36 Cell division and integration are not 
required for expression of the foreign material delivered, in 
marked contrast with retroviral vectors.37 Redosing of vec-
tors is practicable with rAAV, based on the manipulation of 
various available serotypes of the virus. For these reasons, 
rAAV became a preferred gene transfer method for experi-
mental settings in vivo and for clinical applications.35,36,38,39

The greatest obstacle to develop efficient gene transfer 
protocols targeting sites of articular cartilage and meniscal 
fibrocartilage damage so far has been the restrained acces-
sibility of the lesions to a treatment. Therefore, the follow-
ing experimental approaches are currently employed to 
transfer genes to sites of interest in vivo (Fig. 1):

1.	 intra-articular injection of the therapeutic formula-
tion, and

2.	 administration of the therapeutic formulation to 
the defect via arthrotomy:

2.1.	direct application of a gene vector to the repair tissue,
2.2.	application of biomaterials carrying a gene vector, 

and
2.3.	matrix-supported application of ex vivo genetically 

modified cells.

The target cells in which genes may be transferred 
include the following:

1.	 progenitor cells (e.g., resulting from marrow-stim-
ulating techniques or transplanted cells),

2.	 isolated articular chondrocytes or meniscal fibro-
chondrocytes that are transplanted into the defect, 
and

3.	 cells of the tissues adjacent to the defect:
3.1. articular cartilage: articular chondrocytes from the 

adjacent cartilage, osteoblasts, and osteocytes from 
the subchondral bone; and

3.2.	meniscal tissue: meniscal fibrochondrocytes, syn-
oviocytes from the synovial lining, and fibroblasts 
from the joint capsule.

Figure 1. Therapeutic genes may be transferred to sites 
of articular cartilage damage or to meniscal lesions in vivo 
via intra-articular injection or by direct application into 
the lesion. Intra-articular injection (upper panel) of the 
therapeutic formulation (most often a viral vector) results 
in a nonselective transduction of many intra-articular tissues. 
Direct administration of the therapeutic formulation (lower 
panel) to the target lesion (e.g., an articular cartilage defect) 
can be achieved by directly applying a gene vector to the repair 
tissue in the defect (left), by matrix-supported application (e.g., 
alginate) of target cells (e.g., articular chondrocytes, meniscal 
fibrochondrocytes, progenitor cells) that were previously 
genetically modified ex vivo (middle), or by application of a gene 
vector attached to a biomaterial (right). In vivo, it often includes 
an arthrotomy.
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Articular Cartilage
Introduction
Anatomy, Function, and Pathophysiology. Adult hyaline articu-
lar cartilage is avascular tand aneural and does not possess 
a lymphatic drainage.40 Its major function is to allow for a 
smooth gliding of the articulating surfaces of a joint and to 
protect the subchondral bone from mechanical stress. Hya-
line articular cartilage is structured in several laminar 
zones and formed by chondrocytes that are surrounded by 
an intricate network of extracellular matrix. This cartilagi-
nous matrix is rich in proteoglycans and collagen fibrils 
composed of type II collagen but also contains types VI, 
IX, XI, and XIV collagens and a number of additional 
macromolecules.41 Normal hyaline articular cartilage con-
tains about 70% to 80% water, which is mainly bound to 
proteoglycans. Articular chondrocytes synthesize and 
degrade the extracellular matrix, thereby regulating the 
structural and functional properties according to the 
applied loads.

The integrity of articular cartilage can be disrupted as a 
result of mainly 4 different etiologies.42 These include focal 
articular cartilage defects resulting from an acute trauma, 
osteoarthritis, osteonecrosis, and osteochondritis disse-
cans.43 The resulting articular cartilage defect is character-
ized as being either chondral, involving only the 
cartilaginous zones, or osteochondral, reaching further into 
the subchondral bone.44 Although a chondral defect may be 
in part repopulated by cells from the synovial mem-
brane,45,46 it usually remains and may expand over time. An 
osteochondral defect is filled with a blood clot that forms if 
the bone marrow communicates with the defect.47,48 The 
pluripotent, undifferentiated mesenchymal cells of the 
blood clot differentiate into chondrocytes and osteoblasts 
that later form the cartilaginous repair tissue and the new 
subchondral bone. However, over time, this repair tissue 
increasingly exhibits characteristics of fibrocartilage, such 
as an increased type I and a decreased type II collagen con-
tent and may degenerate after several years.48 If left 
untreated, secondary osteoarthritis of the joint may result.
Chondrogenic Therapeutic Factors. Strategies for enhancing 
chondrogenesis in an articular cartilage defect aim at improv-
ing the differentiation of mesenchymal cells into chondro-
cytes for cartilage repair and osteoblasts for the repair of the 
subchondral bone, the production and maintenance of a new 
cartilaginous matrix rich in type II collagen and proteogly-
cans, at increasing the cellularity of the repair tissue to pre-
vent the hypertrophic differentiation of chondrocytes, and at 
inhibiting articular cartilage degeneration.

Growth and transcription factors are good candidates 
for these approaches. The therapeutic efficacy of polypep-
tide growth factors is, however, diminished by their short 
half-lives.49-51 For example, the fibroblast growth factor-2 

polypeptide has a plasma half-life of less than 1 hour and is 
cleared in some hours after intra-articular administration.50 
To overcome this problem, the idea of applying the gene 
encoding for a particular therapeutic protein has gained 
attraction.

