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Abstract
Reprograming somatic cells using exogenetic gene 
expression represents a groundbreaking step in 
regenerative medicine. Induced pluripotent stem cells 
(iPSCs) are expected to yield novel therapies with 
the potential to solve many issues involving incurable 

diseases. In particular, applying iPSCs clinically holds the 
promise of addressing the problems of immune rejection 
and ethics that have hampered the clinical applications 
of embryonic stem cells. However, as iPSC research has 
progressed, new problems have emerged that need to 
be solved before the routine clinical application of iPSCs 
can become established. In this review, we discuss the 
current technologies and future problems of human iPSC 
generation methods for clinical use. 
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Core tip: Each induced pluripotent stem cells methodology 
has advantages and disadvantages, as in the case of 
autologous vs allogenic transplantation, and the choice of 
appropriate strategy may vary depending on the intended 
use. Additionally, to avoid tumorigenesis and to establish 
effective differentiation into the intended cells, further 
investigation is needed to identify the most suitable iPSC 
line and how these lines should be selected.
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INTRODUCTION
In 2006, Takahashi et al[1] established a novel method of  
reprogramming mouse somatic cells using exogenetic 
expression of  genes related to pluripotency. The cell lines 
established by this group were named induced pluripotent 
stem cells (iPSCs) and demonstrated the same pluripotency 
and self-renewal properties that are characteristic of  
embryonic stem cells (ESCs). The following year, the 
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same group also succeeded in generating iPSCs from 
human somatic cells[2]. These groundbreaking steps have 
been expected to lead to novel regenerative cell therapies 
with the potential to solve many problems surrounding 
incurable diseases. In particular, the clinical application 
of  iPSCs is expected to solve the problems of  immune 
rejection and ethics that are currently key obstacles in the 
clinical use of  ESCs. However, as research into iPSCs has 
progressed, new problems to solve have emerged before 
iPSCs can be established as cell sources for patients. In 
this review, we discuss the current technology and future 
problems surrounding human iPSC generation methods 
for clinical applications. 

BENEFITS AND PROBLEMS OF ESCS 
AND IPSCS IN CLINICAL APPLICATION
For treating diseases that lack self-repairing cells, the 
transplantation of  artificially generated cells is one attractive 
means for curing the diseases. In fact, regenerative 
cell transplantation therapies have been expected to 
treat incurable diseases, such as spinal cord injury[3], 
neurodegenerative disease[4], heart failure[5,6], diabetes[7], 
and retinal disease[8]. 

ESCs have the capacity to self-renew and differentiate 
into cells of  the three germ layers. The development 
of  suitable cultivation systems for maintaining the 
pluripotency of  ESCs marked their promise as a cell 
source for regenerative medicine since human ESCs 
were first generated in 1998[9]. Numerous efforts have 
been made since then to realize the promise of  making 
specific differentiated cells from ESCs. However, the 
ethical problem of  needing human zygotes to generate 
human ESCs has remained unsolved. Additionally, immune 
rejection remains an issue because of  the limited number 
of  ESC cell lines and the ability of  the cell lines to match 
the huge number of  human leukocyte antigen (HLA) type 
combinations found in patients. 

These problems with ESCs and the ongoing need for 
regenerative therapies drove further research efforts, such 
as Dr. Yamanaka’s 2006 success in generating iPSCs from 
somatic mouse cells[1] and reports in 2007 by Takahashi et 
al[2] and Yu et al[10] of  the successful generation of  human 
iPSCs. In the original mouse work, 24 transcription 
factors showing high expression in ESCs were chosen as 
candidate reprogramming triggers[1]. Finally, the forced 
expression of  OCT3/4, SOX2, KLF4, and C-MYC 
together with a retrovirus evoked mouse somatic cell 
reprogramming into the pluripotent state, and the same 
combination of  four factors forced human fibroblasts 
into iPSCs[2]. At the same time, Yu et al[10] successfully 
reprogrammed human fibroblasts using the combination 
of  OCT4, SOX2, NANOG, and LIN28. These methods 
attracted much attention because these iPSC lines could 
potentially overcome the immune rejection and ethical 
issues hampering the development of  ESCs for clinical 
use. Therefore, iPSCs showed promise as the breakthrough 

technology in regenerative medicine.

