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Abstract
Over the past two decades, regenerative therapies using 
stem cell technologies have been developed for various 
neurological diseases. Although stem cell therapy is an 
attractive option to reverse neural tissue damage and to 

recover neurological deficits, it is still under development 
so as not to show significant treatment effects in clinical 
settings. In this review, we discuss the scientific and 
clinical basics of adult neural stem cells (aNSCs), and 
their current developmental status as cell therapeutics 
for neurological disease. Compared with other types 
of stem cells, aNSCs have clinical advantages, such 
as limited proliferation, inborn differentiation potential 
into functional neural cells, and no ethical issues. In 
spite of the merits of aNSCs, difficulties in the isolation 
from the normal brain, and in the in vitro  expansion, 
have blocked preclinical and clinical study using aNSCs. 
However, several groups have recently developed novel 
techniques to isolate and expand aNSCs from normal 
adult brains, and showed successful applications of 
aNSCs to neurological diseases. With new technologies 
for aNSCs and their clinical strengths, previous hurdles 
in stem cell therapies for neurological diseases could be 
overcome, to realize clinically efficacious regenerative 
stem cell therapeutics. 

Key words: Adult neural stem cell; Neurological diseases; 
Stem cell therapy; Preclinical trial; Clinical trial

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: In this review, we compare advantages and 
disadvantages of various types of stem cells for regenerative 
therapy in neurological disease, and discuss the 
preclinical and clinical developmental hurdles of stem cell 
technologies. While at present, adult neural stem cells 
(aNSCs) have clinical advantages, technical issues in the 
isolation and expansion of aNSCs prevent active preclinical 
and clinical applications of aNSCs. However, several papers 
have recently reported scientific breakthroughs, on the 
basis of which broad application trials using aNSCs could 
be performed. In this review, we also summarize the 
current status of preclinical and clinical applications of 
aNSCs for various neurological diseases. 
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STEM CELL THERAPY FOR 
NEUROLOGICAL DISEASES
Neurological diseases are derived from the loss of  
functional neurons in the central nervous system (CNS). 
Although acute localized neurodegeneration could result 
from a temporal localized injury, such as stroke and trauma, 
chronic neurodegeneration usually develops over a long 
period of  time, and has unclear multifactorial causes. 
Functional neurological deficits in chronic neurological 
diseases originate from either loss of  a specific neuronal 
subtype, or universal brain damage. Alzheimer’s and 
Huntington’s diseases result in non-specific death of  
neurons in the brain, whereas Parkinson’s disease is 
characterized by the specific and localized damage of  
dopaminergic neurons located in the substantia nigra. In 
the brain and spinal cord, amyotrophic lateral sclerosis 
(ALS) and traumatic spinal cord injury induce diffuse 
motor neuronal loss and localized nonspecific neural tissue 
damage, respectively. Although these neurodegenerative 
conditions have unique morphological pathologies, 
the molecular mechanisms for the neuronal death are 
complicated and ambiguous, making the development of  
mechanism-based therapeutic modalities elusive. Since 
functional loss of  neural cells is the common final pathway 
of  various neurological diseases, regardless of  specific 
etiologies, regenerative treatment using stem cells that could 
repair damaged neural tissue is a viable and non-specific 
therapeutic option.

TYPES OF STEM CELLS AND THEIR 
APPLICATIONS TO NEUROLOGICAL 
DISEASES 
Stem cells have two important characteristics: proliferation 
capacity, and differentiation potential into multiple 
cellular lineages. According to the source, stem cells can 
be classified into embryonic, fetal, and adult stem cells 
(ESCs, FSCs, and ASCs, respectively). Pluripotent ESCs 
are obtained from the blastocyst of  fertilized egg[1]. ESCs 
proliferate robustly and have multi-potent differentiation 
potentials into three germ layer cells, which consist of  
the whole body[2]. However, ethical concerns[3-5], and risks 
of  adverse effects, such as immune rejection and tumor 
formation[6] prevent their clinical applications. Recently, it 
was reported that somatic cells could be reprogrammed 
into pluripotent state, by overexpression of  Oct4, Sox2, 
Klf4, and c-Myc[7,8]. Although these induced pluripotent 
stem cells (iPSCs) maintain the merits of  ESCs, iPSCs still 

have limitations, such as low efficient generation, and the 
formation of  teratomas or tumors in vivo. These critical 
limitations provoke hesitation in the use of  ESCs and 
iPSCs as clinical therapies. As other sources of  stem cells, 
fetal organs that contain FSCs have been suggested. In 
spite of  the advantages of  FSCs, including proliferation 
capacity, limited differentiation potential, and lack of  
teratoma formation[9], ethical problems of  using fetal 
tissues still remain. 