Candidate factors to support chondrogenesis include 
members of the transforming growth factor beta (TGF-β) 
superfamily such as TGF-β1 and TGF-β2,27,52,53 bone mor-
phogenetic protein 2 (BMP-2),51,53 BMP-7,54,55 members of 
the fibroblast growth factor family such as the basic fibrob-
last growth factor (FGF-2),56 growth/differentiation factor 
5 (GDF-5),57 and the parathyroid hormone–related protein 
(PTHrP).58,59 Cell proliferation is promoted, among others, 
by FGF-260,61 and the insulin-like growth factor I (IGF-I).62 
Particularly potent candidates to stimulate matrix synthesis 
include IGF-I,63,64 BMP-2 and BMP-7, and the cartilage-
derived morphogenetic proteins (CDMP).65,66

Transcription factors directly modulate the expression of 
genes involved in chondrogenesis, such as type II collagen or 
aggrecan. Experimental models have demonstrated the chon-
drogenic properties of transcription factors, such as SOX9,67 
Cbfa-1/Runx-2,68 Cart-1,69 the Ets family members,70 and 
various signaling molecules as well as extracellular matrix 
glycoproteins themselves.71,72 Another attractive approach is 
to inhibit degenerative pathways within the repair tissue. 
Potential targets include cytokines that mediate catabolic 
events, in particular the members of the interleukin-1 (IL-1),73 
IL-17,74 and tumor necrosis factor (TNF)75 families. These 
strategies are based on the inhibition of the production of 
matrix-degrading enzymes,76 proinflammatory mediators,75 
as well as apoptotic mechanisms.77

Traumatic Articular Cartilage Defects
Intra-articular Injection. Intra-articular injection is a convenient 
way to target the joint space and has been studied using naked 
DNA78 or adenoviral,79,80 retroviral,81,82 HSV,79 lentivirus,29 
rAAV,81,83,84 and nonviral vectors.79,85 In 1998, Ikeda et al.80 
injected adenoviral vectors encoding for the TGF-β1 gene 
into the joints of guinea pigs and reported elevated TGF-β1 
levels in the synovial fluid for 2 weeks following gene 
delivery. The effectiveness of a direct intra-articular gene 
therapy approach in combination with a marrow stimula-
tion technique has been shown by Morisset et al.86 Full-
thickness chondral defects in equine stifle and knee joints 
were treated by microfracturing, followed by intra-articular 
application of adenoviral vectors carrying the genes for 
interleukin-1 receptor antagonist protein (IL-1Ra) and IGF-
I. Sixteen weeks postoperatively, articular cartilage defects 
treated with IL-1Ra and IGF-I showed increased proteogly-
can content and type II collagen expression compared with 
defects treated using a marrow-stimulating technique alone. 
Yet, articular cartilage defects cannot be specifically 
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targeted with this approach since the transgene is expressed 
mainly in cells of the synovial membrane and gene transfer 
into articular cartilage defect is a very rare event. There-
fore, many of the gene-based approaches have focused on 
direct gene vector delivery into a defect exposed by arthrot-
omy (Table 2).

Arthrotomy
Direct application of a gene vector in vivo. The direct delivery of 
therapeutic genes into cartilage defects in depth has long 
been arduous due to the reduced capability of nonviral and 
various viral vectors to penetrate the dense extracellular 
cartilaginous matrix. Following arthrotomy and gene vec-
tor application to cartilage defects, limited transgene 
expression was observed only in the superficial cartilage 
layers.80 With the implementation of rAAV vectors, direct 
gene transfer to cells within defects and adjacent cartilage 
has met success. Reporter gene studies demonstrated effi-
cient transgene expression in normal and osteoarthritic 
human articular chondrocytes within their native matrix in 
situ to depths relevant for clinical applications.87 Moreover, 
transgene expression was also present in chondral and oste-
ochondral articular cartilage defects in vivo for at least 4 
months.87 rAAV vectors have been manipulated recently to 
deliver therapeutic genes such as FGF-2 directly into osteo-
chondral cartilage defects.36 Cartilage repair was signifi-
cantly enhanced 4 months after vector application.36

Application of biomaterials carrying a gene vector into defects. In 
order to avoid a dilution of the therapeutic agents, gene 
vectors or modified cells can be delivered in conjunction 
with biomaterials such as fibrin, collagen, gelatin, carbohy-
drate-based polymers (polyactic acid/polyglycolic acid, 
hyaluronan, agarose, alginate, chitosan), and artificial poly-
mers (dacron, teflon, carbon fibers, polyestherurethane, 
polybutyric acid, polyethylmethacrylate, hydroxyapa-
tite).45,88 When preparations of adenoviral vectors carrying 
a marker gene were adsorbed onto type II collagen-gly-
cosaminoglycan matrices and implanted into osteochondral 
defects, transgene expression was present until day 21.89

Application of ex vivo genetically modified cells. The direct 
transplantation of cells genetically modified ex vivo 
involves their isolation, genetic modification, and reim-
plantation into articular cartilage defects. These modified 
cells can be applied without (e.g., as coagulated bone mar-
row aspirate) or with supportive matrices. Such compo-
nents include alginate,90-92 agarose,93,94 fibrin or type I 
collagen gels without95-97 or with a periosteal flap,98,99 and 
synthetic biodegradable scaffolds.100-102 Kang et al. were 
the first to transplant genetically modified cells into an 
articular cartilage defect in vivo.103 In this study, chondro-
cytes were transduced with a retroviral vector. Other studies 
used nonviral,104-106 adenoviral,89,96,107 retroviral,103,108-111 
and rAAV vectors112 to deliver marker genes in defects via 
ex vivo–modified cells. Although engineered chondrocytes 

are generally transplanted,21,96,103,104,106,111,113 fibroblasts,27,114 
perichondrial,105 periosteal,108,112 or muscle-derived cells109 
have been also applied. The data from these studies showed 
that transgenes can be expressed in cartilage defects via ex 
vivo strategies, remaining active for about 1 month. This is 
significantly longer compared with the application of recom-
binant proteins (Table 2). Figure 2 depicts improvements in 
the repair of osteochondral defects following combined gene 
transfer of IGF-I and FGF-2 compared with the application 
of a marker gene (lacZ) to NIH 3T3 fibroblasts.114

Periosteal cells transduced by a BMP-7 retroviral vector 
and attached to a polyglycolic acid scaffold improved carti-
lage repair at 8 and 12 weeks in vivo. Interestingly, this was 
the first study in which a growth factor gene was transferred 
into a focal defect.25 Since, many reports described the use of 
a variety of therapeutic genes like BMP-2, BMP-7, IGF-I, 
FGF-2, and TGF-β.22,90,91,114-120 Significant improvement in 
articular cartilage repair was noted in these reports (Table 2). 
Although most of the evaluations were carried out in small 
animal models, Hidaka et al.21 and, more recently, Goodrich 
et al.121 performed arthroscopic implantation of chondro-
cytes genetically engineered by adenoviral transduction with 
the BMP-721 or IGF-I121 gene in horses.

