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Abstract

Purpose—The purpose of the study was to determine whether distinct subgroups of preschool 

children with speech sound disorders (SSD) could be identified using a subgroup discovery 

algorithm (SUBgroup discovery via Alternate Random Processes, or SUBARP). Of specific 

interest was finding evidence of a subgroup of SSD exhibiting performance consistent with 

atypical speech motor control.

Method—Ninety-seven preschool children with SSD completed speech and nonspeech tasks. 

Fifty-three kinematic, acoustic, and behavioral measures from these tasks were input to SUBARP.

Results—Two distinct subgroups were identified from the larger sample. The 1st subgroup 

(76%; population prevalence estimate = 67.8%–84.8%) did not have characteristics that would 

suggest atypical speech motor control. The 2nd subgroup (10.3%; population prevalence estimate 

= 4.3%– 16.5%) exhibited significantly higher variability in measures of articulatory kinematics 

and poor ability to imitate iambic lexical stress, suggesting atypical speech motor control. Both 

subgroups were consistent with classes of SSD in the Speech Disorders Classification System 

(SDCS; Shriberg et al., 2010a).

Conclusion—Characteristics of children in the larger subgroup were consistent with the 

proportionally large SDCS class termed speech delay; characteristics of children in the smaller 

subgroup were consistent with the SDCS subtype termed motor speech disorder—not otherwise 

specified. The authors identified candidate measures to identify children in each of these groups.

The purpose of this study was to determine whether a subgroup of children with atypical 

speech motor control could be identified from a sample of children with speech sound 
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disorders (SSD). We analyzed 53 measures, including measures of speech movement, from 

a relatively large number of cases (N = 97). We used a subgroup discovery algorithm to 

achieve this aim, a technique within the data-driven methods of machine learning.

Subgroup discovery seeks to identify subgroups within a set of data without any a priori 

assumption of the number or size of the subgroups to be identified. A subgroup discovery 

method generally looks for important patterns in the data, derives rules from the patterns, 

and then uses the rules to characterize subgroups. The rules may take on various forms that 

may or may not allow human interpretation, though an important objective of this 

investigation was that the emergent rules could be easily understood and subjected to expert 

interpretation and knowledge of the selected subgroups.

Many subgroup discovery techniques are available for data mining (Herrera, Carmona, 

González, & del Jesus, 2011). There is a general methodology to convert machine learning 

techniques that explain differences between two sets into subgroup discovery techniques 

(Lavrač, Cestnik, Gamberger, & Flach, 2004). We selected a subgroup discovery method 

that was based on this construction and that would produce humanly comprehensible rules 

(Truemper, 2009). The method, called SUBgroup discovery via Alternate Random 

Processes, or SUBARP, was applied to our data from preschool children with SSD, and the 

results are the focus of this article.

SSD, and specifically speech delay (SD), are highly prevalent in preschool children (15.6% 

among 3-year-olds; Campbell et al., 2003), with approximately 4% of all children having 

persistent SD at age 6 years (Shriberg, Tomblin, & McSweeny, 1999). As a population, 

children with SSD are heterogeneous, and the presumption of distinct subgroups is common. 

Researchers have sought to identify distinct subgroups of SSD to improve prognostic 

accuracy and to motivate more narrowly targeted interventions. Historically, children with 

SSD were classified under the category of phonetic-based articulatory disorders or 

phonemic-based phonological disorders (Bauman-Wängler, 2004; Bernthal & Bankson, 

2003), which distinguished motor- and linguistic-based speech deficits, respectively. This 

framework, however, neglects both the etiologic foundations of some cases of SSD and the 

interaction of the motor and linguistic elements of speech production (Goffman, 2005). 

More complex taxonomies have been proposed that categorize subgroups of SSD on the 

basis of etiology (Davis, 2005; Shriberg, Austin, Lewis, McSweeny, & Wilson, 1997a; 

Shriberg et al., 2010a) or speech sound error types (Dodd, 1995b; Dodd & McCormack, 

1995). Each of these taxonomies posits a sub-population of SSD whose disorder results from 

deficiencies or differences in speech motor control and coordination. Direct physiological 

markers for a subpopulation of this type have not been identified (Strand, McCauley, 

Weigand, Stoeckel, & Baas, 2013).

Figure 1 depicts the Speech Disorders Classification System (SDCS; Shriberg, Austin, 

Lewis, McSweeny, & Wilson, 1997b; Shriberg et al., 2010a, 2010b), an etiological 

classification system for SSD. In clinical typologies, the SDCS includes two classes of 

children with SSD: SD and motor speech disorders (MSD). Whereas the speech of children 

in the SD class typically normalizes by school age, with some errors persisting until 

approximately age 9 years, the segmental errors and prosodic and vocal features of children 
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in the MSD class typically persist into adolescence and, for some speakers, for a lifetime 

(e.g., Shriberg et al., 2006). The primary speech processing deficits in two subgroups of 

MSD—motor speech disorders–apraxia of speech and motor speech disorders–dysarthria—

are presumed to be in transcoding (planning–programming) and feedfor-ward processing 

and in neuromotor execution, respectively (Shriberg & Strand, 2014). The underlying 

speech processing deficits and diagnostic signs of a third putative subgroup of MSD, termed 

motor speech disorder–not otherwise specified (MSD-NOS), are presently unspecified, 

pending empirical study (Shriberg et al., 2010a). Crucially, deficits in speech motor control 

in children provisionally classified as MSD-NOS are a primary risk factor for the 25% of 

children with SD (i.e., 4% of children overall) whose SSD persists past age 6 years (Flipsen, 

2003; Goozée et al., 2007; Shriberg et al., 1999). Early identification of children with MSD-

NOS may improve prognostic estimates by clinicians who treat these disorders in preschool-

age children, with implications for the inclusion of a motor focus in treatment.

In this study of SSD, we included many measures of speech performance, speech acoustics, 

and articulatory movement from a group of 3- to 5-year-old children with SSD (N = 97) to 

seek empirical support for subgroups within SSD. The SDCS provided an organizing 

framework within which discovered subgroups might be explained (see technical discussion 

of the term discovered in the next section). Clinical experience also supported the important 

a priori assumption that a small subgroup of children would be distinguishable from other 

children with SSD primarily on the basis of reduced motor performance, and the target 

measures selected for analysis were specifically based on this assumption. Because the 

differences in speech production for children with MSD-NOS might be observable in 

underlying speech movements, we included measures of articulatory speech kinematics for 

their potential to distinguish children in this putative subgroup.

Extensive study of developing speech behaviors has described the physiological framework 

of early and later speech acquisition (Connaghan, Moore, & Higashakawa, 2004; Goffman, 

1999; Green, Moore, Higashikawa, & Steeve, 2000; Green, Moore, & Reilly, 2002; Green et 

al., 1997; Green & Wilson, 2006; Moore, Caulfield, & Green, 2001; Moore & Ruark, 1996; 

Ruark & Moore, 1997; Smith & Zelaznik, 2004; Steeve & Moore, 2009; Walsh, Smith, & 

Weber-Fox, 2006; Wohlert & Smith, 2002). Using palatography and electromagnetic 

articulography, lingual gestures produced by older children (i.e., older than 9 years) with 

persistent speech sound errors have been shown to be distinct from those of their typically 

developing peers (Gibbon, 1999; Gibbon & Wood, 2002; Goozée et al., 2007), providing 

support for the notion that speech motor control differences are associated with some SSD. 

In preschool-age children, measurements of speech movement have included point metrics 

(e.g., maximum displacement) as well as more dynamic measures of whole-word and phrase 

movements (e.g., the spatiotemporal index; Smith, Goffman, Zelaznik, Ying, & McGillem, 

1995). It is not clear which, if any, of these measures would be expected to be sensitive and 

specific to any differences in speech movement that might exist among preschool-age 

children with SSD. Thus, a reasonable initial approach to identifying subgroups within a 

larger sample of children with SSD was to include a large number of measures of different 

types and from different speech and nonspeech oral behaviors, seeking convergent evidence 
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of categorical differences. Algorithmic subgroup discovery could then be used to identify 

possible subgroups and the measures that best distinguish these subgroups.