ASCs are classically defined as multi-potent cells 
that originate from various tissues within the adult body, 
including the bone marrow, skeletal muscle, central 
nervous system, and adipose tissue[10,11]. The important 
benefit of  ASCs is possible autologous transplantation, 
in which stem cells can be primarily cultured from and 
applied to the same patient. This benefit bypasses the 
ethical problems that ESCs and FSCs harbour. However, 
in spite of  these advantages of  ASCs, their limited 
differentiation and proliferation ability interrupts their 
widespread use.

Therefore, in the current status, technical and ethical 
considerations indicate that compared with other stem 
cells, ASCs are the most clinically applicable.

ADULT NEURAL STEM CELLS FOR 
NEUROLOGICAL DISEASES
Among various ASCs, mesenchymal stem cells (MSCs) 
are the most widely used, and furthest progressed in 
preclinical and clinical trials[12]. The strengths of  MSCs 
are relatively simple isolation, and in vitro expansion 
techniques. However, there are concerns about the 
clinical applications of  MSCs[13]. First of  all, in the 
culture methods of  MSCs, bovine serum should be used. 
Because the dangers of  bovine serum have not been 
well characterized, potential risks in clinical applications 
still exist[14]. Although xeno-free culture methods for 
MSCs have been developed, their quality needs to further 
study. Moreover, many previous studies suggested that 
the beneficial effects of  MSCs for neurological diseases 
might originate from their paracrine effects involving 
immune modulation and/or secretory growth factors, 
and not from direct neuroregenerative effects producing 
functional neural cells[15-17].

Compared to MSCs, NSCs are cultivated and expanded 
in media containing low, or no bovine serum[18-22]. Many 
preclinical studies using NSCs suggest that NSCs not 
only have beneficial paracrine effects in the regeneration 
and repair of  neural tissue, but also direct differentiation 
potential into diverse neuronal lineages, to form networks 
with surrounding neuronal cells[23-25]. Since the ultimate 
goal of  regenerative treatment for neurodegenerative 
diseases is the functional repair of  damaged neural tissues, 
NSCs seem to be a more optimal choice for neurological 
diseases.  

Adult NSCs are tissue-resident multi-potent neural 
progenitor cells that have self-renewal capacity, so long as they 
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can be maintained undifferentiated. NSCs have the potential, 
under appropriate culture conditions, to differentiate into 
multiple neural cells, such as neurons, astrocytes, and 
oligodendrocytes. NSCs are observed in the developmental 
stage and mature CNS of  mammalian species[26-29], specifically 
in the subventricular (SVZ) and subgranular zones (SGZ)[30-32]. 
The neurogenic niche surrounding SVZ and SGZ represents 
a unique microenvironment that regulates the survival and 
differentiation of  NSCs[28,33]. 

TECHNICAL HURDLES AND RECENT 
BREAKTHROUGHS IN THE USE OF 
ADULT NEURAL STEM CELLS FOR 
NEUROLOGICAL DISEASES
Depending on the types of  neurological diseases, 
undifferentiated NSCs themselves, or differentiated 
neural cells, have been applied to verify their efficacy in 
preclinical animal models. However, in vitro expansion of  
differentiated neural cells to acquire the necessary amount 
of  cells for transplantation is very difficult, because 
differentiated cells cannot proliferate well. Therefore, 
regardless of  transplantation cell types, aNSCs first need 
to be properly isolated, and effectively expanded in vitro. 
Compared with other stem cells, such as ESCs, fetal NSCs, 
and MSCs, aNSCs reside in restricted areas of  the adult 
CNS[31,32], and have limited capacity to proliferate[34,35]. 
Therefore, difficulties in the primary isolation and stable 
in vitro expansion of  aNSCs are major technical obstacles 
to be resolved, for the utilization of  aNSCs.