On the basis of such encouraging data, cartilage repair was 
addressed by matrix-supported implantation of genetically 
engineered mesenchymal stem cells (MSC). Kuroda et al.122 

Figure 2. Improvement of cartilage repair in a rabbit 
osteochondral defect model in the trochlear groove by combined 
ex vivo gene transfer of human insulin-like growth factor I (hIGF-I) 
and fibroblast growth factor-2 (hFGF-2) in NIH 3T3 fibroblasts 
that were then embedded in alginate spheres and transplanted 
into the defects. Histological appearance of osteochondral defects 
following treatment with a lacZ implant (left column: A, D), an 
IGF-I implant (middle column: B, E), and an IGF-I/FGF-2 implant 
(right column: C, F) stained with safranin O. Images (D-F; 40x) 
are magnified views of A through C (20x), illustrating the area 
of integration between the repair tissue (on the left side of D-
F) with the adjacent normal articular cartilage (on the right 
side of D-F). Implants remained in a subchondral location and 
are visible at the bottom of images (A, B). Transplantation of the 
cotransfected IGF-I/FGF-2 implants accelerated the formation 
of the subchondral bone and improved articular cartilage repair 
in a magnitude that was larger than with IGF-I alone or when 
compared to lacZ implants after 3 weeks in vivo.
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implanted BMP-4–transduced MSCs using fibrin glue in 
full-thickness cartilage defects in the trochlear groove of 
rabbit femurs. After 24 weeks, histological scoring of the 
defects revealed significantly better cartilage repair in the 
BMP-4 treatment group compared with defects receiving 
lacZ-transduced MSCs. Guo et al.123 seeded TGF-β1–
engineered MSCs onto poly-L-lysine–coated polylactide 
scaffolds in vitro and allografted them into full-thickness 
defects in rabbits. This resulted in improved joint repair 
with regard to extracellular matrix formation, reconstitu-
tion of the subchondral bone, and inhibition of inflamma-
tory immune responses. Repair of osteochondral defects 
was also enhanced by transplantation of MSCs transfected 
with the CDMP1 gene, applying a lipofection method.66

A novel method of gene therapy for the repair of osteo-
chondral defects has recently been published by Evans 
et al.124 Rather than genetically modifying isolated cells, 
this technique describes gene transfer to biopsies of muscle 
and fat. An adenovirus vector carrying cDNA encoding 
human BMP-2 was used for genetic engineering of tissues. 

These gene-activated muscle or fad pads were transplanted 
into osteochondral defects in rabbits. Histological analysis 
after 6 weeks revealed the formation of a proteoglycan-rich 
articular surface with subchondral bone beneath and good 
union with the adjacent cartilage.

Ivkovic et al.125 used autologous bone marrow, trans-
duced ex vivo, with adenoviral vectors containing the cDNA 
for TGF-β1. Implantation of the marrow clot improved the 
histological, biochemical, and biomechanical parameters 
of partial-thickness chondral defects in sheep at 6 months.

Osteoarthritis
Osteoarthritis (OA) is the leading, most disabling human 
condition and prevalent form of arthritis (80%), impairing 
the quality of life of millions of people worldwide. OA is a 
chronic disorder of diarthrodial joints, mainly characterized 
by a slow, gradual deterioration of the articular cartilage that 
remains without effective treatment to date. OA not only 
affects the cartilage but also the subchondral bone and, to a 
minor degree, the synovial lining, ligaments, tendons, and 
muscles. Current options to manage OA, such as pharmaco-
logical therapy and reconstructive surgical interventions, do 
not allow for the restoration of a native cartilage. OA is a 
complex disorder characterized by an activation of inflam-
matory cascades at the molecular level, leading ultimately to 
cartilage breakdown, associated with alterations of the phe-
notype of chondrocytes and a loss of the major components 
of the cartilage matrix. Under mechanical or biochemical 
stress (presence of IL-1 and TNF-α, NO, prostaglandins, 
matrix degradation products), the chondrocytes undergo 
pathological changes in their gene expression patterns that 
lead to an impairment of the overall homeostasis, with 
diminished production of normal cartilage matrix molecules 
(proteoglycans, type II collagen), enhanced production of 
matrix-degrading enzymes (MMPs and adamalysins, includ-
ing ADAMs and ADAMTs), and decreased responsiveness 
to reparative stimuli, ultimately leading to the degradation of 
the matrix and cell senescence and apoptosis (NO, Fas/FasL 
signaling) by alteration of cell viability.
Gene Transfer In Vitro. Target cells in the joint include cells of 
the synovial lining, chondrocytes, chondroprogenitor cells, 
and surrounding tissues (bone, muscle, tendons, ligaments, 
meniscus). Application of nonviral,12,79,90,91,126-135 adenovi-
ral,79,126,136-154 or retroviral vectors25,79,126,136,140,155-159 has 
been achieved in these cell types with more or less success. 
Instead, RAAV vectors are potent alternatives as they can 
efficiently and durably transduce synoviocytes,160-164 
chondrocytes,36,87,99,165-168 MSCs,36,38,169,170 and cells of sur-
rounding tissues.126,171-177