Subgroup Discovery

SUBARP (Truemper, 2009), a machine learning algorithm, provided a number of distinct 

advantages for analyzing these data, including the output of rules for subgroups that were 

interpretable in the context of expert real-world knowledge. Another advantage was that, as 

with other subgroup discovery algorithms, a predetermined significance level could be set so 

that only identified subgroups exceeding this threshold were reported. Imposing a threshold 

introduced the possibility that we would identify no subgroups, which enhanced confidence 

in the reliability of the results. Alternatively, multiple significant subgroups could be 

discovered in a data-driven fashion, without requiring an estimate (i.e., constraint) of the 

number of subgroups. A particularly important feature of SUBARP in the current 

application was its capacity to distinguish subgroups that accounted for less than 5% of the 

sample (i.e., rare subgroups). Finally, given a large number of measures, SUBARP did not 

require a comparably large number of cases (participants) to identify relevant subgroups. 

This capability permitted a sample of modest size to be divided between training and testing 

sets for cross-validation without any associated loss in the ability of the algorithm to 

discover subgroups. For any subgroup discovered in the training set, confidence about the 

existence of that subgroup in future samples and the larger population could be estimated 

from the testing set. SUBARP is derived from the classification method Lsquare and related 

results (Bartnikowski, Granberry, Mugan, & Truemper, 2006; Felici, Sun, & Truemper, 

2006; Felici & Truemper, 2002, 2005; Mugan & Truemper, 2008; Truemper, 2009) using 

Lavrač et al.'s (2004) approach. The Appendix includes a detailed description of the 

SUBARP procedures.

Research Questions

The investigation was designed to address two experimental questions in a sample of 97 

preschool-age children with SSD.

1. Are there distinct subgroups of SSD that can be identified by applying a subgroup 

discovery algorithm to a large set of measures of auditory–perceptual, speech 

acoustic, and articulatory kinematic features of speech performance? Specifically, 

is there evidence for a subgroup of SSD that is distinguished by measures 

consistent with atypical speech motor control?

2. Which auditory–perceptual, acoustic, kinematic, and demographic measures best 

differentiate subgroups identified in the present sample of children with SSD?

Method

Participants

Ninety-seven children were enrolled in this study. Participants had receptive language skills 

within normal limits, as measured by a scaled score of 7 or greater on the Linguistic 

Concepts subtest of the Clinical Evaluation of Language Fundamentals—Preschool (Wiig, 
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Secord, & Semel, 1992). In addition, participants had oral structures within normal limits as 

evaluated by the Oral/Speech Motor Control Protocol (Robbins & Klee, 1987). Participants’ 

hearing thresholds were within normal limits on the day of testing as screened with pure-

tone audiometry (25 dB HL at 1, 2, and 4 kHz). Finally, inclusionary criteria required at 

least one of the following for each participant:

1. Referral to the study by a certified speech-language pathologist (SLP) noting a 

diagnosis, based on a formal diagnostic evaluation, of a moderate to severe SSD.

2. Classification as SD using SDCS procedures, including an error profile from the 

100 first-occurrence words in the child's conversational speech sample. At the time 

these classifications were made, the SDCS software did not include classification 

algorithms for MSD or any of the three subgroups shown in Figure 1.

On the basis of SDCS criteria, 61 (63%) of the 97 participants were classified as SD, 12 

(12%) were classified as normal or normalized speech acquisition (NSA), and 24 (25%) 

were classified as between NSA and SD (NSA–SD). Children who were included solely on 

the basis of the SLP's judgment of moderate to severe SSD (i.e., without a congruent 

diagnosis using the SDCS) provided variance to the sample that was meant to reflect the true 

population of children being treated for SSD (i.e., most children seen clinically are not 

classified using the SDCS but are diagnosed using the expert opinion of a SLP).

Participants were 36 to 59 months old (M = 46 months, SD = 4 months). Consistent with 

prior findings of a 2:1 ratio of boys to girls with SD (Campbell et al., 2003), 66 (68%) of the 

children in the present sample were male. All participants were monolingual speakers of 

English from the Pittsburgh, Pennsylvania, metropolitan area. A questionnaire adapted from 

Tomblin (1989) was administered to determine the presence of a developmental 

communication disorder in participants’ first-degree relatives. Of the sample, 34% (n = 33) 

had a positive family history of communication disorders, which was slightly higher than 

that reported in prior samples (28.1%; Campbell et al., 2003).

Tasks

Measures of performance on five speech and non-speech tasks from a larger protocol were 

included in the analyses. The tasks and the rationale for inclusion are described in Table 1. 

Measures of nonspeech tasks (i.e., chewing and vertical jaw oscillation) were included 

because these measures were found to be sensitive to differences in developmental 

subgroupings of preschool children with typical speech (Vick et al., 2012).

Data Acquisition

During acquisition of the kinematic data, children were seated in a Rifton positioning chair 

fitted with a table. They were instructed to sit upright and to keep their hands on the table, 

holding a plush toy to avoid hand and arm movements, which might have introduced 

artifacts into the speech movement data. As described in Table 1, tasks used for acquisition 

of speech data were elicited via imitation of recorded adult female model productions. 

Nonverbal tasks were elicited via instructions to the child (chewing or imitation [silent 

vertical jaw oscillation]). To acquire the conversational speech sample, participants engaged 

in a play session with an experimenter without restrictions on position or movement. The 
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play session took place before the placement of the markers for kinematic tracking. The 

examiners followed a standard SDCS protocol to obtain conversational speech samples 

about events in the participant's lives (e.g., Shriberg, Potter, & Strand, 2011).

Audio data—Audio recordings of the session were obtained using a lapel-style wireless 

microphone (Shure model UI-UA) affixed to the child's forehead with surgical tape. This 

placement provided a fixed microphone-to-mouth distance. When the child would not 

tolerate this placement, the microphone was taped to the headrest of the chair. The signal 

from the microphone was amplified using a Mackie 12-channel mixer (Model 1202-VLZ 

Pro). The amplified signal was recorded with a video recorder (Panasonic, AG-1980) and 

then filtered for antialiasing and digitized with the video signal at a sampling rate of 44.1 

KHz.

Video (articulatory) data—Vertical movement records of the upper lip, lower lip, and 

jaw were extracted from the video recordings. An infrared camera and light source (Burle, 

TC351A) were used to record the movement of small (3-mm), flat, circular reflective 

markers attached in the midline of the child's upper lip, lower lip, and jaw (above the mental 

symphysis). Additional markers were placed on the tip of the nose and the bridge of the nose 

to provide landmarks for correction of head movement, which was accomplished 

algorithmically by the motion tracking software. A reference frame with two markers, 2 cm 

apart, was affixed to each child's forehead to calibrate distance. Each video was reviewed 

and logged, and task events were digitized for subsequent parsing and analysis. Two 

independent computer-based movement tracking systems were used to extract position in the 

frontal plane (i.e., vertical and lateral positions) of the markers in Cartesian coordinates from 

the digitized video recordings. The first was Version 6.05 of Motus (Peak Performance). 

The second was DS-MTT Version 2 by Henesis, a custom MATLAB routine created for 

movement tracking for this project, which was developed later in the data acquisition phase 

to improve the rate of data processing. Intersystem reliability was confirmed using 15% of 

the data with both systems, which yielded high concordance (>90%). The sampling rate for 

the kinematic data was 60 Hz. The movement records for the upper lip, lower lip, and jaw 

were low-pass filtered (flp = 15 Hz) forward and reverse with a digital, zero-phase shift, 

third-order Butterworth filter. In addition, the best straight-line linear trend was removed 

from each displacement record to correct for very low frequency artifact.