Up to now, several research teams have addressed 
these difficulties, using various scientific and technical 
approaches. Surgical samples from the adult CNS are 
usually very small (1-2 mL). As the number of  resident 
aNSCs within the tissue is also very small, isolation 
techniques have been optimized to increase the success 
rate of  the primary isolation of  aNSCs. To acquire aNSCs, 
CNS tissues are physically minced, and enzymatically 
digested into single cells. Among them, the enzymatic 
digestion is a critical step, because it directly affects the 
survival of  aNSCs. The compositions of  dissociating 
enzymes and incubation times are various among 
investigators. Papain, trypsin, and collagenase have usually 
been used, and in some reports, papain dissociation was 
suggested to be most optimal for the primary isolation of  
aNSCs[36,37].

After the mechanical and enzymatic dissociation of  
CNS tissues, the resulting single cells have been cultured 
by two alternative methods: the neurosphere, and adherent 
culture methods. Conventionally, the neurosphere culture 
method has been used for in vitro culture of  NSCs[38-47]. 
This method was first used in the primary isolation of  
NSCs from murine brains. The neurosphere culture 
method was also applied to maintain aNSCs from human 
brains. However, difficulties in the stable in vitro expansion 
of  aNSCs using suspension culture methods resulted in 
the need for another culture method to be developed. 

Moreover, a single neurosphere may not be derived 
from a single NSC[48]. The possible heterogenic origin 
of  neurospheres could not guarantee the homogeneity 
of  in vitro expanded aNSCs in the suspension culture 
conditions[49-51]. 

To overcome the weak points of  the neurosphere 
culture method, others, as well as ourselves, developed 
alternative adherent culture methods for NSCs[18-21,44,52-54]. 
Each group used their own coating plates to attach NSCs 
to the plates, and various culture medium compositions. 
Laminin and poly-L-ornithine (PLO) have frequently been 
used to coat plates, which increase the adherent efficiency 
of  NSCs. To maintain stemness and proliferation of  
NSCs, the amount of  EGF and basic FGF have been 
optimized[55]. For example, we expanded aNSCs from 
temporal lobectomy samples of  epilepsy patients without 
any neoplasmic diseases, on PLO-coated plates in a 
DMEM/F12 media supplemented with 1% B27, 1% 
penicillin/streptomycin, EGF (50 ng/mL), bFGF (50 
ng/mL), and 0.5% fetal bovine serum (Table 1)[18]. Using 
the adherent culture method, aNSCs were expanded in 
vitro from 104 to 1012 cells within 8 subcultures for 2 mo. 
Moreover, the expression of  Nestin and Sox2 as NSC 
markers was stably maintained[18]. If  the number of  
aNSCs required for transplantation is 107 per patient, at 
least one hundred thousand patients could be treated with 
a primary culture of  aNSCs.  

Table 1 summarizes various primary culture and in vitro 
expansion techniques for aNSCs. As indicated in Table 1, 
major obstacles in the primary isolation and stable in vitro 
expansion of  aNSCs have been, or are being resolved, 
which would increase their clinical applicability.

CURRENT THERAPEUTIC STATUS OF 
ADULT NEURAL STEM CELLS FOR 
NEUROLOGICAL DISEASES
Since technical breakthroughs for the preclinical and clinical 
utilization of  aNSCs were introduced relatively recently, 
scientific results showing treatment effects of  aNSCs 
against neurological diseases are, at present, limited[18,56-59]. 
However, many previous reports have indicated that 
NSCs, compared with other stem cell types, are optimal 
for neurological diseases, since neural functional recovery 
requires direct neural cell supplementation, besides indirect 
paracrine effects. With brief  presentation of  the current 
developmental status of  stem cell therapeutics for individual 
neurological disease, Tables 2 and 3 summarize preclinical 
and clinical results, respectively, of  aNSCs against various 
neurological diseases. 