COMBINATION OF REPROGRAMMING 
FACTORS FOR IPSC GENERATION
Since iPSC generation methods were first reported, 
numerous efforts have been made to adapt them to clinical 
applications[5,11]. The reported generation methods vary 
in the combinations of  reprogramming factors, vehicles 
for exogenous genes, and cell types to generate the iPSCs. 
Therefore, current discussions in the literature focus on 
selecting the most appropriate iPSC generation method for 
clinical use.  

In relation to the combination of  reprogramming 
factors for iPSC generation, the first reported combination 
of  OCT3/4, SOX2, KLF4, and C-MYC, known as the 
Yamanaka factors, are generally used for iPSC generation. 
Combining only three of  these factors and omitting 
C-MYC was also reported to achieve successful iPSC 
generation, although with reduced reprogramming 
efficiency[12,13]. These alternative methods arose following 
concerns about using C-MYC , which is a known 
oncogene in human cells. Another group also reported 
the generation of  mouse iPSCs, which showed more 
efficient germline transmission in chimeric formation 
experiments using the combination of  OCT3/4 , 
SOX2, KLF4, and TBX3 as reprogramming factors[14]. 
Subsequently, iPSC generation using L-MYC instead of  
C-MYC was reported with improved efficiency in both 
reprogramming somatic cells and germline transmission 
of  generated iPSCs[15]. Furthermore, GLIS1 was also 
reported as a candidate alternate factor for C-MYC that 
showed high reprogramming efficiency, less incomplete 
reprogramming, and reduced tumor formation in iPSC-
derived mice[16]. Recently, improved iPSC quality was also 
achieved by introducing Zscan4, which is highly expressed 
at the zygotic genome activation stage. Forced expression 
of  Zscan4 in combination with the Yamanaka factors 
improved iPSC quality as demonstrated by tetraploid 
complementation[17].

Recently, lineage-specific genes were substituted 
for OCT3/4 or SOX2[18]. In this report, OCT3/4 was 
replaced with an early mesendodermal lineage marker, 
such as GATA3, and SOX2 was replaced with an 
early ectodermal lineage marker, such as ZNF521, in 
reprogramming using the Yamanaka factors. This finding 
raised the possibility that OCT3/4 and SOX2 might act as 
lineage specifiers for cell reprogramming and showed that 
reprogramming factors are not limited to genes associated 
with pluripotency[18]. 

Although methods for checking the quality of  iPSCs 
such as germline transmission experiments are not 
applicable to human iPSCs, such studies can be useful for 
seeking the best combination of  reprogramming factors 
to generate human iPSCs that are of  sufficient quality for 
clinical use.
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GENE-DELIVERY VEHICLES FOR IPSC 
GENERATION
Gene-delivery vehicles are also an important for selecting 
a suitable method of  iPSC generation for clinical use, and 
to date, many gene delivery vehicles have proven to be 
applicable to iPSC generation. Initially, retrovirus vectors, 
such as pMXs[2,19,20], pLib[21] or pMSCV[22,23], were used for 
the delivery of  reprogramming factors into somatic cells. 
Importantly, transgenes introduced with retrovirus vectors 
have been known to be silenced in pluripotent states[22,24], 
and therefore, silencing of  transgene expression in iPSCs 
has been thought to be an important result of  successful 
reprogramming[25]. Lentiviral vectors have also been used 
for successful iPSC generation because lentiviral vectors 
achieve a higher efficiency of  infection than retrovirus 
vectors[10,26]. Importantly, transgenes introduced by 
lentiviral vectors are more resistant to being silenced in 
pluripotent states than those transtenes introduced by 
retrovirus vectors[27]. 

The genomic integration of  transgenes that occurs 
as a result of  these virus vectors was thought to be 
a problem for the clinical use of  iPSCs because the 
delivered transgenes have the potential to be reactivated 
after cell reprogramming and thus drive oncogenesis in 
the iPSC-derived cells[28]. Furthermore, these transgenes 
have the potential to disrupt functional genes, even if  
they are silenced and not expressed. Therefore, many 
efforts have been made to generate iPSCs without the 
genomic insertions. For example adenovirus vectors are 
routinely used to introduce transient gene expression in 
target cells. Furthermore, a replication-defective pHIHG-
Ad2 vector, was used to successfully reprogram somatic 
cells into iPSCs[29]. Therefore, although adenoviral vectors 
still integrate into the genome of  target cells at extremely 
low frequencies[30] and the reprogramming efficiency is 
significantly lower than that with retrovirus, this method 
generates iPSCs that do not transfer residual transgenes 
into the host genomes.