Data Processing and Standardizing

All parsing and transcription of the data were completed with blinding as to the diagnostic 

status of the participants. Data were parsed in accordance with a parallel data set from 

preschool-age children with typical speech acquisition described in a prior report (Vick et 

al., 2012); the temporal overlap of these analyses reduced potential bias arising from the 

researcher's knowledge of a participant's diagnosis.

Acoustic parsing—Each imitation of a target stimulus was parsed with reference to the 

audio signal from the video recorder. The experimenter listened to and inspected the 

waveform of each segment and roughly parsed the onset and offset of the entire production 

using a graphical user interface of a custom-scripted MATLAB algorithm. The algorithm 
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subsequently added 50 ms to the beginning and end of the parsed signal to ensure inclusion 

of complete acoustic information for later perceptual judgments.

The vowels of individual syllables were then closely parsed for acoustic analyses. The 

vowel onset was defined as the first positive-going zero crossing in the signal when the 

waveform became periodic (i.e., vocalic); the offset was defined as the final negative-going 

zero crossing in the periodic signal associated with the vowel. The audio record was 

accompanied by a trace of the signal amplitude. To automate parsed landmarks, an 

amplitude threshold at 15% of the maximum amplitude produced was overlaid on the 

amplitude envelope. The intersection of the amplitude envelope and the 15% threshold was 

used to identify the beginning and end of each vowel. User-selected landmarks were 

“snapped” to this intersection by the algorithm. Audio playback assisted users in completing 

fine acoustic parsing. Panel A of Figure 2 depicts the acoustic parsing user interface.

Jaw, upper lip, and lower lip kinematic parsing—For the speech tasks, movement 

trajectories were obtained for the markers on the upper lip, lower lip, and jaw. Velocity zero 

crossings in the vertical jaw displacement record were used to parse the onset and offset 

boundaries of all three (upper lip, lower lip, and jaw) position traces (Green et al., 2000). 

The velocity of vertical jaw position was derived from the position record, and zero 

crossings were displayed as vertical lines over the displacement record. The onset boundary 

was operationally defined as the last negative-traveling zero crossing in the velocity 

waveform before jaw depression for the vowel; the first velocity zero crossing during jaw 

depression for the final syllable was used to mark the offset boundary. The time indices for 

these onset and offset boundaries were used to parse the displacement trajectories for the 

upper and lower lip. Panel B of Figure 2 depicts the speech task kinematic parsing interface.

Because the movement of the jaw contributes substantially to the displacement of the lower 

lip, the displacement of the marker on the lower lip represented the combined movement of 

the lower lip and the jaw. Accordingly, the jaw displacement signal was subtracted, sample 

by sample, from the lower lip displacement signal. The resulting trajectory was the record 

used to represent lower lip movement (Green et al., 2000).

Nonspeech task parsing—For the nonspeech tasks, measures were based only on the 

position trace from the jaw. Chewing or vertical jaw oscillation samples that had fewer than 

three cycles or exhibited movement artifact were excluded from the analyses. First and last 

chewing cycles were removed from each chewing trial as well. Because the measures for 

these tasks included cycle-to-cycle measures, each cycle was demarcated. Jaw elevation–

depression–elevation (open–close) cycles were parsed algorithmically, marking each cycle 

boundary at its peak elevation (identified by the associated zero velocity point). Because of 

the irregular displacement signal associated with molar contact during chewing, numerous 

zero crossings in the velocity record occurred during some instances of jaw elevation. In 

these cases, the algorithm specified the rightmost zero crossing as the cycle onset–offset 

boundary. Occasionally, the algorithm would yield a false positive or false negative 

boundary selection, in which case the user was able to modify the selections in the interface 

by either adding or subtracting points. Panel C of Figure 2 depicts the non–speech task 

kinematic parsing interface.
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Spontaneous speech sample transcription and analysis—All data acquisition, 

data reduction, and data analyses of the conversational speech sample used well-developed 

procedures for research in pediatric SSD (Phonology Project Laboratory Manual; 

unpublished). Narrow phonetic transcription of the continuous speech samples was 

completed by two experienced transcribers using procedures described by Shriberg et al. 

(2010b). The procedure included perceptual use of diacritics sensitive to articulatory place, 

manner, voicing, duration, and force. For instance, the check symbol in the Clinical 

Phonetics system of diacritics was used to indicate weakened articulatory force, most 

frequently for weakly ploded voiceless stop consonants, which are common signs in 

structural (e.g., velopharyngeal incompetence) and motor (e.g., subtypes of dysarthria) SSD. 

In a study of transcription reliability for children with SD that included 10 children from the 

present study, point-to-point interjudge and intrajudge agreement were 86.7% and 91.8%, 

respectively (Shriberg et al., 2010b). In that study, some estimates of consonant and vowel 

transcription agreement were in the mid-60% range, values that have also been reported in 

prior estimates of broad and narrow phonetic transcription agreement (McSweeny & 

Shriberg, 1995; Shriberg et al., 1997a; Shriberg & Lof, 1991; Shriberg et al., 2005). The 

Shriberg et al. (2010b) estimate referenced previously reported that agreement for narrow 

transcription averaged 6.1% lower than agreement for broad phonetic transcription. One 

agreement estimate for the transcription system used in the present study indicated that the 

standard error of measurement was approximately 4% (Shriberg et al., 1997b). Thus, there 

are commonly acknowledged constraints on speech data from phonetic transcription; see 

Shriberg et al. (2010b) for comparable constraints on the reliability of some types of 

acoustic data.

Perceptual analyses—Perceptual analyses of the lexical stress task and the nonword 

repetition tasks were completed using the parsed audio signals. In the lexical stress 

perceptual task, audio files for each child's productions of each of the bisyllables were 

presented in randomized order in blocks of 10 participants (i.e., about 300 audio files in each 

test block). Two listeners (graduate students in speech-language pathology) assessed 

whether each item was produced with the intended phonemic target and identified which 

syllable was stressed (first, second, or both, when even stress was perceived). All 2,617 

contrastive stress productions were judged by two listeners. Joint probability concordance 

between the two listeners was 89.1%. As can be seen in Table 2, average phonemic accuracy 

was comparable for trochees (78.8%; 1,066/1,352) and iambs (73.8%; 934/1,265); however, 

average accuracy of imitative stress was better for trochees (80.4%; 1,087/1,352) than for 

iambs (60.0%; 759/1,265). The phonemic accuracy of the nonword repetition task 

productions was judged blindly (i.e., to production, participant, and diagnostic status) using 

an open-set, broad phonemic transcription task. No judgment of the lexical stress of these 

productions was completed. The items were presented to listeners randomized across 

participants and production types. Three listeners judged each production. Transcription 

decisions used a best-two-of-three criterion (i.e., agreement by at least two of the three 

judges). This criterion was reached for 95.2% (1,765/1,854) of the productions. For the 

remaining productions, the raw video file was reviewed by a single judge to finalize 

transcription. Forty-nine percent (914/1,854) of the nonwords were judged to be 

phonemically correct. Phonemic accuracy decreased through the experimental paradigm 
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from the first-attempted, two-syllable productions to the final three-syllable productions, 

with a drop in accuracy from the two-syllable (88.1%; 616/699) to the three-syllable (30.9%; 

282/912) productions (bada, 76.8% [366/476]; bama, 57.1% [266/466]; bamana, 36.1% 

[169/468]; and manaba, 25.4% [113/444], in the order produced in the protocol). Details for 

phonemic accuracy are reported in Table 2.

Measures

Fifty-three continuous and three categorical variables were processed for inclusion in the 

analysis. The measures sampled four levels of observation, including auditory– perceptual, 

acoustic, kinematic, and demographic domains. This broad range of observations was 

predicated by the need to avoid a priori assumptions of the number or types of groups that 

might emerge from the analysis. Each domain included a number of redundant measures for 

each type of speech production (i.e., two- or three-syllable productions), which yielded 

overlapping samples of similar measures from verbal productions across levels of difficulty. 