Regeneration of a normal structural and functional car-
tilage might be achieved by the following:

Figure 3. Direct rAAV-mediated gene transfer to rabbit meniscus 
explants in vitro using an rAAV-lacZ (left panel) or rAAV-hFGF-2 
vector (right panel) (50 mL each vector). Persistent transgene 
expression after 10 days in vitro in meniscal explants following 
immunohistochemical detection of lacZ (A), while no signal is 
present in the control (B). Direct transduction of a rabbit meniscal 
explant with rAAV-hFGF-2 results in an increased cell density (D) 
compared with the control (C), indicative of the mitogenic effect 
of FGF-2 on meniscal fibrochondrocytes. (C, D) hematoxylin and 
eosin/fast green. All magnifications, 20x.
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1.	 inhibiting inflammatory and catabolic pathways,
2.	 stimulating anabolic pathways to rebuild the matrix,
3.	 impeding cell senescence,
4.	 avoiding the pathological formation of osteophytes,
5.	 prevention of apoptosis, and
6.	 influencing several of these processes.

Inhibition of catabolic pathways has been achieved 
in vitro by expressing inhibitors of matrix-degrading enzymes 
(tissue inhibitor of metalloproteinases, i.e., TIMP),178,179 
inhibitors of proinflammatory cytokines (IL-1Ra, the solu-
ble receptors sIL-1R or Soluble Tumor Necrosis Factor 
Receptor),107,137,150,155,162 and chondroprotective cytokines 
(IL-4, IL-10).160,180,181 Activation of anabolic processes in 
vitro has been noted by single or combined administration 
of components of the cartilage matrix or of the enzymes 
that synthesize them,182,183 of growth factors and receptors 
(IGF-I, FGF-2, BMPs, TGF-β),36,127,131,138,143-

145,147,150,151,181,184,185 and of transcription factors (SOX fam-
ily of DNA-binding proteins, i.e., SOX5, SOX6, 
SOX9).130,136,149,159,167,168 Restoration of cell vitality and 
activation of proliferation in vitro have been achieved by 
application of IGF-I and FGF-2,36,90,127,131,168,185 telomerase 
(hTERT),186 of inhibitors of apoptosis (bcl-2),187 or of 
HSP70.132 Interestingly, approaches that influence several of 
these processes have been also successfully attempted, like 
combining the transfer of inhibitors of catabolism pathways 
and of activators of anabolic events (IGF-I/IL-1Ra or IGF-I/
IL-4),150,151,181 as well as that of activators of anabolic and 
proliferative processes (FGF-2/SOX9 or FGF-2/IGF-I).168

In Vivo Direct Gene Transfer. The key issue in establishing an 
efficient therapy against OA is the accessibility of the tar-
gets to the treatment when they reside in the joint cavity. 
The following approaches have been developed to deliver a 
molecular composition:

1.	 systemic delivery, and
2.	 intra-articular administration (via injection or 

arthrotomy).

Systemic approaches are better suited to target diseases 
that are systemic in nature like rheumatoid arthritis 
(RA).164,188-190 Local administration of components might 
be preferable in the case of OA that affects only a limited 
number of joints without major extra-articular or systemic 
manifestations. The foreign material may be delivered 
directly (gene vector preparation) or indirectly (genetically 
modified cells).

Several lines of evidence have demonstrated that intra-
articular injection of most vector types leads to a preferen-
tial transduction of the synovium,29,79,81,191 being more 
suited for strategies aiming at inhibiting inflammatory and 
catabolic pathways and a common approach employed 
against experimental RA. Successful attempts towards 

these goals have been reported by direct application of 
vectors coding for IL-4,35,192 IL-10,193,194 sTNFR alone162 or 
combined with IL-10,195 IL-1Ra alone18,20,34,155,196,197 or 
combined with sTNFR,20 antagonists and inhibitors of 
TGF-β and of the BMPs,198 HSP70,132 gene expression 
silencers,199 and kallistatin or thrombospondin-1.200,201

Yet, even if cartilage breakdown can be contained, this 
will not be sufficient to fully compensate for the loss of 
matrix elements and cells noted during the disease progres-
sion. In this regard, increased synthesis of cartilage matrix 
components has been documented following injection of 
vectors carrying genes for anabolic factors (IGF-I).202

Ex Vivo Indirect Gene Transfer. Although more complex, ex 
vivo gene therapy is considered safer because no free vector 
particles are introduced in the body. Modified cells can be 
extensively controlled, tested, and selected while main-
tained in culture. Administration of cells is also a means to 
increase the cellularity like needed for severe OA.

Synoviocytes have been predominantly employed to 
deliver inhibitors of inflammatory and catabolic proc-
esses.203-208 Such pathways could be regulated by injecting 
synoviocytes transduced to overexpress an IL-1Ra alone203-208 
or combined with IL-10.208 Also, dermal fibroblasts have 
been modified for this purpose to overexpress an IL-1Ra, 
sTNFR, or a combination of both.209

Reduced severity of the induced arthritis was associ-
ated with a decrease in cartilage breakdown, but complete 
resurfacing was not achieved. Successful attempts to pro-
mote the formation of new cartilage have been made by 
administrating dermal fibroblasts modified to express 
BMP-2.146

