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Abstract
Alternative splicing (AS) is an essential mechanism 
in post-transcriptional regulation and leads to protein 
diversity. It has been shown that AS is prevalent 
in metazoan genomes, and the splicing pattern is 
dynamically regulated in different tissues and cell types, 
including embryonic stem cells. These observations 
suggest that AS may play critical roles in stem cell 
biology. Since embryonic stem cells and induced 
pluripotent stem cells have the ability to give rise to all 

types of cells and tissues, they hold the promise of future 
cell-based therapy. Many efforts have been devoted to 
understanding the mechanisms underlying stem cell self-
renewal and differentiation. However, most of the studies 
focused on the expression of a core set of transcription 
factors and regulatory RNAs. The role of AS in stem cell 
differentiation was not clear. Recent advances in high-
throughput technologies have allowed the profiling 
of dynamic splicing patterns and cis-motifs that are 
responsible for AS at a genome-wide scale, and provided 
novel insights in a number of studies. In this review, we 
discuss some recent findings involving AS and stem cells. 
An emerging picture from these findings is that AS is 
integrated in the transcriptional and post-transcriptional 
networks and together they control pluripotency 
maintenance and differentiation of stem cells.
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Core tip: Alternative splicing (AS) produces multiple 
transcript isoforms from a single gene, and the regulation 
of cell-type-specific splicing pattern is crucial for the 
properties and functions of cells, including pluripotent 
stem cells. A better understanding of the role of AS in 
stem cell pluripotency maintenance and differentiation 
will offer potential new approaches for enhancing the 
production of induced pluripotent stem cells and/or better 
control of cell differentiation for research or therapeutic 
purposes. In this brief review, we provide a timely update 
of recent studies related to stem cell regulation and 
splicing in a genome-wide scale.
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INTRODUCTION
The splicing of  messenger RNA precursors, namely the 
precise removal of  introns and the joining of  exons, is 
a crucial yet highly dynamic and flexible process in the 
synthesis of  mature eukaryotic mRNAs. Alternative 
splicing (AS), the inclusion of  different exons in mature 
mRNA by selecting different splice sites in pre-mRNA, 
can result in different transcript isoforms from a single 
gene, and give rise to a much larger number of  proteins 
compared to the number of  genes encoded in metazoan 
genomes[1-3]. AS regulation plays an important role in 
almost every aspect of  eukaryotic biological processes, 
including cell growth, death, pluripotency maintenance, 
differentiation, development, circadian rhythms, response 
to external changes, and disease[4,5]. Recent advances in 
high-throughput RNA sequencing technology revealed 
that a greater number of  multi-exon genes can produce 
alternatively spliced transcripts than previously thought[6,7]. 
In humans, more than 90% of  genes were estimated 
to undergo AS in different tissues and/or cell types. 
Compared with other RNA processing mechanisms 
such as alternative transcription initiation, RNA editing 
and alternative poly(A) site selection, AS is the most 
prominent in generating mRNA complexity. In addition, 
AS events can introduce premature termination codons 
in mature mRNAs, triggering mRNA degradation by the 
process of  nonsense-mediated mRNA decay (NMD)[8,9]. 
AS events can also cause mRNA un-translated region 
(UTR) variation, which affects mRNA translation 
efficiency, stability and localization[10-12]. 

Splicing of  pre-mRNA involves the formation of  active 
splicing complexes on pre-mRNAs via a stepwise assembly 
process. The basal splicing machinery (spliceosome) is 
comprised of  five small nuclear ribonucleoprotein particles 

(snRNP), such as U1, U2, U4/U6 and U5 in the case of  
the major spliceosome, and U11, U12, U4atac/U6atac and 
U5 in the case of  the minor spliceosome. AS is primarily 
regulated by approximately 200 RNA-binding proteins 
(splicing factors) together with a basal spliceosome through 
direct recognition of  short sequence motifs near exon/
intron boundaries[13]. Depending on the pattern of  exon 
inclusion/skipping, AS events can be categorized into 
at least six major types, including cassette exon skipping, 
mutually exclusive exons, alternative 5’ splice site selection, 
alternative 3’ splice site selection, alternative retained intron, 
and tandem cassette (Figure 1). There are more complex 
patterns but they are much fewer in number than these 
major types, therefore most analyses of  AS events focus 
on these six types, particularly cassette exon skipping which 
represents the majority of  AS events. 