For some participants, for instance, behavioral performance was similar for both two- and 

three-syllable productions, whereas for others, performance decreased substantially with the 

added complexity of a three-syllable imitation. In addition, although numerous measures 

have been reported, we did not know which of the contributing measures would be most 

effective in identifying emergent groups of preschool children with SSD. Descriptions of 

each measure can be found in the supplemental materials. Means and standard deviations for 

each measure are reported in Supplemental Table 1.

Subgroup Discovery

To identify previously unknown subgroups, the entire data set was input to the SUBARP 

algorithm. Details regarding the algorithm can be found in the Appendix, and a schematic of 

the algorithm using a simple data set can be found in Figure 3. Each participant in the 

present data set was assigned a case number, consecutively from the date of admission to the 

study. To initiate SUBARP, odd-numbered cases were put in the training set and even-

numbered cases were assigned to the testing set (see Step 1 in Figure 3), with a net of 49 

cases in the training set and 48 cases in the testing set.

Targets and attributes—Whereas only one of the five measures in the example in Figure 

3 was assigned as a target (i.e., color), 34 of the 53 measures from the data were assigned as 

targets and the remaining 19 measures were designated nontarget attributes. In SUBARP, 

target measures become the primary defining attributes of any discovered subgroup. For this 

reason, only measures that would be of interest as defining attributes are selected as targets. 

For instance, in this experiment in which a subgroup was sought whose members had 

deficits in speech motor control, measures of articulatory variability were of interest as 

targets, whereas demographic measures, such as age, were not. To further refine the model, 

we only included as targets measures for which we had data from the largest number of 

cases. For example, because most children in the sample produced two-syllable tokens that 

could be analyzed, measures of performance on two-syllable productions were included as 

targets. Three-syllable tokens, which were not produced by as many children, were 

submitted to SUBARP as nontarget attributes. For highly correlated measures that resulted 

from the Programs to Examine Phonetic and Phonological Evaluation Records (PEPPER) 
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analysis (e.g., percentage of consonants correct and revised percentage of consonants 

correct) the revised version was selected as the target. As defined in the Appendix, the 

revised versions do not count distortions or allophonic variations as errors and are more 

sensitive to differences in development and diagnostic groups (Campbell, Dollaghan, 

Janosky, & Adelson, 2007; Shriberg et al., 1997b).

Each target measure was run through the SUBARP algorithm iteratively as detailed in 

Figure 3. During each iteration, other target measures served as nontarget attributes from 

which logic rules could be generated for each subgroup.

Running SUBARP—Discretization of each target occurred after SUBARP sorted the 

records in ascending order for the value of the target (see Step 2 in Figure 3). For the 

discretization of targets, SUBARP was set to use as many as 50 cut-points for each target. 

Given 49 training records, this meant that SUBARP evaluated all possible cut-points for 

each target. SUBARP created and evaluated 1,209 subgroups, each being defined by a rule 

involving a target measure and two modifying rules involving attribute measures (see Steps 

4 and 5 in Figure 3). Preliminary testing suggested that rules with one target and two 

attributes were most interpretable. SUBARP used a compound measure of significance that 

calculated (a) the proportion of cases that fulfilled the target rule that also fulfilled the 

additional attribute rules and (b) the likelihood that a similar group could be generated using 

a random process (see Step 6). Each significance value was calculated twice, once for the 

training data and once for the testing data (see Step 8). The average of the resulting two 

significance values was the overall significance of the subgroup. Subsequently, a binomial 

probability test was completed, resulting in a value ranging from 0 to 1 (see Step 9). This 

test determined the extent to which the target and attribute variables were related. Smaller 

values suggested closely related target and attribute values. For details of these 

computations, see the Appendix.

Selection of SUBARP solutions—Only solutions with an overall significance of .95 or 

greater were retained, which resulted in 13 potential subgroups for the present data. Next, 11 

subgroup solutions were eliminated from consideration because they intersected with other 

solutions (i.e., same targets and attributes but different cut-points) and were less significant; 

although these solutions were statistically significant, they were redundant permutations of 

the resulting two subgroups. Thus, the target and attribute rules in Table 3 defined the 

remaining two subgroups, which made up the results of the SUBARP analysis for the 

present data. The significance levels obtained for each of the two subgroups (.95 for 

Subgroup A and .99 for Subgroup B) suggested that each rule set identified a distinct 

subgroup (i.e., <5% probability of finding these groups by chance). The significance values 

(i.e., p < .05) from the binomial probability test suggested a high degree of interrelatedness 

between the target and attribute values specified in the rules, meaning that the combined 

attributes had high predictive value for the targets.

The proportions of participants in the training and testing sets of each subgroup were 

compared with a two-proportion z test to confirm that these split samples were not 

statistically different and that their sizes provided a reliable estimate of population 

prevalence. To estimate the range of population prevalence for the two subgroups, 95% 
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confidence intervals (CI) were calculated on the overall proportion of participants in each 

group.

Statistical analyses of subgroups—The SUBARP rules for membership specified the 

level of performance on six measures that was necessary and sufficient to be included in one 

of the two emergent subgroups. Performance on the original 53 continuous measures by 

members of the two subgroups was compared using independent t tests. To adjust the alpha 

level for multiple comparisons, the threshold for statistical significance was set at p < .0007. 

The proportions of each subgroup falling within each of the categories of the dichotomous 

qualitative measures (i.e., sex and family history) were compared using chi-square tests. 

Forward-stepping discriminant analysis (DA) was used to characterize and graphically 

represent the two groups using the 47 continuous behavioral, acoustic, and kinematic 

measures that were not the target and attribute measures used to identify the subgroups with 

SUBARP. Thirteen participants were not classified in either of the two subgroups. These 

participants’ performance was also graphically represented using the DA.

Results

Two subgroups emerged from the SUBARP analysis as statistically significant. The first 

subgroup, termed Group A (n = 74), consisted of the majority (76.2%) of participants in the 

sample, and the second subgroup, termed Group B (n = 10), made up 10.3% of the sample. 

A total of 13 participants (13.4%), termed not classified (NC), were not classified using the 

SUBARP routine. Supplemental Table 1 includes group-based performance data for each of 

the original 53 continuous measures and Table 3 provides the target and attribute rules that 

defined both subgroups.

DA was used to evaluate pairwise differences between Groups A and B on each of the 53 

continuous measures; this analysis yielded a single linear DA factor. The DA factor in this 

approach is the linear combination of measures that provided the best separation between 

members of Group A and members of Group B. Each contributing measure from the model 

has an associated correlation with the DA factor so that it is possible to identify which 

measures best discriminated between the two groups. Significant correlations between the 

DA factor and the continuous measures are presented in Table 4. Figure 4 depicts the 

performance of each participant on the continuum of the DA factor. Participants with a high 

DA factor score (Group B participants) had high scores on the measures that had a positive 

correlation with the DA factor; participants with a low DA factor score (Group A 

participants) had high scores on the measures that had a negative correlation with the DA 

factor. For example, participants in Group A had a high proportion of tasks with accurate 

phonemics and no kinematic artifact, and the associated productions tended to be produced 

with correct lexical stress and phonemics; these measures were negatively correlated with 

the DA factor. These associations permitted more detailed descriptions of the individual 

group characteristics.