More recently, a Cre-deletable lentivirus system was 
used for the successful generation of  iPSCs[31]. However, 
although these systems can avoid transgene reactivation, 
the risk of  gene breaks being introduced near the insertion 
site is present because the LoxP sequence remains in the 
host genome after removing the insert sequence by Cre 
recombinase[32]. 

In addition to virus vectors, the Sendai virus was also 
successfully used to generate iPSCs[33,34]. The Sendai virus 
genome is negative-sense single-stranded RNA. Because 
replication occurs in the cytoplasm, this virus vector does 
not pose a danger of  genome insertion. Therefore, this 
method solves both problems of  gene disruption near the 
insertion site and reactivation of  transgenes. Additionally, 
the residual Sendai virus RNA can be removed from the 
infected cells using siRNA[35], and temperature-sensitive 
mutations[36] were also reported, improving the potential 
clinical suitability of  this iPSC generation method. 

As another approach for safe iPSC generation, a virus-

free reprogramming method has received attention. For 
example, an iPSC generation method using episomal 
vectors has also been developed[37-40]. The early attempts 
using this method yielded lower efficiencies of  successful 
reprogramming than those achieved using retrovirus, 
and only a low percentage of  iPSC lines generated using 
this method had no plasmid integration. However, later 
modifications of  the episomal vector method yielded a 
higher reprogramming efficiency using a combination 
of  plasmids encoding OCT3/4, SOX2, KLF4, L-MYC, 
LIN28, and shRNA for TP53[41,42]. 

Generating iPSCs using a piggyBac transposon was 
reported as another method to avoid the reactivation 
of  residual transgenes and gene breaks in the host 
genome[43-45]. The piggyBac transposon is a moth-derived 
DNA transposon[46] that is highly active in mammalian 
cells and able to be completely eliminated from the host 
genome using the piggyBac transposase[47]. Despite 
generating integration-free iPSCs by this method, the 
reported reprogramming efficiency was lower than that 
with retrovirus, and thus further improvements are 
needed[43-45]. 

As another way to avoid introducing genetic material, 
introducing reprogramming factors such as RNAs 
or proteins has attracted much attention. Indeed, the 
direct delivery of  synthetic mRNAs has been shown to 
successfully reprogram somatic cells to a pluripotent 
state[48]. In this study, in vitro transcribed RNAs were 
modified to avoid the endogenous antiviral cell defense. 
As a result, this method achieved a higher iPSC generation 
efficiency than the original retrovirus system[48]. Successful 
reprogramming of  somatic cells has also been achieved 
using microRNAs[49], whereby expression of  the 
miR302/367 cluster containing five different miRNAs, 
miR302a/b/c/d and miR367, reprogrammed human 
fibroblasts more efficiently than previous retrovirus 
systems[49]. Such RNA-based reprogramming avoids both 
breaks in existing genes and the reactivation of  transgenes. 
Therefore, these methods hold much promise as novel 
iPSC generation methods that could be applicable for 
clinical use.

Similarly, recombinant proteins were also reported as 
a successful means of  gene introduction for generating 
iPSCs[50,51]. These protein-based methods are also attractive 
for clinical application because of  the absence of  breaks 
in existing host genes and the reactivation of  transgenes; 
however, the generation efficiencies remain lower 
compared to those in the existing retrovirus systems[50,51]. 

Finally, small-molecule drugs have been investigated 
for establishing safe methods of  iPSC generation for 
clinical application because they are nonimmunogenic, 
cost-effective, and easy to handle[52]. Recently, successful 
reprogramming of  mouse somatic cells without transgene 
introduction was achieved with small-molecule drug 
combinations[53]. This strategy has many merits for 
applying the iPSC generation method for clinical use, and 
therefore, further research into applying this method to 
human somatic cells is expected in the near future. 
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invasive. Peripheral blood cells are more easily accessible 
as a cell source than the dermal fibroblasts obtained by 
skin biopsy. In the first study to generate iPSCs from 
human blood cells, the donor needed to be injected for 3 
days with G-CSF to mobilize the CD34-positive cells, and 
the reprogramming efficiency was not higher than that of  
previous studies[73]; however, since then there have been 
many efforts to effectively generate iPSCs from peripheral 
blood cells. For example, less invasive methods have 
since been reported for generating iPSCs from peripheral 
mononuclear blood cells[34,74-77], whereby mononuclear 
blood cells from donors or frozen samples were induced 
using the Yamanaka factors with a retrovirus[74,77], 
lentivirus[75,76], or Sendai virus[34]. In these experiments, 
the majority of  iPSCs generated from mononuclear cells 
had TCR gene rearrangements, indicating that these 
cell lines were derived from T lymphocytes, and the 
reprogramming efficiencies with the Sendai virus were 
similar to those with the previous retrovirus system[34]. 
Additionally, to avoid generating iPSCs containing genome 
rearrangements, methods were developed in which 
iPSCs were generated from peripheral mononuclear cells 
cultured under conditions that inhibit the proliferation of  
lymphocytes[78,79] and from CD34-positive cells that were 
mobilized without additional drug administration to the 
donors[80]. Sampling of  peripheral blood is one of  the least 
invasive procedures available, and therefore, generating 
iPSCs from peripheral blood could be one of  the most 
appropriate methods for the clinical applications of  iPSCs. 