The knowledge of  the crosstalk between splicing and 
other layers of  gene regulatory network is fundamentally 
important for understanding biological processes such 
as cell differentiation, development, and pluripotency 
maintenance. In this review, we will highlight recent 
progress related to these themes, with an emphasis on 
studies involving both AS and stem cell research, to provide 
timely insight into AS regulation and its important roles in 
the determination of  cell fate. The general principles of  
splicing regulation have been covered in detail in a number 
of  excellent reviews, and readers who are interested in the 
mechanisms of  splicing regulation can refer to these[9-11,14-21]. 

GENOME-WIDE METHODS APPLIED IN 
AS RESEARCH
Our understanding and knowledge about AS has increased 
rapidly during last decade, thanks to the advancement 
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Figure 1  Major alternative splicing events in the metazoan transcriptome. Major types of alternative splicing events are shown. Brown boxes indicate constitutive 
exons, while boxes in other colors indicate alternative spliced exons.



of  several high-throughput technologies. To better 
understand AS regulation, it is necessary to be familiar 
with the basic principles of  these technologies. Here, we 
summarized some of  the technologies that were applied 
to study AS in a genome-wide scale.

The first genome-scale AS study was carried out using 
microarray platform. Traditional microarrays have been 
designed to measure the total level of  expression of  a 
gene, without discrimination of  its different isoforms[22-24]. 
To probe AS events, several splicing-sensitive microarray 
platforms have been developed[3,25,26]. Although there 
are variations between them, these splicing-sensitive 
microarrays all utilize short oligonucleotide probes 
designed to cross exon-exon junctions. cDNA samples 
were derived from mRNA and hybridized to the probes 
(Figure 2A). The signal intensity of  these junction 
probes can then be used to infer exon inclusion ratios by 
sophisticated algorithms[27-37]. These microarrays have been 
applied in a number of  studies to generate genome-scale 
profiling of  AS, and provided quantitative measurements 
of  AS at different time points of  development, across 
tissues, and upon perturbation of  interesting splicing 
factors[28,31,32,34,35,37]. From these pioneering studies, 
genome-level regulatory mechanisms of  AS have been 
better understood, and have largely transformed our 

view about AS in every aspect including their evolution, 
dynamic regulation, and their organization in global 
transcription networks[2,19]. 

Recently, RNA sequencing technology has been 
evolving rapidly, and has become the method of  choice 
for genome-wide AS analysis. In RNA sequencing 
methodology, cDNA fragments derived from poly(A) 
selected RNA population are sequenced from the ends 
and generate a large number of  short sequence tags (reads). 
These reads can then be mapped (aligned) back to the 
reference transcriptome and splice-mapped reads can 
reveal the exon-exon junctions (Figure 2B)[38,39]. 

Compared with microarrays, RNA sequencing (RNA-
Seq) does not rely on probes pre-designed across exon-
exon junctions based on prior knowledge about the 
transcriptome under study, thus novel exons and splice 
junctions can be detected in an unbiased manner. RNA 
sequencing also has other advantages such as no cross-
hybridization issues, higher sensitivity and broader 
dynamic range[40-46]. As the technology keeps improving 
and costs continue to decline, longer read length and more 
extensive sequencing coverage can lead to more accurate 
AS detection at a reasonable price.

High-throughput reverse transcription-polymerase 
chain reaction (RT-PCR) has also been developed and used 
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Figure 2  Methods for profiling alternative splicing events. The diagram depicts methods used for profiling AS events. The cassette exon AS event is used as an 
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cells for potential cell therapeutic purposes[61,62]. Thus, 
intensive efforts have been devoted to stem cell gene 
expression profiling, and genes associated with pluripotency 
were discovered[63,64]. However, only recent advances in 
next generation sequencing technology made it possible 
to profile the AS pattern of  a given cell/tissue in a global 
scale. A number of  genome-wide studies showed specific 
transcriptome changes during the differentiation of  ESCs 
into different lineages[65-70].

In 2005, Pritsker et al[65] started using expressed sequence 
tag collections derived from stem cells to identify splice 
variants in ESCs and hematopoietic stem cells, and this was 
one of  the first AS analyses in stem cells on a genome-
wide scale. AS was detected in > 1000 genes. Although 
the technology is outdated nowadays, it showed that 
AS generates a large diversity in the stem cell molecular 
repertoire. 