Group A Characteristics

Of the 74 participants in Group A, 48 (64.9%) were male, which was not significantly 

different from the proportion of boys in the entire sample, χ2(1) = 0.48, p = .49. The mean 
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age of Group A members was 46.7 months (Index 52 in Supplemental Table 1), which was 

not statistically different from that of Group B (42.5 months), t(82) = −1.996, p = .049. Of 

the total sample of 97 children, 33 (34%) had a positive family history of communication 

disorders; 21 of the members (28.4%) of Group A had a positive family history of 

communication disorders, which did not differ significantly from the percentage in the 

whole sample, χ2(1) = 1.04, p = .31. Of the total sample of 97 children, 13 (13.4%) were 

classified as NSA by the SDCS. Ten children in Group A were classified as NSA (13.5%); 

this relative proportion was independent of group membership (i.e., Group A or B), χ2(4) = 

3.77, p = .44. As predicted by the rules in SUBARP that defined Group A membership, and 

compared with Group B, individuals in Group A attempted more of the target tasks (Index 

1), t(82) = −22.57, p < .0001; produced more phonemes accurately (Index 2), t(82) = −8.65, 

p < .0001; and imitated iambic stress with greater accuracy (Index 4), t(82) = −9.66, p < .

0001. Performance for this group also exceeded that of Group B on the other measures of 

task accuracy, including imitation of trochaic stress (Index 3), t(82) = −6.1, p < .0001, and 

the overall proportion of tasks that were produced without phonemic errors and with usable 

kinematics (Index 5), t(82) = −6.88, p < .0001. Most strikingly, the kinematic variables were 

a distinguishing characteristic of Group A compared with Group B.

The proportion of participants in the testing set who met the performance criteria for Group 

A was not significantly different from that of participants in the training set (z = 1.18, p = .

99997), which supported the suggestion that the overall sample proportion (76.3%) was a 

good estimate of the population prevalence of children with SSD with characteristics like 

those of Group A. The estimated 95% prevalence range for children with SSD whose 

characteristics would be consistent with those of Group A is 67.8%–84.8%.

Group B Characteristics

Of the 10 participants in Group B, 8 (80%) were male; five (50%) had a positive family 

history of communication disorders. Neither finding was significantly different from the 

overall sample percentages of 68% (66/97) and 34% (33/97), respectively, nonsignificant 

(ns) χ2(1) = 0.66, and ns, χ2(1) = 1.14. The mean age of the children in this group was 42.5 

months (ns). None of the children in Group B was identified as NSA by the SDCS. In 

addition to Group B's significant differences from Group A on task performance, a number 

of other significant differences in Group B's articulatory kinematics performance were 

observed. The SUBARP rules that distinguished members of this group identified mean 

maximum displacement of the upper lip (0.23 cm) as significantly greater during speech 

tasks for members of Group B than for members of Group A (0.19 cm; Index 14), t(82) = 

4.58, p < .0001. The coefficient of variation for measures of maximum displacement of both 

the upper lip and jaw during speech tasks was significantly greater for Group B participants 

than for Group A participants, upper lip (Index 17), t(82) = 3.91, p < .0001, and jaw (Index 

19), t(82) = 4.86, p < .0001. Higher values on these measures indicated greater articulatory 

variability.

Also of note when describing salient characteristics of children in Group B are the measures 

found to be significantly correlated with the DA factor that distinguished children in Group 

B from children in Group A, as listed in Table 4. Many of these measures were not found to 
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be significantly different between groups in the analysis of variance but may be important 

diagnostic markers. Children in Group B were found to produce trochaic stress with less 

accuracy (proportion correct = 0.47) than children in Group A (0.88; Index 3), t(82) = −6.10, 

p < .0001, and marked productions with iambic stress with less acoustic variability. Children 

in Group B were slightly younger than children in Group A (Group B, 42.6 months; Group 

A, 46.7 months; Index 52), t(82) = −2.00, p = .049. In addition, the overall percentage of 

intelligible words in the conversational speech sample was lower for children in Group B 

(83.5%) than for children in Group A (90.1%; Index 50), t(82) = −1.94, p = .056. Jaw 

movement for bisyllables with trochaic stress was produced with greater word-level 

variability when productions in error were included (see Convergence Index in 

Supplemental Materials) for children in Group B (25.8) than for children in Group A (22.4; 

Index 35), t(82) = 2.22, p = .029. Finally, two-syllable word duration was greater in children 

in Group B (0.85 s) than in children in Group A (0.77 s; Index 10); t(82) = 2.79, p = .007.

The proportions of participants assigned to Group B in the training and testing sets were not 

significantly different (z = −.298, p = .99998), suggesting that the overall sample proportion 

(10.3%; 95% CI [4.3%, 16.46%]) was a good estimate of SSD population prevalence for 

children with characteristics consistent with Group B.

Not Classified

Thirteen participants (13.4%) were not classified into either Group A or Group B using the 

two solutions selected from SUBARP. Of the NC group, 10 participants were male (77%), 

ns, χ2(1) = .48, and six had a positive family history of communication disorders (46%), ns, 

χ2(1) = 2.28. Because those children who were not classified would not have any expected 

homogeneity, planned comparisons of this group with the other subgroups were not made; 

performance on each of the continuous measures is reported in Supplemental Table 1. 

Figure 4 displays the NC group relative to the other two groups on the DA factor continuum 

that maximally separated Groups A and B. The NC participants were uniformly distributed 

along this continuum.

Discussion

This investigation was designed to answer two questions. The first—whether there is 

statistical support for a subgroup of children with SSD who are distinguished by measures 

consistent with atypical speech motor control— was affirmed by the results. Two reliable 

subgroups were identified within the sample of 97 children with SSD. The first, Group A, 

consisted of a proportionally large (n = 74; 76%; 95% CI [67.8%, 84.8%]) subgroup of the 

participants, whereas the second, Group B, consisted of a substantially smaller (n = 10; 

10.3%; 95% CI [4.3%, 16.46%]) number of participants. Children in Group B were 

distinguished from children in Group A by a number of measures, including some that 

suggested atypical speech movement, providing preliminary empirical support for a small 

SSD subgroup with motor speech involvement, as has been proposed by a number of 

investigators (e.g., Davis, 2005; Dodd, 1995a). Crucially, this subgroup could not be 

distinguished with measures that would typically be used in a clinical setting; moreover, the 

differences in speech motor control observed in this group would be subclinical. The second 
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research question asked which measures would best differentiate any identified subgroups in 

the sample. The results provide a number of candidate measures that are likely to be useful 

in distinguishing the children in the two groups.

Groups A and B

One goal of this study was to determine whether any emergent subgroups would be 

consistent with characterizations of SSD subgroups proposed in the SDCS (Figure 1; 

Shriberg et al., 2011). The features of the two identified groups do appear to be consistent 

with the SD and MSDNOS subgroups described in the SDCS (Shriberg et al., 2010a). 

Specifically, the majority (76%) of sample participants were identified as Group A. A post 

hoc comparison between the performance profiles of Group A participants and those of a 

group of typically developing children described previously (Vick et al., 2012) yielded no 

differences between the groups across the measures reported in this study, except that 

participants in Group A had more speech sound errors using conversational speech 

measures, such as the revised percentage of consonants correct.1 Of particular interest was 

that, as in children with typical speech acquisition, participants in Group A had typical 

motor speech skills as measured by speech and nonspeech articulatory kinematic variables. 

Collectively, this evidence suggests that Group A participants belong to the proportionally 

large SD class of the SDCS, who have no measurable speech motor involvement.

In contrast, the relatively small number of participants (10.3%) in Group B had comparably 

poor speech motor control, as evidenced by significantly higher articulatory variability on 

measures of upper lip, lower lip, and jaw movement during repeated productions of two- and 

three-syllable tokens. They also exhibited larger upper lip displacements. Behaviorally, 

participants in Group B made fewer attempts at the target tasks and produced fewer accurate 

phonemes and less accurate lexical stress. The low prevalence, increased speech motor 

variability, and behavioral characteristics of Group B are consistent with the putative MSD 

subgroup termed MSD-NOS in the SDCS, which includes children with suspected motor 

speech disorders who do not meet the criteria for childhood apraxia of speech or dysarthria 

(Shriberg, Lohmeier, Strand, & Jakielski, 2012). From the results of the present study, the 

estimated population prevalence of this subgroup is 4.3%– 16.46%. These are children with 

the potential to be at greatest risk for persistent SSD (Shriberg et al., 2011). Future studies 

should study children with characteristics of Group B longitudinally to confirm the validity 

of this hypothesis.