Ischemic stroke
Various human stem cells and their derivatives can 
differentiate into neurons restoring functional losses in 
the rodent stroke model[60,61]. In particular, human ESC-
derived NSCs, injected into the ischemic penumbra region 
in rat brains with ischemic stroke, have been reported to 
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infarction area, and showed recovery of  motor function[18]. 
When human fetal NSCs were transplanted into ischemic 
lesions of  rodent brains, they migrated toward the injured 
regions and differentiated into neurons[63,64]. 

move to the lesions, and improve motor performances[62]. 
Moreover, human adult temporal lobe-derived NSCs, 
grafted into the contralateral ventricle of  the rat brains 
with focal cerebral stroke, significantly reduced the 
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Table 1  Isolation and in vitro  culture methods for adult neural stem cells

Culture 
methods

Cell source Dissociating method Media composition Plate coating Maximal in vitro  
culture

Ref.

Adherent 
culture 
method

Temporal lobe Physical Mincing and 
enzymatic digestion 
with papain

DMEM/F12 supplemented with 10 ng/mL 
bFGF, 20 ng/mL TGFα, 2.5 µg/mL heparin, 
2% B27 (without retinoic acid), 10 mmol/L 
hepes, and 1% FBS

[54]

Temporal lobe Mechanical trituration 
and enzymatic 
dissociation using 
papain and DNase Ⅰ

DMEM/F12 supplemented with 1% B27, 50 
ng/mL EGF, 50 ng/mL bFGF, and 0.5% FBS

Poly-L-
ornithine

18 passages [18]

Neurosphere 
culture 
method

Hippocampal and lateral 
ventricle wall tissue

Mechanical 
dissociation and 
enzyme digestion 
using hyaluronic acid, 
kynurenic acid, and 
trypsin

DMEM/F12 supplemented with 10 ng/mL 
EGF, 20 ng/mL EGF, B27, and 2 mmol/L 
glutamine

[39]

Temporal lobe Enzymic digestion 
with trypsin

N2 medium supplemented with 5% FBS Poly-2-
hydroxyethyl 
methacrylate

[40]

Hippocampus
Amygdala
Frontal cortex
Temporal cortex

Enzymic digestion 
with hyaluronidase, 
kynurenic acid, and 
trypsin

DMEM/F12 supplemented with 0.6% glucose, 
2 mmol/L glutamine, 3 mmol/L sodium 
bicarbonate, 5 mmol/L HEPES buffer, 25 
mg/mL insulin, 10 mg/mL heparan sulfate, 100 
mg/mL transferrin, 20 nmol/L progesterone, 
60 mmol/L putrescine, 30 nmol/L selenium 
chloride, 20 ng/mL EGF, and 20 ng/mL bFGF-2 

[41]

Temporal lobe from 
11-wk-old postnatal male
Hippocampus, 
ventricular zone, motor 
cortex and corpus 
callosum from and a 
27-year-old male

Enzymic digestion 
with papain, 
DNase Ⅰ, and neutral 
protease

Initially, DMEM/F-12 supplemented with 
glutamine and 10% FBS
After 24 h, DMEM/F12 supplemented 
with BIT-9500 (bovine serum albumin, 
transferrin, insulin, 20 ng/mL bFGF, 20 
ng/mL EGF, and 20 ng/mL PDGF-AB) and 
25% conditioned medium from rat stem 
cells that produces secretory bFGF and 
glycosylated form of cystatin C

Fibronectin More than 70 
population 
doublings in 
the 11-wk-old 
postnatal male
More than 30 
population 
doublings in the 
27-year-old male

[42]

Temporal lobe Mechanical 
dissociation and 
enzymic digestion 
with DNase Ⅰ and 
trypsin

DMEM/F12 supplemented with 1 mol/L 
HEPES, 2% B27, 0.1% EGF, and 0.1% bFGF 

11 mo [43]

Temporal lobe Enzymic digestion 
with Papain and 
DNase Ⅰ

DMEM/F12 supplemented with bFGF and 
EGF

3–6 wk [44,114]

Lateral ventricular roof Mechanical 
dissociation and 
enzyme digestion 
with DNase Ⅰ and 
trypsin

DMEM/F12 supplemented with bFGF, EGF, 
and B27

3-7 wk [45]

Hippocampus 
containing hilus, 
temporal cortex, and 
subventricular zone 
including anterior horn 
and segmented lateral 
ventricle