Still, preparation of terminally differentiated cells from 
unaffected sites remains invasive, with a limited supply, and 
represents an additional burden for the patient. Also, commit-
ted cells generally undergo major phenotypic changes upon 
passaging in culture, especially chondrocytes. Multipotent 
cells might be more suited for transplantation purposes, pos-
sibly leading to the production of a cartilage surface of 
enhanced quality compared with committed cells that lead to 
the formation of a poorly differentiated fibrous cartilage. 
Progenitor cells can be easily isolated from multiple tissues 
(bone marrow, periosteum, perichondrium, muscle, fat, sub-
dermis, cartilage, bone, synovial membrane, ligaments), even 
in OA patients, maintaining a multilineage potential with a 
reliability for differentiation and a capacity for expan-
sion.210,211 Indeed, injection of muscle-derived stem cells 
modified by combined gene transfer of BMP-4 with sFlt1  
(a vascular endothelial growth factor (VEGF) antagonist) 
allowed for cartilage repair in a rat model of OA.212,213

Osteonecrosis
Osteonecrosis (ON) is primarily a disease of the subchon-
dral bone that secondarily affects the articular cartilage. 
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Initially, a vascular insult is thought to cause an interference 
of the microcirculation of the subchondral bone, resulting 
in an edema that leads to an increased intraosseous pres-
sure. This leads to ON of the affected segment of the 
subchondral bone, which may result in a subchondral insuf-
ficiency fracture, destabilizing the overlying articular carti-
lage and eventually resulting in its collapse and the creation 
of an osteochondral defect. Treatment options consist of 
conservative therapy in early stages. Precollapse lesions 
can be treated with retrograde core decompression, while 
later-stage lesions presenting with osteochondral defects 
require osteochondral transplants and/or osteotomies, or 
ultimately, partial or total knee arthroplasty.214

Possible experimental gene therapy approaches need 
to be stage dependent, focusing on early stages (when the 
articular cartilage is not compromised) at the revascu-
larization of the necrotic bone, while at the stage of 
osteochondral lesion, only gene-enhanced osteochondral 
transplants might be useful. Katsube et al.214 applied 
gene transfer of VEGF, to accelerate revascularization of 
the necrotic bone. Using an adenoviral vector encoding 
for VEGF, endothelial cells of the rabbit saphenous arter-
ies were transduced. These gene-modified arteries were 
then placed with its venae comitantes into necrotic iliac 
crest bone in vivo. Angiogenesis in the necrotic bone was 
quantified by bone blood flow measurement and assess-
ment of vessel density following microangiography. The 
extent of neoangiogenesis was significantly greater in the 
VEGF group than the control group, reflected in an 
increased capillary density, length of newly formed cap-
illaries, and increased bone blood flow at 1 week postop-
eratively. While this study was restricted to the bone of 
the iliac crest, it might serve as a paradigm for the treat-
ment of ON in a subchondral location. Such a therapy 
may allow the healing of avascular necrosis before frac-
ture and subchondral collapse occur, preventing the 
articular cartilage from damage. More studies with time 
points longer than the 1-week evaluation are needed, 
preferentially performed in animal models of subchon-
dral ON, such as the femoral condyles of the knee joint, 
its second most common location.

Osteochondritis Dissecans
Osteochondritis dissecans (OCD) usually affects children 
and young adults and occurs mainly in the knee joint, char-
acteristically in the lateral aspect of the medial femoral 
condyle. Possible etiological factors beside a genetic pre-
disposition include ischemia and epiphyseal abnormalities 
with subsequent necrosis. For example, disruption of epi-
physeal plate vessels may lead to localized avascular necro-
sis. Its revascularization usually occurs with the formation 
of a scar tissue, absorption of necrotic fragments, inter-
trabecular osteoid deposition, and remodeling with new 

bone formation. When revascularization is delayed, an 
OCD lesion can occur. Clinical treatment principles focus 
on stimulation of revascularization or removal of necrotic 
subchondral bone together with its restoration (e.g., using 
autologous bone transplants), beside the surgical fixation of 
an unstable osteochondral fragment.214

So far, no experimental gene-based treatment has been 
proposed for the treatment of OCD. In theory, the same 
principles apply for the revascularization of necrotic 
subchondral bone, as already outlined for ON with subse-
quent articular cartilage defects. It may be also possible to 
enhance the surgical fixation of an osteochondral frag-
ment by applying osteoinductive genes such as the BMPs 
to the subchondral bone–osteochondral fragment inter-
face to improve integration of the osteochondral frag-
ment. It is unclear whether the integration of a chondral 
fragment may be achieved, a rare indication currently 
favored only for surgical refixation of large fragments in 
juvenile patients.215 Likewise, gene-modified osteochon-
dral transplants may be applied at later stages of deep 
osteochondral defects.

Meniscal Fibrocartilage
Anatomy, Function, and Pathophysiology

The menisci are semilunar fibrocartilage structures that 
transmit weightbearing forces and increase stability, facili-
tate nutrition and provide lubrication for the articular carti-
lage, and promote knee proprioception.216,217 As the medial 
meniscus is less mobile during joint motion,218,219 injuries 
are much more common compared to the lateral menis-
cus.220 Type I collagen is the predominant collagen of the 
meniscal tissue.221 It is arranged with a circumferential 
orientation with interspersed radially oriented fibers.222 The 
central parts of the menisci are mainly constituted of fibro-
chondrocytes, whereas fibroblasts are the predominant cell 
type in the peripheral regions.223 Meniscal blood supply is 
restricted to the peripheral 10% to 25% of the meniscal tis-
sue.224,225 Nourishment in the central area is provided only 
by diffusion of the synovial fluid,226 perhaps playing a role 
in the poor healing capacity of central lesions.225-227 Gene 
transfer strategies may be applied for the following:

1.	 meniscal repair, and
2.	 meniscal reconstruction, using
2.1.	meniscal substitutes, and
2.2.	meniscal allografts.