The identification of this motor speech group using nonprimary features of SSD, such as 

speech movement variability, supports the finding that direct measures of the primary 

features of developmental speech disorders are not sufficient to differentiate clinically 

distinct populations (Connaghan & Moore, 2013). For instance, participants in both groups 

scored similarly on the measures resulting from the PEPPER analyses of the conversational 

speech samples (e.g., percentage consonants correct: Group A, 72%; Group B, 70.3%), 

1All of the measures from the PEPPER analysis were significantly different between the children in Group A and the children with 
typical speech acquisition from the Vick et al. (2012) study (p < .0001), with the typical children scoring higher on all of the metrics. 
None of the other measures were significantly different between the two groups with the exception of proportion phonetics correct 
(Index 1), which approached significance (p = .03; Group A, M = 0.74; typically developing children, M = 0.80).
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demonstrating that children in Group B would be difficult to identify using only 

conventional measures of speech competence. Behaviorally, children in Group B struggled 

with performing the tasks in the present research protocol, which included imitating audio-

recorded models of nonsense words. They were less likely to attempt the tasks (Group A, 

98% attempted; Group B, 39% attempted) and, when they did, were likely to produce the 

nonsense words with speech sound errors (Group A, 74% correct; Group B, 31% correct), 

despite the composition of the models, which included only the “Early 8” consonants /b/, /

p/, /m/, and /n/ and the vowel /A/ (i.e., many other nonsense word tasks include diphthongs; 

Shriberg et al., 1997b). Relative to conversational speech, this comparatively poor 

performance by children in Group B during the protocol may reflect deficits in one or more 

of several speech processing tasks, including auditory–perceptual encoding, transcoding, 

and execution during productions of the imitated segments (Shriberg et al., 2012). Similarly, 

children in Group B were less accurate than those in Group A when imitating iambic stress 

(Index 4; Group A, 72% accurate; Group B, 2% accurate) and had significantly longer two-

syllable durations (Index 10; Group A, 0.77 s; Group B, 0.85 s), suggesting a relative 

weakness in encoding suprasegmental elements (Ziegler, Staiger, & Aichert, 2010). Taken 

together, the findings for children in Group B are consistent with a subtype of SSD with 

behavioral characteristics that suggest motor speech involvement. These behavioral 

characteristics were corroborated by physiological markers that confirmed subclinical 

deficits in speech motor control that are not able to be identified with standard clinical 

measures.

Upper lip maximum displacement was found to be larger in Group B than in Group A. This 

was an interesting finding, given that no difference was found for this group in maximum 

displacement of either the jaw or the lower lip. One potential explanation for the difference 

in upper lip maximum displacement could be the unusual and often inconsistent articulatory 

postures observed clinically in children with suspected motor speech disorders underlying 

their SSD. Subjectively, three of these children were observed to have noticeable upper lip 

movement during speech when the videos were reviewed for marker tracking. It could well 

be that unusually large upper lip displacements are a salient characteristic for at least some 

children whose SSD results from underlying differences in speech motor control. 

Maximizing upper lip displacements could be used as a strategy for achieving a lip aperture 

goal if other degrees of freedom, such as jaw elevation, are being minimized in a 

pathological speech production system.

Given these findings, it was somewhat surprising to note that a number of measures of 

word-level variability, as measured by the spatiotemporal index, did not statistically 

differentiate Group B from Group A; the spatiotemporal index has been demonstrated to be 

a robust and sensitive indicator of differences in performance among diagnoses (e.g., 

specific language impairment; Goffman, 1999). Other measures of speech movement 

variability, specifically the coefficient of variation of maximum displacement of the upper 

lip, lower lip, and jaw, were found to be critical to the separation of Groups A and B with 

post hoc DA, demonstrating that children in Group B produced movements with 

significantly greater variability than those of children in Group A. This speaks to the 

exploratory nature of this approach and to the power of subgroup discovery for this 

application. To identify the critical differences between children in the two groups, it was 
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essential to look for differences at the syllable level where maximum displacement was 

measured, as opposed to the word level. It remains to be seen how these children would 

perform with a phrase-level measure of kinematic variability.

SDCS classification (i.e., SD vs. NSA) was not significantly different between the two 

identified groups. It is unlikely that including children classified as NSA using SDCS 

criteria (i.e., in the present context, likely consistent with normalized speech because there 

were no reliable age-inappropriate deletions or substitutions in continuous speech) 

confounded the results of the analysis, although the largest proportion of NSA children 

included in the analysis were classified into Group A. The implication of this finding is that 

SLPs typically use a number of speech criteria to classify children as having SD other than 

those used by the SDCS. These other factors are unlikely to be associated with differences in 

speech motor control.

Not Classified

Thirteen participants in this study were NC (not members of either Group A or B). As 

depicted in Figure 4, participants in the NC group were evenly distributed along the linear 

factor that distinguished participants in Groups A and B. Comparison of this 

nonhomogeneous group with the other groups would not meet the required assumption of 

formal statistical analysis. Nonetheless, identification of distinguishing characteristics of this 

group of children was of interest. To identify distinguishing characteristics of participants in 

the NC group, an additional forward-stepping DA was run using the original 53 measures. 

An additional DA factor was necessary to distinguish this group of participants, as displayed 

in Figure 5. Participants in the NC group scored relatively higher on DA Factor 2 than the 

participants in Groups A and B. Consistent with higher scores on DA Factor 2, participants 

in the NC group had comparably higher scores on measures of acoustic variability on 

productions of both iambic and trochaic stress (Indices 8 and 9 in Supplemental Table 1) and 

lower average words per utterance (Index 51). Variability in lexical stress marking is 

consistent with findings associating unstable lexical stress with childhood apraxia of speech 

(Shriberg et al., 2003; Skinder, Connaghan, Strand, & Betz, 2000; Velleman & Shriberg, 

1999), supporting a hypothesis that participants in the NC group may be a subgroup 

consistent with this diagnosis; additional data would be needed to support this hypothesis. 

Furthermore, these participants are not necessarily a cohesive subgroup, and their 

comparable performance on these tasks cannot be characterized as a subgroup of SSD 

without further analysis and validation, which was beyond the scope of this experiment.

Clinical Implications

SLPs, as with all health care providers, have increasingly been charged with adopting an 

evidence-based, patient-centered approach to clinical decision making. This enhanced level 

of clinical decision making requires the integration of patient preferences and research 

evidence with clinical expertise. Traditionally, the clinician's experience and acumen have 

driven the identification of children with SSD who are suspected to have motor speech 

involvement, because the absence of physiological markers precludes objective measures 

(Strand et al., 2013). Using kinematic measures, the results of the current study provided 

empirical support and physiological signs for the existence of a motor speech subtype of 
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SSD. Moreover, behavioral measures that exhibit the potential to be used as diagnostic 

markers for an MSD-NOS subclassification were identified. For example, the most salient 

behavioral marker for Group B was a child's difficulty imitating lexical stress. These 

children imitated bisyllables with trochaic stress with less than 50% accuracy and iambic 

stress with less than 5% accuracy. Children in Group A, consisting of children who did not 

evidence poorer performance on measures of motor control, imitated bisyllables with these 

stress patterns with 88% and 72% accuracy; these levels are similar to those of children with 

typical speech acquisition, who imitated these patterns with 82% and 73% accuracy (Vick et 

al., 2012). The SUBARP analysis identified children in Group B using a rule-based 

threshold of 17% or lower accuracy in the imitation of iambic targets.