Further studies using advanced technologies confirmed 
the pervasive AS in ESC. A study by Wu et al[66] adopted 
three types of  RNA sequencing technologies and profiled 
the transcriptome changes during the differentiation of  
human ESCs (hESCs) into the neural lineage. The authors 
combined Illumina single and paired-end reads (sequence 
reads from both ends of  cDNA fragments; 35 bp reads) 
and longer Roche 454 FLX and titanium sequencing reads 
(250-450 bp reads) to discern transcript structure and 
analyze transcriptome complexity. Transcriptome profiles 
of  cells in the ESC stage, N1 (early neural initiation) 
stage, N2 (neural progenitor) stage, and N3 (early glial-
like) stage were reconstructed from mapped sequencing 
reads. Utilizing the unique spliced junction reads detected 
from each gene across all four stages, the authors then 
calculated a “junction complexity index” and found that 
splicing isoform diversity is highest in undifferentiated 
hESCs and decreases upon differentiation, a phenomenon 
they named “isoform specialization”. Observations 
like this can only be achieved with a genome-scale 
study, demonstrating the power and potential of  RNA 
sequencing in AS research. In 2010, Revil et al[71] applied 
splicing-sensitive exon microarray technology to profile 
alternative isoform expression in embryonic day 8.5, 9.5 
and 11.5 embryos and placenta. Although the profiling 
was not performed using pure ESCs, their results revealed 
frequent AS during embryonic developmental stages. 
Intriguingly, a number of  RBPs, including putative 
splicing factors, are differentially expressed and spliced 
across developmental stages, suggesting these RBPs may 
be involved in regulating tissue and temporal variations in 
isoform expression.

During reprogramming, the AS profile of induced 
pluripotent stem cells is reversed to an ESC-like state
It is well known that when somatic cells are reprogrammed 
to pluripotent stem cells (PSCs), the transcription of  most 
genes reverted to an ESC-like state. An interesting question 
is whether this is also true for AS? 

Several recent studies answered this question by profiling 
both induced PSC (iPSC) and ESC AS patterns in a 

for monitoring AS changes[47-49]. Although the number of  
AS events monitored is limited by prior knowledge from 
the reference AS database, in theory, it has the advantage 
of  avoiding bias towards the highly expressed genes, and 
can quantify AS of  medium- and extremely low-expressed 
genes[50]. There is also a very good correlation between 
percent spliced-in (PSI, the percent of  transcripts that 
include a specific AS exon; Figure 2) values obtained with 
RNA-Seq data and the PCR-based method for events in 
which RNA-Seq data had enough coverage to produce 
confident PSI estimates, suggesting that the PCR-based 
method is consistent with RNA-Seq and these two methods 
can complement each other[48,51].

Methods for directly mapping RNA-binding protein 
(RBP) and the mRNA interaction transcriptome-wide in 
vivo have also been developed, complementing AS event 
profiling to decipher the regulatory network of  splicing by 
RBP. To identify binding targets, a specific RBP together 
with its associated RBP complex is immunoprecipitated 
from cell lysate, and bound RNA transcripts are then 
purified and subjected to high-throughput sequencing[52-54]. 
After mapping the reads back to the reference genome 
sequence, potential binding locations of  RBPs can then 
be inferred by computer algorithms. RBP complexes 
can be immunoprecipitated under native condition; 
however, this can increase the risk of  losing low-affinity 
yet specific in vivo binding or of  obtaining artificial 
binding following cell extraction[55]. A cross-linking step 
is usually performed to circumvent these problems. 
Several methods have been developed in this area. The 
CLIP-Seq (cross-linking immunoprecipitation and high-
throughput sequencing, or HITS-CLIP) method uses UV 
light to crosslink proteins with RNAs[56]. In PAR-CLIP 
(photoactivatable-ribonucleoside-enhanced crosslinking 
immunoprecipitation), photoreactive ribonucleotide 
analogs are used to treat cells and are incorporated into 
RNAs before UV treatment[57]. And individual-nucleotide 
resolution cross-linking and immunoprecipitation (iCLIP) 
employs a self-circularization strategy to achieve individual-
nucleotide resolution[58]. RBP mapping combined with AS 
profiling can be used for constructing “RNA maps” which 
correlate binding site positions with splicing regulatory 
differences upon perturbation of  specific splicing factors.

ALTERNATIVE SPLICING IN STEM CELLS
Advanced technologies have recently been adopted to profile 
AS in stem cells. Extensive AS patterns were observed in 
stem cells and their contribution to pluripotency maintenance 
and differentiation has been noted.