Physical mincing and 
enzyme digestion 
with trypsin

DMEM/F12 supplemented with N2, 35 
µg/mL bovine pituitary extract, 5% fetal calf 
serum, 40 ng/mL EGF, and 20 ng/mL bFGF

> 60 population 
doublings

[46]

Biopsies from filum 
terminale below conus 
medullaris

Physical mincing and 
enzyme digestion 
with trypsin

DMEM/F12 supplemented with B27, 10 
ng/mL LIF, 10 ng/mL bFGF, and 20 ng/mL 
EGF

Ultra-low 
attachment 
dish

[47]

TGFα: Transforming growth factor alpha; DMEM/F12: Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12; FBS: Fetal bovine serum; bFGF: Basic 
fibroblast growth factor; EGF: Epidermal growth factor.



Initial clinical trials with stem cells have been completed 
in stroke[61]. Unfortunately, no significant clinical outcomes 
were observed when autologous MSCs were injected 
intravenously into ischemic patients[65]. Although other 
clinical studies adopting intravenous or intra-arterial 
administration of  autologous bone marrow-derived stem 
cells in stroke patients are in progress or planning[23], NSC-
based regenerative treatment with both paracrine and 
neuronal supplementation effects would be more effective. 
Recently, a clinical trial for stroke with immortalized NSCs 
generated from human fetal cortex was planned in the 
United Kingdom[23], which would yield scientific data that 
might possibly demonstrate the superior regenerative and 
treatment activities of  NSCs. 

Although there are scientific data demonstrating the 
therapeutic effects of  aNSCs on ischemic stroke, aNSCs 
have not applied to clinical trials for ischemic stroke yet. 
In contrast, clinical trials using MSCs for ischemic stroke 
are continuously planned and performed world widely. 
Compared with MSC clinical trials, the most different 
feature of  NSC trials is the injection route; while MSCs 
are usually injected intravenously, NSCs are stereotactically 
transplanted in the brain. Since the penetration of  MSCs 
across brain-blood barrier is still controversial, direct 
implantation of  NSCs into the brain would potentiate the 
therapeutic effects against ischemic stroke. 

Spinal cord injury
Human NSCs transplanted into a mouse model of  spinal 
cord injury were observed to differentiate into neurons and 
oligodendrocytes to lead the recovery of  locomotion[66]. 
Treatment mechanism study indicated that neurons derived 
from transplanted stem cells integrated into the host neuronal 
circuitry and mediated functional recovery[19,67]. On the other 
hand, the functional recovery after NSC transplantation into 
spinal cord injury models was proportional to the number 

of  transplanted stem cell-derived oligodendrocytes and the 
amount of  regenerated myelin[68]. Those preclinical results 
indicate that the supplementation of  mature neural cells 
by implanted stem cells would also be important in clinical 
settings, for the functional recovery of  spinal cord injury 
patients. 

Highly refined oligodendrocyte progenitor cells 
(OPCs) generated in vitro from human ESCs differentiated 
into oligodendrocytes, and induced remyelination of  the 
demyelinated spinal cord of  mouse[69]. Based on these 
observations, a first phase Ⅰ clinical trial using human 
ESC-derived OPCs is under planning by the United 
States company, Geron[23]. This first clinical trial has raised 
worries about the risk for tumorigenicity, which is difficult 
to determine in preclinical situations[70]. Since the results 
from animal models could not be directly translated into 
human, the possible risks need to be further validated. 
Moreover, utilization of  aNSCs, instead of  fetal origin 
stem cells, would reduce the possible tumorigenicity, due 
to their limited proliferation potential.  

Parkinson’s disease 
Human embryonic mesencephalic tissue which contains many 
post-mitotic dopaminergic neuroblasts was tried clinically, 
which have showed proof  of  concept that regenerative 
approach could have therapeutic effects in Parkinson’s disease 
(PD) patients[71]. Dopaminergic neuroblasts for preclinical 
animal models have been cultured from various different 
stem cell sources, including ESCs[72-79], fetal NSCs and 
precursors of  embryonic ventral mesencephalon[80-83], adult 
NSCs from the SVZ[84], bone marrow stem cells[85], and 
fibroblast-derived iPSC cells[86]. 