Meniscal Repair
Meniscal tears are common228,229 and predispose the 
affected joint to develop secondary OA.230 Tears of the 
meniscus in the vascularized peripheral parts can be 
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repaired by sutures, while tears of the central avascular 
parts are treated by arthroscopic partial meniscectomy.
Gene Transfer Strategies: In Vitro Studies. Gene transfer strate-
gies for the repair of meniscal tears focus on the delivery of 
therapeutic agents, for example, growth factors, to the site 
of the meniscal lesion. This can be performed either via 
direct application of gene vectors or by transplantation of 
genetically modified cells overexpressing therapeutic 
genes. Treatment of meniscal fibrochondrocytes with 
recombinant growth factor proteins such as the platelet-
derived growth factor AB (PDGF-AB),231-234 FGF-2,177,235-

237 IGF-I,235,238-240 TGF-β1,152,233,239,241,242 BMP-7,233 or 
TGF-β3235 has been shown to improve the phenotypical 
and biochemical properties of the cells in vitro. Fibrochon-
drogenesis of stem cells is enhanced by incubation with 
growth factors such as TGF-β1243 or TGF-β3 in combina-
tion with BMP-4.244 The possible application of gene trans-
fer strategies in meniscal repair has first been investigated 
by Goto et al.139 The lacZ marker gene was transferred to 
meniscal cell cultures using retroviral and adenoviral vec-
tors. In a next step, the marker gene was applied to human 
meniscal fragments and whole lapine menisci using direct 
adenoviral gene transfer and transplantation of meniscal 
fibrochondrocytes transduced with a retroviral vector. 
Transgene expression was detected in meniscal explants 
following ex vivo gene transfer for at least 20 weeks. Suc-
cessful transfer of the lacZ marker gene was also achieved 
by rAAV-mediated transfer into human and lapine fibro-
chondrocytes in vitro.173 Encouraged by these findings, in 
2000, the group of Chris Evans transferred the gene 
encoding for TGF-β1158 to meniscal cells in vitro, result-
ing in enhanced synthesis of proteoglycans and collagen. 
Zhang et al. used a lipid-based gene transfer system to 
deliver the gene encoding for human IGF-I to meniscal 
fibrochondrocytes, yielding accelerated proliferation and 
differentiation of the modified cells.134 Recently, we tested 
the hypothesis that overexpression of FGF-2 through 
rAAV vectors leads to detectable metabolic changes in 
human meniscal fibrochondrocytes and inside defects of 
human meniscal explants.177 Application of the rAAV-
hFGF-2 vector allowed for enhanced cell proliferation and 
survival in vitro (Figure 3). The idea of applying gene ther-
apy protocols to deliver fibrochondrogenic agents to menis-
cal tears was supported by a significant reduction of the 
amplitude of meniscal tears after FGF-2 treatment in this 
study.177

Gene Therapy: In Vivo Studies. Only few reports have evalu-
ated the feasibility of gene therapy strategies to enhance 
the repair of meniscal tears in vivo. Experimental studies 
have shown that repair in the central part of the meniscus 
can be promoted by various chemotactic and mitogenic 
stimuli delivered by an autologous fibrin clot245,246 or a free 
graft of synovium247,248 in vivo. In a sheep model, longitudi-
nal tears of the anterior horn of the medial meniscus were 

sutured using VEGF-coated sutures. Interestingly, meniscal 
repair was not enhanced in the VEGF treatment group.249,250 
In 1999, methods of direct and indirect gene transfer to 
meniscal lesions were compared.139 In a lapine model, a 
suspension of adenoviral vectors carrying the lacZ marker 
gene was mixed with whole blood, and the clot was inserted 
into 2-mm-long incisions in the medial meniscus. In the 
same study, using a canine model, retrovirally transduced 
allogenic meniscal fibrochondrocytes carrying the lacZ 
gene were embedded in collagen gels and transferred to 
partial-thickness circular defects (depth, 3 mm; diameter, 2 
mm) in the medial meniscus. Gene expression persisted for 
at least 3 weeks in the lapine model but for 6 weeks within 
the transplanted meniscal fibrochondrocytes in the canine 
model. In another animal study,173 longitudinal incisions 
were created in the avascular zone of the medial meniscus 
of rabbits. When rAAV-lacZ constructs were injected int-
ralesionally, X-Gal staining was present by day 20 postop-
eratively, the longest time point evaluated.

Meniscal Reconstruction
Meniscal Substitutes. Meniscal substitutes have been pro-
posed as a means to overcome problems associated with 
meniscal allografts and to promote meniscal repair of seg-
mental defects, for example, resulting from a partial menis-
cectomy.251,252 Meniscal substitutes already in clinical use 
are based on porous matrices of type I collagen/gly-
cosaminoglycan (Menaflex, ReGen Biologics, Hackensack, 
NJ)253,254 or polyurethane (Actifit, Orteq, London, UK).255,256

The feasibility of genetic engineering of meniscal fibro-
chondrocytes has already been described above. However, 
in the treatment of circumscribed meniscal defects, direct 
gene vector administration into injured knee joints may be 
difficult to achieve because a loss of the bradytrophic 
meniscal tissue may hardly be restored by local cells, even 
after administration of mitogenic and anabolic genes. 
Therefore, gene therapy in the treatment of meniscal defects 
may need to be used in combination with the transplanta-
tion of modified cells or tissues.