Pervasive splicing in embryonic stem cells
Embryonic stem cells (ESCs) are pluripotent cells which 
can self-renew and has the ability to differentiate into all 
three germ layers[59,60]. As ESCs can generate most if  not 
all of  the cell types of  a human body, they serve as an 
excellent model for studying early embryonic development. 
ESC is also a valuable source for producing differentiated 

4 January 26, 2015|Volume 7|Issue 1|WJSC|www.wjgnet.com

Chen K et al . Alternative splicing in stem cells



genome-wide scale. Ohta et al[72] combined RNA-seq and 
high-throughput absolute qRT-PCR to analyze splicing 
pattern changes during the reprogramming process. The 
somatic cell splicing profiles reverted to a pluripotent-like 
state during reprogramming. In addition, to determine 
whether alterations in splicing patterns are specific for 
PSCs, the authors identified 27 genes which undergo 
alterations during the reprogramming process, and 
profiled the splicing pattern of  these genes across multiple 
tissues by qRT-PCR. Interestingly, the splicing patterns in 
iPSCs were most similar in the testes compared with other 
tissues, suggesting an intriguing hypothesis that PSCs 
regulate AS using the same mechanism as the testes does. 
Other work also showed that the splicing pattern is similar 
in iPSCs and ESCs[48,51]. These observations raised the 
possibility that manipulating specific splicing regulators 
can potentially fine tune the reprogramming process. 

ALTERNATIVE SPLICING INFLUENCES 
PLURIPOTENCY
In addition to investigating AS patterns during ESC 
differentiation, efforts have also been made to determine 
the functional impact of  AS in ESCs[65]. In the study of  
Pritsker et al[65], splicing complexity in ESCs was observed, 
and they also found that AS can modify multiple 
components of  signaling pathways which are important 
for stem cell function. The distribution of  splice variants 
across different classes of  genes indicated that tissue-
specific genes have a higher tendency to undergo AS 
than ubiquitously expressed genes. Comparisons between 
all orthologous genes which undergo AS in human and 
mouse transcriptomes showed that the patterns of  AS are 
only weakly conserved, supporting that AS patterns evolve 
fast[73,74]. Because multiple genes in stem cells undergo AS 
and these genes are enriched in regulatory proteins, stem 
cell molecular networks are highly dependent on AS.

Salomonis et al[67] investigated the roles of  AS and 
alternative promoter selection in differentiating mouse 
ESCs using the Affymetrix exon-exon junction microarray. 
Among approximately 7500 genes and 40000 putative exon-
exon junctions represented in the microarray, the authors 
identified 170 unique alternative exons (AEs) corresponding 
to 144 genes. It was predicted that 67% of  these AEs 
altered the protein sequence and domain composition. 
Pathway analysis of  these genes showed enrichment in 
genes associated with Wnt and transforming growth factor-
beta receptor signaling pathways, the actin cytoskeleton, 
lipid transport, muscle contraction, mRNA metabolism, 
and embryonic development. Most of  these 170 AEs were 
conserved between mouse and human, suggesting their 
functional importance. In order to examine the functional 
impact of  AS, two genes, SERCA2 and Tcf3 that showed 
large differences in the expression level of  alternative 
isoforms, were selected for examination. SERCA2 is a Ca2+ 
pump that hydrolyzes ATP during the translocation of  
calcium from the cytosol to sarco/endoplasmic reticulum[75]. 
PCR confirmed that one of  its isoform (SERCA2b), with 