Although a small portion of  dopaminergic neurons 
derived from transplanted cells contain disease-specific 
Lewy bodies 11 to 16 years after transplantation[87,88], 
implanted cells remained viable[23,89]. However, definitive 
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Table 2  Preclinical results of adult neural stem cells against neurodegenerative diseases

Targeted disease 
animal model

Cell source Injection method Result Animal species Ref.

Demyelinated 
spinal cord injury

Frontal cortex, temporal cortex, 
hippocampus, and subventricular/
subependymal zone of frontal lobe

The midline of the 
dorsal columns of the 
spinal cord at three 
longitudinal sites 

The cells elicited extensive remyelination 
with a peripheral myelin pattern similar to 
Schwanncell myelination
The remyelinated axons conducted impulses at 
near normal conduction velocities

Rat [56]

Multiple sclerosis 
(lysolecithin-
demyelinated 
brain)

Temporal lobe Local injection to 
demyelinated brain 
regions

Transplanted cells migrated to lesions without 
extending into normal white matter. Implanted 
progenitors matured as oligodendrocytes, and 
developed myelin-associated antigens

Rat [57]

Global brain 
ischemia

Temporal lobe The posterior 
periventricular region 
above the 
hippocampus

Adult human NPCs survived, migrated into 
ischemic regions, and differentiated into 
functional neural cells
No information about therapeutic effects

Rat [58]

Global brain 
ischemia

Temporal lobe Left hippocampus
After in vitro 
differentiation

Injected cells migrated preferentially into an 
ischemic lesion, which was mediated by SDF-1α 
and CXCR4 signaling pathways
No information about therapeutic effects

Rat [59]

Focal ischemic 
stroke

Temporal lobe Contralateral lateral 
ventricle

Transplanted cells reduced infarction volumes 
and enhanced motor activity

Rat [18]



successful clinical trials have not yet been reported in the 
case of  human stem cell-derived dopaminergic neurons. 
In contrast, a group of  patients who had embryonic 
mesencephalic graft showed dyskinesia[90-92]. Those reports 
have provoked major concern about the possible side 
effects of  transplanted ESC cell-derived dopaminergic 
neuroblasts[77], and the need for safer stem cell sources, 
such as aNSCs. 

Amyotrophic lateral sclerosis 
Amyotrophic lateral sclerosis (ALS) is a lethal neuro-
degenerative disease with premature degeneration of  
motor neurons in the CNS[23,93]. For the regeneration and/
or supplementation of  motor neurons, motor neurons 
were generated in vitro from ESCs[94-97], fetal NSCs[98-100], 
and iPSCs[101,102]. 

Recently, transplantation of  fetal spinal cord- or iPSC-
derived NSCs was reported to be effective in slowing down 
the disease progression of  ALS animal models[103,104]. Based 
on the preclinical results, a phase Ⅰ clinical trial of  intra-
spinal cord injection of  fetal NSCs into ALS patients was 
attempted in the United States. Clinical outcomes from 6 to 
18 mo after the transplantation showed that the intervention 
did not accelerate disease progress[105]. In contrast, their 

efficacy could not be determined, although higher dose of  
injection showed better results in some evaluating factors. 
On-going and/or planned phase Ⅱ and Ⅲ clinical trials 
would further determine the optimal therapeutic dose, and 
their therapeutic efficacy against ALS[106].  

Until now, there have been few preclinical and clinical 
trials using aNSCs for ALS. However, ALS could be a good 
treatment target of  aNSCs, having regard to its fatality, and 
lack of  proven therapeutic options for it. 