Tissue engineering involves the combination of cells, engi-
neered extracellular matrices, and biologically active mole-
cules for tissue regeneration.257,258 Over the last 2 decades, 
numerous tissue engineering strategies have emerged for the 
replacement of meniscal tissue.259-261 In general, 2 basic 
approaches for meniscal replacement can be distinguished:

1.  application of acellular matrices262,263 versus
2.  application of cell-seeded matrices.264,265

Several concepts for treating circumscribed meniscal 
defects concentrate on meniscal replacement by acellular 
matrices,259,266-269 avoiding possible risks associated with 
transplantation of human allografts (e.g., failure rate, 
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immunoreaction,270 disease transmission271). Different 
types of meniscal substitutes, such as decellularized allo-
genic and xenogenic grafts,262,263,272,273 collagen grafts,253,274 
permanent synthetic scaffolds,251 and biodegradable scaf-
folds based on small intestine submucosa,275-278 poly-lactic 
acid (PLA), or poly-glycolic acid (PGA),279-282 have been 
used in experimental and clinical studies. However, after 
transplantation of acellular meniscal constructs into defects, 
the transplants are populated by synovial fibroblasts, result-
ing in a scar tissue with poor biomechanical proper-
ties.245,283 Therefore, some tissue engineering approaches 
focus on additional cell-seeding techniques prior to trans-
plantation.251,284 Meniscal cells,282,285 articular chondro-
cytes,286,287 synovial fibroblasts,288 and MSC289 have been 
proposed as potential cell sources and have been cultivated 
in vivo and in vitro on various matrices.267 In addition, dif-
ferent environmental factors such as growth factors have 
been used to optimize cell proliferation in vitro.290

Gene therapy may aid to further enhance the fibrochon-
drogenic potential of tissue-engineered transplants. In 
2002, Hidaka et al.291 applied a gene transfer protocol to 
enhance the vascularization and blood supply of cell-
seeded bioengineered meniscus transplants. Bovine menis-
cal cells overexpressing hepatocyte growth factor (HGF) 
were seeded onto PGA scaffolds and transplanted subcuta-
neously in athymic nude mice for 8 weeks. Ink injection 
studies showed that HGF-treated meniscal cells formed a 
tissue that contained significantly more blood vessels than 
the controls. In another preliminary ex vivo study, Steinert 
et al.152 transduced primary meniscus cells and bone mar-
row–derived MSCs with adenoviral vectors encoding for 
marker genes or TGF-β1. Modified cells were seeded in 
type I collagen-glycosaminoglycan (GAG) matrices and 
transplanted into defects of bovine menisci explants. In vitro, 
the vectors efficiently transduced meniscal cells and MSCs, 
and transgene expression remained elevated after incor-
poration of the cells into matrices. Transfer of TGF-β1 
increased the fibrochondrogenic potential of modified cells, 
and transplantation of the TGF-β1–transduced constructs 
resulted in satisfactory filling of the lesions ex vivo (Table 3).

A recent in vivo work on the use of gene transfer to 
enhance meniscal repair has been published by Zhang et al.292 
Following an indirect gene therapy approach without tissue 
engineering features, the authors created full-thickness 
meniscal defects in the avascular area of the anterior horn 
of the medial meniscus in a goat model. Bone marrow stromal 
cells were transfected with the gene encoding for human 
IGF-I using a nonviral transfection system (FuGENE 6) 
and suspended in calcium alginate prior to injection into the 
meniscal defects. After 16 weeks, the resulting repair tissue 
was improved according to MRI and histological and bio-
chemical evaluation and compared with the controls (Table 3).
Meniscal Allografts. Meniscal reconstitution with allo-
grafts293-305 is a therapeutic option especially for young and 

symptomatic patients with a history of lateral meniscectomy 
in a normally aligned, stable joint without severe degenera-
tive changes of the articular cartilage. A recent review306 sug-
gests that meniscal allograft transplantation improves pain 
and function in the short and intermediate term.

Application of gene-based strategies has been suggested 
to improve remodeling of meniscal allografts.307 Martinek 
et al.308 studied the feasibility of gene transfer in lapine 
meniscal allografts ex vivo using a retroviral vector encod-
ing the marker gene lacZ. Subsequently, unilateral meniscal 
replacements were performed with these engineered allo-
grafts. Transduced fibrochondrocytes migrated into the 
depth of the graft, while transgene expression persisted for 
up to 8 weeks. This investigation suggests potential prom-
ise for growth factor delivery in autografts and allografts 
prior to implantation.

Clinical Gene Therapy Trials
Preclinical data, as those described above, have encouraged 
the initiation of human clinical trials originally for arthritis. 
The first studies were based on the ex vivo retroviral gene 
transfer of a human IL-1Ra sequence in synoviocytes from 
patients with end-stage RA followed by reinjection of the 
modified cells in the metacarpophalangeal joint.23,82,309 The 
aim of these studies was to evaluate the possibility of trans-
ferring genes to human joints and expressing them intra-
articularly in a safe fashion acceptable to the patients. The 
use of these protocols has permitted extensive testing of the 
cells prior to reimplantation, demonstrating successful 
expression of the transgene locally vis-à-vis control joints, 
without adverse events related to the treatment but with 
clinical improvements in some of the patients, encouraging 
the implementation of phase II studies (pending).1,5,30,310-315 
Another protocol has been initiated for intra-articular plas-
mid316 delivery of the HSV thymidine kinase gene to the 
synovial lining of RA patients followed by administration 
of ganciclovir to achieve synovial ablation,1,5,309,311-314 but 
this protocol has been closed because of a failure to recruit. 
A new phase I trial for RA involved the direct in vivo intra-
articular injection of an rAAV vector carrying the sequence 
for a fusion protein as sTNFR on an immunoglobulin mol-
ecule (tgAAC94 protocol).317 As the study revealed that the 
treatment was safe and well tolerated in subjects without 
use of concurrent systemic TNF-α antagonist,1,311,312,314,317 a 
phase I/II trial was subsequently started318 with the possi-
bility to include patients who were already taking systemic 
TNF blockers and the administration of a second injection 
of tgAAC94. As one of the participants who was simultane-
ously being treated with systemic TNF antagonist and other 
immunosuppressive medications died after receiving the 
second injection, the trial was placed on hold by the U.S. 
Food and Drug Administration (FDA) to investigate, in 
parallel with the Recombinant DNA Advisory Committee 
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Recombinant DNA Advisory Committee (RAC), the circum-
stances of the demise of the patient. The death was apparently 
due to a disseminated infection with Histoplasma capsula-
tum, a fungus endemic in the region of origin of the volun-
teer, and to an immunosuppression.312,319-321 Indeed, known 
serious complications of the particular TNF antagonist are 
susceptibility to H. capsulatum. The most probable explana-
tion is that the subject was already infected with the fungus 
when receiving the second injection of tgAAC94. As the 
committee felt that the gene therapy protocol was very 
unlikely to have played any significant role in the event based 
on a large body of data from the independent investigations 
and since rAAV has been used safely in 47 previous human 
gene therapy clinical trials, the evaluation has been reopened 
with some modifications (exclusion of patients with elevated 
temperature, localized symptoms, fatigue, or with history of 
opportunistic infection), requiring additional monitoring 
(repeated blood counts, serum chemistry, vector DNA and 
transgene product titration, analysis of T-cell responses to 
AAV), as a possible role of the gene transfer in this course has 
not been definitely excluded (presence of neutralizing anti-
bodies to the AAV capsid, occasional detection of vector 
genomes in the blood at the highest vector dose). Regarding 
OA, a phase I protocol is currently ongoing, based on an ex 
vivo approach using the retroviral transfer of TGF-β.312