an additional 44 amino acids and a longer 3’UTR region, 
was expressed in both ESCs and embryoid bodies (EBs), 
whereas another isoform with a shorter alternative 3’UTR 
(SERCA2a) was mainly expressed in EBs. Interestingly, the 
3’UTR of  SERCA2b was predicted to be targeted by many 
microRNAs (miR-200b, miR-214, etc.) but not SERCA2a 
in both mice and humans. This is consistent with the 
observation that SERCA2b mRNA is more degraded than 
SERCA2a in an experiment in vitro[76], indicating 3’UTR of  
SERCA2b can inhibit protein expression. Using a library of  
miRNA mimics, the authors further confirmed that miR-
200b and miR-214 among other miRNAs were indeed 
targeting SERCA2b. Bioinformatics analysis showed that 
miR-214 and miR-200b binding sites were enriched for 
inhibitor genes of  cardiac differentiation, indicating they 
play functional roles in cardiac development by repressing 
cardiac inhibitor gene expression. In addition, previous 
studies showed that miR-200b and SERCA2a are both 
highly induced upon cardiac differentiation[75,77,78]. Taken 
together, this study suggests that SERCA2 can avoid direct 
repression by miRNAs through selectively expressing one 
of  its isoforms (SERCA2a) which has no miRNA target 
sites in differentiated ESCs. This observation implies 
the ability of  AS to regulate protein expression, without 
affecting gene or miRNA transcription. The other gene 
studied is Tcf3 (TCF7L1 in humans), a Wnt signaling 
transcription factor and a repressor of  ESC self-renewal. 
Tcf3 inhibits ESC self-renewal through repression of  
Nanog and Oct4 transcription[79,80]. The authors identified a 
longer isoform of  Tcf3 [Tcf3(l)] which is enriched in ESCs 
but downregulated upon differentiation. Tcf3(l) includes a 
42-bp cassette exon which encodes an additional 14 amino 
acids overlapping with the Groucho binding domain[81,82]. 
This domain is necessary for Tcf3 to repress Nanog 
expression[79]. Tcf3(l) is upregulated in ESCs compared with 
EBs, while a shorter isoform of  Tcf3, Tcf3(s), is expressed 
at a constant level. Selective knockdown of  Tcf3(l) in 
ESCs revealed several distinct targets of  transcriptional 
repression compared with Tcf3(s). For example, knocking 
down any Tcf3 isoform increased Nanog expression 
whereas Oct4 was upregulated only during knockdown 
of  Tcf3(l). Knockdown of  one or both Tcf3 isoforms 
can lead to delayed differentiation in ESCs. Interestingly, 
Tcf3(l) knockdown and Tcf3(s) knockdown inhibit 
distinct differentiation pathways, raising the intriguing 
hypothesis that isoform-specific regulation of  Tcf3 targets 
affects distinct lineage commitment decisions. In short, 
these examples demonstrate that specific AS events can 
modulate transcriptional networks involved in pluripotency 
maintenance vs differentiation.

ALTERNATIVE SPLICING IS INTEGRATED 
IN THE CORE REGULATORY CIRCUIT OF 
ESCs
During the last decade, a core set of  transcription factors 
(TFs), including OCT4 (POU5F1), NANOG and SOX2 
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among others which control the pluripotency of  ESCs, 
has been uncovered[83]. Together with specific microRNAs 
and long non-coding RNAs, these TFs control the 
expression of  gene cohorts required for establishment 
and maintenance of  ESC pluripotency[84-86]. 

The AS of the core TFs can directly influence pluripotency 
control. One classic example is the pluripotency gene 
OCT4. The OCT4 gene was identified to encode three 
isoforms which were named OCT4A, OCT4B and 
OCT4B1[87]. Two isoforms, OCT4A and OCT4B, were 
shown to encode different binding domains which 
resulted in different target genes. While OCT4A can 
regulate genes that are responsible for stemness[83,88], 
OCT4B does not have the ability to maintain ESC self-
renewal and it regulates genes that are responsive to cell 
stress.

Not only can the AS of  core TFs affect pluripotency 
control, but the AS of  several other genes is also linked 
to stem cell self-renewal and lineage specification[89-93]. 
Genes that have ESC-specific isoforms are particularly 
intriguing. A study conducted by Gabut et al[94] used 
microarray profiling to compare patterns of  AS in 
undifferentiated and differentiated hESCs, and identified 
an evolutionarily conserved ESC-specific AS event of  
the gene FOXP1 (Forkhead box transcription factor 1). 
Experimental validation showed that inclusion of  FOXP1 
exon 18b is specific to self-renewing, pluripotent hESCs, 
thus this transcript isoform was named “FOXP1-ES”. 
The inclusion of  exon 18b within FOXP1-ES changes the 
DNA-binding specificity of  FOXP1, and allows FOXP1-
ES to regulate distinct programs of  gene expression 
in hESCs. Knockdown of  FOXP1-ES results in a 
significant decrease in the expression of  the pluripotency 
genes OCT4, NANOG, NR5A2, GDF3, and TDGF1, 
and an increase in the expression of  differentiation-
associated genes, including GAS1, HESX1, SFRP4. 
Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-Seq) was performed to 
identify genes that are directly regulated by FOXP1-ES 
and FOXP1 in hESCs. The FOXP1-ES binding target 
genes significantly overlap with the set of  genes that 
are dependent on FOXP1-ES expression in hESCs and 
a set of  genes that are regulated by OCT4 in hESCs. 
Overexpression of  FOXP1-ES in mESC also promotes 
mESC self-renewal and pluripotency. Collectively, this 
study provided evidence that an AS switch regulating the 
FOXP1-ES isoform is integrated into the core circuit of  
the transcriptional regulatory network required for ESC 
pluripotency and iPSC reprogramming. 