REMOVING ANIMAL PRODUCTS FROM 
CULTURE SYSTEMS
One of  the most important issues to address in applying 
iPSCs to clinical therapy is that the culture systems for 
generating iPSCs contain animal-derived products with 
potential and unpredictable risks to patients[81]. The initial 
culture system for ESC generation contained fetal calf  
serum in the culture medium and mouse embryonic 
fibroblasts as a feeder layer. These animal-derived 
products conferred a risk of  transferring exogenous 
antigens, unknown viruses, or zoonotic pathogens to the 
generated cell populations[9]. Thus, many investigations 
have be conducted to reduce such risks by establishing 
animal product-free culture systems for human iPSCs. 

First, human-derived feeder cells have proven to 
be a useful alternative to mouse cells for human iPSC 
generation[82]. However, these feeder cell preparations 
need significant time and effort, and in the case of  clinical 
therapies requiring the mass culture of  human iPSCs in 
some situations, using human-derived feeder cells for 
culturing human iPSCs is not an optimal strategy. As an 
option for culturing human iPSCs without feeder cells, 
Matrigel has proven to be a useful alternative that enables 
the stable culture of  human pluripotent stem cells[83-85]. 
Although Matrigel allows the generation of  human 
iPSCs without animal-derived feeder cells[86,87], Matrigel 
itself  was derived from Engelbreth-Holm-Swarm mouse 

TYPES OF DONOR CELLS FOR IPSC 
GENERATION
Generating iPSCs in clinical practice also requires the 
consideration of  the most appropriate type of  donor cells. 
At first, iPSCs were generated from mouse fibroblasts[1], 
followed by successful reprogramming of  mouse 
hepatocytes and gastric epithelial cells[54]. Subsequently, 
terminally differentiated somatic cells have also been 
reprogrammed, including mouse B lymphocytes[55] and 
pancreatic beta cells[56]. With respect to human cells, iPSCs 
have been generated from human dermal fibroblasts[2,10] 
and many types of  human somatic cells[5]. 

As a matter of  course, clinical applications of  cell 
therapies require that tissue collection from patients be 
as minimally invasive as possible, and harvesting human 
dermal fibroblasts by biopsy leaves a small scar on the 
patient’s body. Recently, iPSCs were generated from 
human keratinocytes induced from plucked hair, a process 
that is much less invasive than biopsy[23,57]. However, 
several hairs are needed to obtain the successful cell 
outgrowth of  keratinocytes in some cases, and therefore, 
a more stable protocol for primary culture is needed for 
routine clinical practice.  

Dental tissue has also been proposed as a unique cell 
source for iPSC generation. Dental stem cells[58,59] and 
mesenchymal stromal cells derived from human third 
molars[60] were successfully reprogrammed and thought to 
be potentially useful material for clinical iPSC generation. 
Oral gingival[61] and oral mucosa fibroblasts[62], which can 
be obtained less invasively, were also investigated for iPSC 
generation. These methods are advantageous for clinical 
application because they involve a minimally invasive 
approach for the patients.