Gene Doping
Although the previously discussed gene-based approaches 
may have potential value for the treatment of articular car-
tilage defects and meniscal lesions, some of the therapeutic 
genes used in these studies have been also implicated for 
gene doping,322 a term referring to the potential misuse of 
gene therapy for the purposes of enhancing athletic per-
formance.323-325 Possible genes with such potential include, 
but are not limited to, growth hormone and IGF-I,326 eryth-
ropoietin (Epo),327 VEGF,328 FGF-2, and endorphins.329

IGF-I, the prime target of growth hormone action, is a 
potential candidate gene. A number of studies have shown 
that upregulation of IGF-I stimulates muscle growth and 
improves muscle function.326 Interestingly, this increase in 
muscle volume is not reflected by detectable increases in 
circulating IGF-I. While favorable responses have been 
obtained in animal studies, the transfer of such techniques 
to humans with the goal of a higher performance still 
presents many technical challenges.

The hormone Epo is produced by the peritubular capil-
lary endothelial cells in the kidney. Under hypoxic condi-
tions, Epo is produced and secreted, increasing the 
production of red blood cells. Eero Mäntyranta, a Finnish 
cross-country skier who won 2 gold medals in the 1964 
Olympics, was born with a mutation in the Epo receptor 
gene that allowed his blood to carry significantly more 
oxygen than an average person.330 Recombinant Epo has 

been used already as a performance-enhancing drug. 
Because of differences in its peptide sequence compared 
with the endogenous protein, it may be detected in blood. 
Recently, a viral vector for the release of Epo in response 
to low oxygen concentrations has been developed under the 
trade name Repoxygen (Oxford BioMedica, Oxford, UK). 
The viral vector of undisclosed origin carries the human 
Epo gene under the control of a hypoxia control element 
(HRE). At low oxygen concentrations, HRE switches on 
the expression of the transgene. The vector is designed to 
be delivered by a simple intramuscular injection, resulting 
in the synthesis of recombinant Epo by muscle cells, rather 
than by cells of the liver or kidneys. Initially developed to 
treat anemia, there have been speculations in the media that 
it has been already applied for doping purposes.331

Recently, genetically engineered mice have been created 
with an alteration in energy metabolism based on overex-
pression of the gene for phosphoenolpyruvate carboxyki-
nases (PEPCK-C). PEPCK-C is an enzyme of the lyase 
family that plays a role in the metabolic pathway of gluco-
neogenesis, converting oxaloacetate into phosphoenolpyru-
vate and carbon dioxide. These transgenic PEPCK-C mice 
carry a chimeric gene in which a copy of the cDNA for 
PEPCK-C is placed under control of the skeletal actin gene 
promoter, directing overexpression of PEPCK-C exclu-
sively to skeletal muscle. PEPCK-C mice were more 
active, could run longer and faster, and used fatty acids 
more efficiently and produced far less lactate than control 
animals.332 Whether these data can be corroborated by stud-
ies in large animals remains to be determined.

Taken together, there is an emerging body of results 
from a number of transgenic and somatic gene transfer 
studies that suggest the principle of gene transfer may find 
application to enhance athletic performance. Many of the 
genes are already cloned in functional vectors, and some of 
them are being evaluated in clinical trials for the treatment 
of diseases. However, therapeutic gene transfer to humans 
is still technically challenging, and no clear evidence has 
been given that athletes have been using gene technology 
to enhance their performance. For antidoping authorities, 
the challenge will be to detect these endogenously pro-
duced gene products because of the homology between the 
transferred cDNA, the homology of the endogenously pro-
duced protein, and the limited specificity of indirect detec-
tion procedures.333 Further studies in this fíeld are needed 
since a possible uncontrolled use of these gene vectors 
imposes potential high risks for both the athlete and the 
general public.

Outlook
Despite these encouraging data, application of gene trans-
fer approaches in the treatment of articular cartilage and 
meniscal lesion tears is still in its infancy. Although the use 
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of gene therapy holds great promise, issues that need to be 
addressed include the duration of transgene expression, 
further studies in clinically relevant animal models of 
articular cartilage and meniscal lesions, the benefit of using 
ex vivo genetically modified cells versus direct gene trans-
fer approaches, and the identification of (an) optimal thera-
peutic factor(s) for each particular clinical problem. Future 
studies will also have to shed light on the safety of these 
approaches regarding the nonlethal nature of these dis-
eases. A successful application of gene therapy for cartilage 
repair requires the combined effort of orthopedic surgeons 
continuing to ask clinically relevant questions and of basic 
scientists further improving the currently available gene 
transfer systems.
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