SPLICING FACTORS INVOLVED IN THE 
MAINTENANCE OF PLURIPOTENCY 
Compared with transcription factors, little is known about 
splicing factors that may contribute to stem-cell self-renew 
and lineage specification. Technology advancement allows 
the identification of  functional RNA cis-elements related 
to AS and splicing factors in stem cells recently. 

In 2007, Yeo et al[68] studied the AS events in hESCs 
and neural progenitors using exon array analysis 
combined with sophisticated algorithms to identify exons 
undergoing AS. The analysis showed that RBFOX binding 
motif  GCAUG was enriched proximal to a set of  exons 
that are alternatively spliced in hESCs, suggesting that 
RBFOX splicing factors may play a critical role in hESCs. 
Following this study, the same group constructed an 
RNA map for RBP RBFOX2 to identify functional RNA 
elements in the human genome in hESCs[91]. RBFOX2 
is expressed abundantly in hESC cell lines, whereas 
RBFOX1 is not. Using CLIP-seq technology, thousands 
of  RBFOX2 RNA targets were uncovered, representing 
approximately 7% of  human genes in hESCs. Many 
RBFOX2 targets are themselves splicing factors, suggesting 
that RBFOX2 might act as an upstream regulator of  
many splicing factors. Interestingly, RBFOX2 pre-mRNA 
is also the target of  itself, supporting the autoregulation 
of  RBFOX2. It is possible that AS of  RBFOX2 pre-
mRNA may result in distinct proteins that can target 
different pre-mRNAs. RBFOX2 depletion in hESCs led 
to rapid cell death, indicating that RBFOX2 is important 
in maintaining hESC viability. However, RBFOX2 
depletion in neural progenitor cells or primary human 
fetal neural stem cells did not cause cell death, suggesting 
that RBFOX2 has a different set of  targets in different 
cell types.

Several recent studies have also used CLIP-seq to 
map binding sites of  specific splicing factors. Combined 
with AS profiling, these studies revealed several splicing 
factors that are potentially associated with pluripotency 
maintenance. The work of  Han et al[51] demonstrated 
a systematic strategy to study the function of  specific 
splicing factors. They combined RNA-seq, CLIP-seq 
datasets, and “splicing code” analysis (a computational 
method which predicts cis-elements that promote or 
repress specific splicing events) to identify splicing 
regulators that are differentially expressed between stem 
cells and differentiated cells and control cell-specific 
AS. In particular, MBNL1 and MBNL2 were found to 
have the lowest relative expression levels in stem cells 
(ESCs and iPSCs) compared with differentiated cells in 
both humans and mice, suggesting that these proteins 
performed their function by repressing ESC-specific 
AS events. The authors tested the hypothesis using the 
FOXP1 transcription factor. As mentioned previously, 
isoform FOXP1-ES contains an ESC-specific exon which 
allows FOXP1 to bind and activate genes (OCT4 and 
NANOG, etc.) required for pluripotency. Supporting this 
hypothesis, the experiments showed that the FOXP1-
ES-specific exon was retained in differentiated cells 
in which MBNL1 and MBNL2 were knocked down, 
whereas, over-expression of  MBNL1 and MBNL2 in 
ESCs promoted differentiated cell-like splicing patterns. 
Furthermore, MBNL knockdown enhanced the efficiency 
of  reprogramming from fibroblasts into iPSCs by about 
2-fold. Taken together, the study revealed that MBNL 
protein expression plays a functional role in differentiation 
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by promoting FOXP1-ES specific exon skipping, and 
their knockdown can facilitate reprogramming of  somatic 
cell into iPSCs.