Cord blood was also reported as another cell source 
for generating iPSCs[63,64]. Early studies with cord blood 
yielded lower reprogramming efficiencies than those 
achieved with lentivirus or retrovirus systems. However, 
a modified method involving the knockout of  p53, 
which was previously shown to increase the efficiency of  
reprogramming[65-70] for iPSCs, increased the efficiency 
of  generating iPSCs from CD34-positive cells which 
were sorted from cord blood cells[71]. Additionally, gene 
introduction using Sendai virus vectors successfully 
reprogrammed CD34-positive cord blood cells more 
efficiently than lentiviral or retroviral vector used to 
reprogram cord blood cells[36]. Cord blood cells have 
attracted much attention because cord blood-derived 
cells do not require laborious mobilization or an invasive 
biopsy before introducing reprogramming factors. Using 
cord blood cells for iPSC generation also avoids the risk 
of  transferring over accumulated genetic mutations into 
iPSC. Additionally, banked cord blood cells are relatively 
uncomplicated for use in iPSC generation because their 
immunological information is already available in cord 
blood banks[72]. 

Peripheral blood cells are also an attractive cell source 
because the method for cell sampling from patients is less 
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sarcoma cells[88]. Therefore, other types of  matrices, such 
as CellStart[89,90], recombinant proteins[91-93], and synthetic 
polymers[94,95], which do not contain animal-derived 
agents, have been tested and used as feeder-cell substitutes 
for the successful maintenance and generation of  human 
pluripotent cells. 

Developing animal product-free medium for iPSC 
generation is also an important practice for achieving 
safe therapy using iPSCs. The culture media used in the 
early generation of  human ESCs contained fetal bovine 
serum[9]. To remove unpredictable agents that might cause 
the differentiation of  human ESCs, knockout serum 
replacement (KSR) has now been established as a defined 
material for maintaining human ESCs[96] and is also used 
for human iPSC generation[2]. Additionally, mTeSR1 
medium was developed as a chemically defined medium 
for maintaining human pluripotent cells and is used for 
defined condition cultures of  human pluripotent stem 
cells[97]. However, because KSR and mTeSR1 also contain 
animal-derived products, new media have now been 
commercially developed as xeno-free media for maintaining 
human pluripotent stem cells and have already been used 
successfully for iPSC generation; these media include 
TeSR2[98], NutriStem[99], Essential E8[91], and StemFit[100]. 

SELECTING THE MOST APPROPRIATE 
IPSC LINE FOR CLINICAL USE
One of  the most intractable problems for applying 
iPSCs to clinical therapy is the variety of  iPSC lines with 
respect to differentiation tendency and tumorigenic 
risk. Additionally, the laboratory in which the iPSCs are 
generated could influence global gene expression patterns 
of  those iPSCs due to small possible differences in the 
culture conditions[101]. Therefore, how to select iPSC lines 
that are appropriate for a specific clinical use in terms of  
safety and differentiation ability remains a topic of  intense 
discussion.    

As described above, in contrast to generating iPSCs 
with Yamanaka factors, introducing TBX3[14], L-MYC[15], or 
GLIS1[16] instead of  C-MYC has yielded high-quality iPSCs 
with respect to the efficiency of  germ line transmission 
and prognosis of  iPSC-derived mouse cells. These 
reports implied that selecting suitable combinations of  
reprogramming factors was an important consideration for 
clinical therapy using iPSCs. However, these reports were 
derived from mouse experiments, and how these findings 
translate to human iPSCs remains unknown. Of  course, 
the quality index of  iPSCs using chimeric formation is not 
applicable to human iPSCs. Therefore, another index of  
iPSC quality that is applicable to human iPSCs is required. 

With respect to assessing the effects of  the type of  
donor cell on the quality of  generated iPSCs, the teratoma-
forming propensity of  neural stem and progenitor cells 
derived from mouse iPSCs was shown to differ depending 
on the donor cell type[102]. This finding suggested that the 
quality of  the iPSCs should be considered when the type of  
donor cell is selected. Since that early report, an epigenetic 

memory of  tissue of  origin donor cell type that affected 
the differentiation tendency of  iPSCs was reported[103,104]. 
Importantly, the effect of  epigenetic memory was not 
demonstrated when pluripotent stem cells generated by 
nuclear transfer were used. Additionally, another recent 
study showed that human iPSCs contain more CpG sites 
that retain the DNA methylation pattern of  the parental 
donor cells than human ESCs generated by nuclear 
transfer[105]. Although the fact that the differentiation 
tendency derived from epigenetic memory will not remain 
after long-term culture[103], these reports also suggested the 
importance of  selecting the donor cell type when applying 
iPSCs clinically. 