Implementation of this algorithmic rule into use as a diagnostic marker might reasonably 

incorporate performance on imitation of bisyllables in a battery of tasks for identifying 

children with motor speech disorders. Rounding to 20% for convenience, a screening task 

might require five iambic bisyllable imitations. Production of fewer than two accurate 

imitations would be noted as a risk factor in a child's potential classification as having 

deficits in speech motor control. The sensitivity for predicting Group B membership using 

this diagnostic marker for the sample in the current study (i.e., including Groups A and B 

and NC participants) was 100% and specificity was 94%, which suggests that bisyllabic 

iambic stress imitation could provide good resolution for identifying children with MSD-

NOS. This simple imitative task could easily be incorporated into diagnostic protocols and 

is, in fact, part of the recently proposed Dynamic Evaluation of Motor Speech Skill (Strand 

et al., 2013). As part of an overall assessment of motor speech skill, the Dynamic Evaluation 

of Motor Speech Skill scores the first attempt of lexical stress imitation as prosodically 

correct or incorrect. The addition of five repetitions of a lexical stress bisyllable imitation 

might add to the validity and reliability of this measure, especially using a threshold of 20% 

accuracy.

Considering the high prevalence of SSD in preschoolage children (15.6%; Campbell et al., 

2003) and the fact that most of these children will normalize by early elementary school, 

clinicians must also use evidence-based guidelines for presenting a child's likely prognosis 

in the support of planned services, including therapeutic duration and intensity. In addition 

to incorporating measures of speech motor control, such as the Dynamic Evaluation of 

Motor Speech Skill, into diagnostic practice, population prevalence estimates may guide 

health care policy and treatment guidelines regarding the burden on health care and 

development presented by SSD. Findings from the current study indicated that the estimated 

prevalence of preschool children with SSD without signs of motor involvement is 67.8%–

84.8% (i.e., using 95% CI). The characteristics of these children were likened to the class of 

SSD termed SD in the SDCS. Children meeting SDCS criteria for SD are proposed to have 

individual and multiple causal pathways to their speech deficits, with data currently 

unavailable on normalization rates among the three putative subtypes of SD described in 

Shriberg et al. (2010a).

With this prevalence estimate, the remaining 15%–30% of preschool children with SSD 

would fall in the MSD subclass of the SDCS and would be at the highest risk for persistent 

SSD. This finding is consistent with the estimate that 25% of children with SSD will have 
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speech features that persist past age 6 years (Flipsen, 2003; Goozée et al., 2007; Shriberg et 

al., 2010a). Direct measurement of speech movement in the present study indicated that 4%–

16% of children with SSD exhibit deficits in speech motor control consistent with the 

characteristics identified in Group B. These deficits were consistent with those posited for 

the SDCS MSDNOS subclass, a placeholder for children with evidence of a motoric 

impairment that is not consistent with childhood apraxia of speech or dysarthria (Shriberg et 

al., 2010a). Delaney and Kent (2004) estimated the prevalence of childhood apraxia of 

speech to be 3.4%–4.3% among children with SSD. The remaining proportion of children 

with SSD would then be accounted for by childhood dysarthria. These estimates should help 

guide health care policy and clinical decision making for preschool children with SSD.

Methodological Implications

The current findings support the utility of the SUBARP as a useful alternative to 

conventional subgrouping approaches, such as cluster analyses, for studies attempting to 

identify conceptually and clinically informative subgroups of a disorder using a data-driven 

approach. The SUBARP approach offered several advantages for this analysis, including the 

ability to identify small subgroups, using data-driven decision making to establish the 

validity of subgroups, and providing interpretable information about which measures 

distinguish each identified subgroup. This is in contrast to other machine-learning methods, 

such as support vector machines, in which the generated rules are mathematical formulas 

that are challenging to interpret. These key benefits of SUBARP made it ideal for the current 

study and demonstrated the feasibility of it and other subgroup discovery methods for 

comparable investigations in the behavioral and social sciences that seek to identify 

subgroups.

Limitations

Although the size and scope of this investigation provided support for the assertion that 

there is a small subgroup of children with SSD who exhibit differences in motor speech 

performance, some limitations should be noted. Standardized measures of language and 

speech are not available for the current participants. These scores would provide a 

perspective on how children in the two subgroups would perform clinically and how 

standardized measures of performance may vary in the two groups. Future work should 

catalog a number of standard diagnostic measures along with performance on the tasks used 

in this study to provide a more robust clinical picture of children in the two subgroups. As 

suggested previously, it is unlikely that currently available standardized measures of speech 

competence would be sufficiently sensitive to differences in speech motor control. It is also 

worth noting that although all participants in the current study passed a screening for 

receptive language, the presence of concomitant expressive language disorders was not 

explicitly ruled out. Children with specific language impairment have been shown to have 

measurable differences in speech motor control, especially in production of contrastive 

lexical stress (Goffman, 1999). From the spontaneous speech sample, average words per 

utterance (Supplemental Table 1, Index 51) was measured to estimate expressive language 

function and verbal productivity. Children in Group B, who had comparably poor ability to 

imitate iambic lexical stress, did not perform differently from children in Group A on this 
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measure, suggesting that children in the two groups had similar lexical productivity. 

Differences in syntax and vocabulary were not assessed, however.

Conclusions

The goal of the present study of SSD was to seek empirical support for subgroups within the 

population of children with SSD. Using a data-driven, algorithmic approach, evidence 

emerged for two groups whose performance contrasted reliably on measures that suggested 

differences in speech motor control. Using the SDCS as an organizing framework within 

which the two subgroups might be described, the larger of the two emergent groups (76%) 

was thought to be consistent with the class of SSD termed SD, whereas the smaller group 

(10.3%) was thought to be consistent with the subgroup of SSD provisionally termed MSD-

NOS. Given the relatively low estimated population prevalence of the MSD-NOS subgroup 

(as low as 4.3% in this study), it was essential to use a subgroup discovery method with the 

capacity to identify individuals with SSD who share the characteristics that defined this 

group. Future work may extend these findings to other samples of preschool-age children 

with SSD using subgroup discovery methods, with the goal of including more measures of 

linguistic and lexical stress performance that may help to identify individuals with other 

types of pediatric motor speech disorders, particularly to discriminate among those with 

childhood apraxia of speech, dysarthria, and MSD-NOS.
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Appendix

Explanation of SUBARP

SUBARP is a subgroup discovery method, a technique falling under the umbrella of 

machine learning. It seeks to identify comprehensible groups within a set of data. The 

technique identifies patterns in the data that create rules that are intended for interpretation 

using the measures in the data set. In SUBARP, the data set is divided into training and 

testing sets of about equal size. In the terminology of subgroup discovery, measures of the 

data sets are called attributes. Thus, the values of the measures for an individual child are 

the values of the attributes of a record of the training or testing set. In an iterative process, 

the method declares one attribute to be a target and then tries to explain the variations in the 
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values of that target by the values of the remaining attributes, where the explanations are 

humanly comprehensible rules. The method is designed to identify relatively rare subgroups 

within a small sample while processing a large number of measures. The technique also 

calculates statistical likelihoods that estimate the prevalence of any discovered subgroups 

within the population.

The algorithm processes each target separately in three steps.

1. Target values are discretized.

2. Values of the remaining attributes are used to explain the discretized target values.

3. From these explanations, interesting subsets of the records are derived.

Before commencing, the data set is divided equally into training and testing sets. SUBARP 

derives the important relationships and their significance from the training set. Then the 

testing set is used to determine whether these relationships exist in a second group. The 

probability of the coincidental discovery of groups with the same target and attribute rules is 

the measure of statistical significance. The result is a series of subgroups whose explanatory 

attributes achieve a level of significance that exceeds a predetermined threshold (e.g., 0.90).