Another study by Venables et al[48] found that splicing 
factors MBNL1 and RBFOX2 cooperate to control 
pluripotency in stem cells. The authors adopted high-
throughput RT-PCR technology to monitor splicing 
changes of  more than 3000 AS events annotated in the 
RefSeq database during the induction of  fibroblasts into 
iPSCs, and their subsequent re-differentiation. Comparing 
the AS profiles in fibroblasts and iPSCs, and fibroblasts 
re-differentiated from iPSCs, the authors observed that 
AS changes are reversible during these processes. Their 
finding uncovered a program of  concerted AS changes 
involved in late mesoderm differentiation. The authors 
selected 47 AS regions (in different genes) whose splicing 
profiles showed an equivalent near-perfect anti-correlation 
in reversible stem cell induction and re-differentiation, and 
used these AS regions to investigate splicing mechanisms 
involved in stemness and maintenance of  pluripotency. To 
identify the splicing factors involved in pluripotency and 
reprogramming, the authors knocked down 81 potential 
splicing factors in various cell lines and monitored these 
47 AS regions using RT-PCR. The differences in PSI 
values (between iPSCs and original fibroblasts used 
for inducing pluripotent cells) of  these 47 AS events 
were then compared with the differences in PSI values 
before and after 81 splicing factors were knocked down 
individually during reprogramming of  fibroblasts into 
iPSCs. They found that MBNL1 knockdown correlated 
most strongly with the splicing profile change in the 
induction of  pluripotency. Splicing factor RBFOX2 
knockdown showed the second highest correlation 
with the induction of  pluripotency. By knocking down 
both MBNL1 and RBFOX2 in fibroblasts, a significant 
correlation between splicing changes and the induction 
of  pluripotency was observed, and the correlation was 
even higher than knocking down MBNL1 and RBFOX2 
individually, suggesting that MBNL1 and RBFOX2 
cooperate to establish the splicing program involved in 
stem cell differentiation.

Ohta et al[72] used siRNA screening in PSCs to identify 
RBPs involved in the reprogramming process by enhancing 
stem cell specific AS. After a screen of  92 RBPs, 9 RBP-
coding genes that had a major effect on the splicing 
patterns were examined to assess the impact on somatic 
cell reprogramming using shRNA knockdown. The 
downregulation of  U2af1 and Srsf3 was found to suppress 
both the efficiency of  alkaline phosphatase-positive 
colony formation and ESC marker gene expression.

AS can also affect RNA stability through NMD. Most 
recently, Jangi et al[95] performed a genome-wide analysis 
of  RBFOX2 activity in mESCs by mapping RBFOX2 
binding sites to transcriptome changes after loss of  
RBFOX2. Using iCLIP and RNA-seq technologies, the 
authors identified more than 200 AS-NMD (AS-coupled 
nonsense mediated decay) splicing events that were 
mediated by RBFOX2 in mESCs. These events showed 

minimal splicing changes but appreciable changes in 
gene expression upon RBFOX2 knockdown due to the 
degradation of  the NMD-inducing isoform. About 70 of  
these AS-NMD events were within genes encoding RBPs. 
Many of  these RBPs were also autoregulated. A large 
fraction of  bound but apparently unregulated events likely 
generated the NMD isoforms. This led to the hypothesis 
that RBFOX2 can control the gene expression level by 
regulating AS-NMD. The authors further demonstrated 
that RBFOX2 determines a threshold for the ratio 
of  NMD to non-NMD isoforms for several of  these 
RBPs. These findings uncovered an unexpectedly broad 
multilayered regulatory network controlled by RBFOX2, 
and established a model for how autoregulatory splicing 
networks are tuned.

CONCLUSION
Induced PSCs hold the promise of  future cell-based 
therapy. A thorough understanding of  the mechanisms 
underlying stem cell pluripotency and differentiation is 
critical for harnessing the cell reprogramming process. 
In this review, we have summarized recent progress in 
the field of  AS and its role in stem cell pluripotency 
maintenance and differentiation. It was found that AS is 
pervasive in stem cells, and reprogramming reverts the 
splicing pattern to an ESC-like state. AS has a fundamental 
impact on stem cell differentiation by regulating different 
isoforms of  the core pluripotency transcription factors. 
AS of  genes other than the core factors is also linked 
to stem cell self-renewal and lineage specification. 
Additionally, splicing factors can regulate pluripotency 
by affecting stem cell-specific AS. In summary, these 
findings present a picture in which AS is integrated in 
the transcriptional and post-transcriptional networks, and 
the crosstalk between AS and other layers of  the gene 
regulatory network have a fundamental effect on stem 
cell pluripotency maintenance and differentiation. These 
findings can lead to novel approaches for improving iPSC 
development and a better control of  cell differentiation.
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