Alzheimer’s disease
Alzheimer’s disease (AD) is the most frequent neurological 
disease, which is characterized by the increased amyloid 
plaques and neurofibrillary tangles in the brain[107]. Amyloid 
plaques are extracellular aggregations consisting of  
amyloid-peptides. Neurofibrillary tangles are intracellular 
aggregations of  hyperphosphorylated tau, a microtubule-
associated protein within neuron[108]. The causative 
relationship between amyloid plaques/neurofibrillary 
tangles and AD is still under investigation[109]. Widespread 
non-specific neuronal death in the AD brain makes stem 
cell-based regeneration challenging. For effective cell 
therapy for AD, NSCs need to migrate to multiple regions 
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Table 3  Current clinical trials of neural stem cells against neurodegenerative diseases

Disease NSC source Brief  title Trial ID Condition Location Period Cell source Route Phase

ALS Fetal NSCs Human neural stem 
cell transplantation in 
amyotrophic lateral sclerosis 

NCT01640067 Recruiting Italy 2011-12
-2016-09

Fetal neural stem 
cells

Spinal cord Ⅰ

Dose escalation and safety 
study of human spinal 
cord derived neural stem 
cell transplantation for the 
treatment of amyotrophic 
lateral sclerosis

NCT01730716 Ongoing United 
States

2013-05
-2014-09

Spinal cord of a 
single fetus 8 wk 
of gestation

Spinal 
cord after 
laminectomy

Ⅱ

Human spinal cord 
derived neural stem cell 
transplantation for the 
treatment of amyotrophic 
lateral sclerosis 

NCT01348451 Ongoing United 
States

2009-01
-2015-12

Spinal cord of a 
single fetus 8 wk 
of gestation

Spinal 
cord after 
laminectomy

Ⅰ

Stoke Adult NSCs Pilot investigation of stem 
cells in stroke 

NCT01151124 Ongoing United 
Kingdom

2010-06
-2015-03

CTX0E03 DP 
allogeneic neural 
stem cells

Putamen 
region of the 
brain

Ⅰ

Pilot Investigation of stem 
cells in stroke phase II 
efficacy 

NCT02117635 Recruiting United 
Kingdom

2014-06
-2015-12

CTX0E03 DP 
allogeneic neural 
stem cells

Intracranially 
via stereotaxic

Ⅱ

SCI Adult NSCs Safety study of human 
spinal cord-derived neural 
stem cell transplantation for 
the treatment of chronic SCI

NCT01772810 Recruiting United 
States

2014-08
-2016-02

Human spinal 
cord-derived 
neural stem cell

Direct 
injections 
into spinal 
parenchyma

Ⅰ

Study of human central 
nervous system stem cells in 
patients with thoracic spinal 
cord Injury

NCT01321333 Ongoing Canada, 
Switzerland

2011-03
-2015-05

Human central 
nervous system 
stem cells 
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of  the brain and then differentiate into numerous multiple 
subtype neural cells[110]. Moreover, the effect of  amyloid 
plaques on the survival, migration, and differentiation of  
injected stem cells should be taken into consideration[111]. 

Human NSCs transplanted into the brains of  AD 
animal models showed little neurogenesis, but unwanted 
gliosis around the plaque-like structures[112]. Therefore, 
stem cell-based regenerative therapies need to be further 
developed preclinically, before clinical applications to 
AD. The disappointing preclinical data have resulted in 
few clinical trials using NSCs against AD. However, MSC 
is in relative advanced clinical trial stages. For example, 
human umbilical cord blood-derived MSCs are currently 
in a phase Ⅰ clinical trial. Most trials using MSCs hire one-
time direct injection of  MSCs into the patient’s brain. As 
AD is a progressive disease, long term investigations are 
necessary, to examine the lasting effects, as well as the 
safety of  transplanted stem cells[113].

PERSPECTIVES 
Based on few scientifically proven treatment modalities for 
neurological diseases, and the regenerative potentials of  
stem cells, cell therapies using various stem cells have been 
preclinically and clinically applied to neurological diseases. 
There are many controversies about the therapeutic effects 
of  stem cell treatments and their treatment mechanisms. 
The controversies could be derived from the diverse 
types of  stem cells, and from their unique pros and cons. 

Compared with other stem cell sources, aNSCs have 
several advantages, such as differentiation potential into 
functional neural cells, limited proliferation capacity, and 
few ethical problems (Figure 1). Although difficulties in 
the isolation and in vitro expansion of  aNSCs prevent the 
active applications of  aNSCs to neurological diseases, 
the technical obstacles have been continuously resolved. 
Therefore, at the current status, aNSCs can be attractive 
stem cell sources, to be introduced into the preclinical and 
clinical trials targeting various neurological diseases. 
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