The effect of  donor cell type on differentiation 
tendency was also reported in human iPSCs[106], but 
experiments that compared donor cell type, gene vehicle 
type, and volunteers on hepatic differentiation tendencies 
of  iPSCs showed that the differentiation tendency of  
iPSCs depended on the volunteer from which the iPSCs 
were generated[107]. Interestingly, in this latter study, hepatic 
differentiation tendencies that were derived from donor 
cells were not observed, implying that such differences 
derive from the volunteer cell donor when epigenetic 
memory does not remain after long-term culture. 

With respect to the tumorigenic tendencies of  
human iPSCs, a study of  gene expression and DNA 
methylation in 21 human iPSC lines and 2 human ESC 
lines showed activated expression of  genes containing 
specific LTR7 sequences in some human iPSC clones that 
showed a neural differentiation-defective phenotype and 
formation of  teratomas when they were differentiated 
into dopaminergic neurons and transplanted in mouse 
brains[108]. Another report on 21 human iPSC lines and 6 
human ESC lines indicated that certain human iPSC clones 
were in a pro-oncogenic state, as shown by the ectopic 
presence of  secretory tumor tissue during in vitro cartilage 
differentiation[109]. These reports together implied that a 
marker foreseeing pro-oncogenic differences in iPSC lines 
would be required for establishing safe therapy using iPSCs. 

AUTO-TRANSPLANTATION AND ALLO-
TRANSPLANTATION OF IPSCS
One of  the most important advantages expected of  iPSCs 
for transplantation therapy is avoiding immune rejection 
and therefore avoiding combination immunosuppressive 
treatment. Indeed, autologous iPSCs were used in the 
first human clinical trial of  iPSCs started by Dr. Masayo 
Takahashi at the RIKEN Center for Developmental 
Biology in Kobe in 2013 for treating age-related macular 
degeneration with iPSC-derived sheets of  retinal pigment 
epithelium. With respect to the immunogenicity of  
autologous iPSCs, in the first report that aroused discussion 
on its credibility, immunogenicity showed in the case 
of  iPSCs was not observed in the case of  ESCs[110,111]. 
Subsequently, experiments with isogenic transplantation of  
mouse iPSCs revealed the successful engraftment of  iPSC-
derived tissue without immunosuppressive treatment and 
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verified the advantages of  using auto-transplantation of  
iPSCs for avoiding immunosuppressive treatment[112,113]. 
However, a recent study demonstrated immune rejection 
upon transplanting autologous undifferentiated mouse 
iPSCs in vivo, and rejection was imperceptible upon 
transplanting autologous terminally differentiated mouse 
iPSCs[114]. Although this report supports the presence 
of  immunogenicity in undifferentiated iPSCs[91] and 
conflicts with the successful autologous engraftment of  
undifferentiated iPSCs in other reports[93,94], it supports 
the advantages of  using auto-transplantation of  iPSC-
derived terminally differentiated cells for avoiding 
immunosuppressive treatment. On another front, whether 
the immunogenicity in undifferentiated iPSCs contributes 
to removing contaminated undifferentiated cells from 
iPSC-derived cell populations and avoiding tumorigenesis 
after transplantation in the same manner as removing 
undifferentiated cells from cell populations before 
transplantation[115-117] remains to be clarified.  

Allo-transplantation of  iPSC-derived cells was also 
expected to provide a useful strategy for transplantation 
therapy using iPSCs due to saving cost and time in 
generating autologous iPSC lines for transplantation. 
Furthermore, as described above, selecting appropriate 
iPSC lines on a patient-by-patient basis will require 
significant numbers of  studies for verification. Therefore, 
although the transplantation of  iPSC-derived cells from 
an allogenic donor with foreign HLA requires lifelong 
immunosuppressive treatment of  the recipient, the concept 
of  homozygous HLA-typed iPSC banks may be feasible 
for achieving generalized therapy using iPSCs[41,118,119] and, 
indeed, this type of  approach is already progressing[120]. 

CONCLUSION
The invention of  iPSCs was groundbreaking for novel 
regenerative medicine and has been expected to lead 
to regenerative therapies with the potential to advance 
the treatment and management of  incurable diseases. 
Importantly, iPSCs could overcome the problems of  
immune rejection and ethics that remain with ESCs. 
However, each strategy of  using autologous or allogenic 
iPSCs has advantages and disadvantages, and the choice of  
appropriate strategy may vary depending on the intended 
use. Additionally, there remain many factors that affect 
establishing transplantation therapy using iPSCs. To avoid 
tumorigenesis and establish effective differentiation into 
the intended cells, further investigation is needed to clarify 
which iPSC line is the most suitable and how these lines can 
be best selected. 
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