Target Discretization

Let t be a target. The target t is discretized by the introduction of cut-points. Consider one 

such cut-point c. Let A be the subset of records with target value above the cut-point c and B 

be the subset of the remaining records. The cut-points are so chosen that A or B potentially 

contains an important subgroup. A more elaborate use of cut-points is also possible. There, 

two cut-points, c and d, say with c < d, are used, and the set A is the subset of records with 

target values falling into the interval defined by c and d. For large data sets, SUBARP uses 

an analysis of the pattern of target values to define the cut-points. For small data sets, such 

elaborate analysis is likely not useful. Instead, the target values are sorted and n cut-points 

are defined, where n ranges from 10 to 50. For each pair of subsets A and B, the remaining 

work of the algorithm is to explain the differences between these two subsets using the other 

attributes. The first step of that process involves feature selection.

Feature Selection

The set A is repeatedly partitioned into subsets A1 and A2; correspondingly, subsets B1 and 

B2 of B are specified. SUBARP finds a logic formula that achieves the value True on the 

records of A1 and False on those of B1. It then tests how often the same formula achieves 

True for A2 and False for B2. In all, 40 logic formulas are created. Within these 40 formulas, 

the frequency with which a given explanatory attribute is used suggests the importance of 

that attribute in explaining the differences between the sets A and B. A significance value is 

calculated for each explanatory attribute. Those with a significance value exceeding a 

threshold are selected for the next step, in which explanations of the differences between A 

and B are computed.

Vick et al. Page 20

J Speech Lang Hear Res. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Computation of Explanations

With the selected attributes, two formulas are calculated. The first evaluates to True for the 

records of A and to False for those of B. The second formula evaluates to the opposite True–

False values for the subsets. Both formulas consist of one or more clauses combined by OR. 

Each clause contains linear inequality terms combined by AND. For example, [(x < 4) AND 

(y > 3)] OR [(x < 3) AND (y > 2)]. Each of the two clauses in the example divided by OR is 

referred to as a factor. Both factors in the example contain specifications for critical values 

of the two attributes x and y. Because of the structure of the formulas, the following 

relationships hold: Each factor of the first formula evaluates to True for a subset of A and to 

False for the entire set B. That subset of A is a potentially important subgroup. By these 

definitions, the subgroup is completely specified by the target discretization condition 

defining A and the factor. Thus, it is given by some linear inequalities involving the target 

and the attributes occurring in the factor. Analogously, each factor of the second formula 

evaluates to True for a subset of B and to False for the entire set A. That subset of B is a 

potentially important subgroup, with a corresponding description involving linear 

inequalities. The next step selects factors, and thus subgroups, that are significant.

Factor Selection

The subgroups identified via the targets and factors may or may not characterize important 

configurations that are both interesting and useful. To estimate which case applies, 

SUBARP calculates a significance value for each subgroup, once more using the training 

data. For the discussion, consider the case where the subgroup is a subset of A. The 

significance value is the average of two values. The first value is the fraction of the size of 

the subgroup divided by the size of A. The second value is 1 minus the probability that a 

certain random process can generate the subgroup. That random process is called an 

alternate random process (ARP). It is one of several such ARPs used by SUBARP to 

evaluate whether a decision is possibly based on random effects or relies on structural 

results that very likely are not produced by some random process. Analogous computations 

involving the testing data instead of the training data produce a second significance value for 

each subgroup.

Evaluation of Subgroups

The average of the significance values obtained from the training and testing sets is assigned 

as overall significance. Only subgroups resulting from logic formulas with overall 

significance greater than 0.95 are considered potentially useful and subjected to the final test 

of statistical significance.

Test of Statistical Significance

Recall that each subgroup is defined by inequalities involving a target and the variables of a 

factor. Thus, there are target inequalities and factor inequalities. From the derivation of these 

inequalities, each record of the training set satisfying the factor inequalities also satisfies the 

target inequalities. If the subgroup is truly significant, then a similar result should hold for 

the testing records. That is, almost all testing records satisfying the factor inequalities should 

satisfy the target inequalities. This is tested via the binomial distribution using a suitably 

Vick et al. Page 21

J Speech Lang Hear Res. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



estimated probability that a randomly selected record satisfies the factor inequalities. The 

result of this test provides a statistical measure of the importance of the relationship, relative 

to chance. Only subgroups with significance values that are very small are considered for 

further interpretation.
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Figure 1. 
The Speech Disorders Classification System (SDCS). L. D. Shriberg, H. L. Lohmeier, E. A. 

Strand, & K. J. Jakielski, Clinical Linguistics & Phonetics, 2012; 26 (5): 445–482, copyright 

© 2012, Informa Healthcare. Adapted with permission of Informa Healthcare.
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Figure 2. 
Panels A and B plot acoustic and kinematic data, respectively, for an iambic production of 

baba. In Panel A, the amplitude envelope is plotted in solid black, and 15% of the maximum 

amplitude is plotted as a dashed line. The beginning and end of vowels were parsed 

algorithmically at the intersection of these lines. Panel B is a plot of the vertical 

displacement of the jaw marker for the same production. The vertical lines are the velocity 

zero crossings used to parse the kinematic signals. Panel C shows the vertical displacement 

of the jaw of the same participant while chewing a cracker. Asterisks mark the closing 

landmarks that were selected algorithmically for the trial. RMS = root-mean-square.
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Figure 3. 
Schematic of the SUBARP algorithm that documents the steps taken to discover subgroups. 

In the schematic, apples are used as a simple example. A full explanation of SUBARP can 

be found in the Appendix. Specific sections of this explanation are referenced in each 

section of the schematic.
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Figure 4. 
Discriminant analysis (DA) results: Selected measures that were positively correlated with 

Factor 1 appear on the right side of the graph, and selected measures that were negatively 

correlated with Factor 1 appear on the left side of the graph. NC = not classified.
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Figure 5. 
Two-factor DA results to identify factors that maximally separated Group A, Group B, and 

the NC group. Positive values on DA Factor 1 (abscissa) were correlated with high 

performance on measures of movement stability (e.g., coefficient of variation on lower lip 

displacement) and phonemic accuracy. Positive values on DA Factor 2 (ordinate) were 

correlated with variable acoustic marking of lexical stress and lower scores on average 

words per utterance. Ellipses represent 99% confidence intervals.
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Table 1

Tasks completed by all participants.

Task Description and goal Stimuli

Conversational speech sample Participants engaged in play session to evoke a 15-min sample. Narrow transcription of 
audio recording as well as error analysis of 100 first-occurrence words were completed in 
PEPPER (Shriberg, Allen, McSweeny, & Wilson, 2001). Provided all data for production 
phonology and the single measure of language production (average words per utterance).

Age-appropriate 
toys were used to 
elicit the sample

Lexical stress task Five imitations of each of two lexical stress (trochaic and iambic) bisyllables in CVCV 
context. Six words (baba, mama, and papa in trochaic and iambic stress) were produced, 
with five repetitions of each bisyllable imitated in a row. Provided perceptual, acoustic, 
and kinematic data for each production as well as measures of acoustic and kinematic 
variability on multiple repetitions.

Recorded adult 
female model

Nonword repetition task Four words from the Syllable Repetition Task (Shriberg et al., 2009). The nonwords were 
bada, bama, bamana, and manaba, produced with equal stress. Five repetitions of each 
target production were presented to each participant, alternating with the participant's 
imitation of the model. The same token was imitated five times before progressing to the 
next token. Provided information about speech processing in increasingly complex 
contexts (two- and three-syllable nonwords). Contained only four of the Early 8 
consonants and a single low back vowel. Multiple repetitions of each nonword allowed 
for measurement of acoustic and kinematic variability.

Recorded adult 
female model

NS tasks The NS tasks included two trials of chewing a cracker and five trials of silent vertical jaw 
oscillations. The tasks provided measures of maximum mandibular displacement in NS 
context as well as measures of NS cyclic kinematic variability.

Live adult, 
female model

Note. PEPPER = Programs to Examine Phonetic and Phonological Evaluation Records; NS = nonspeech.
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Table 2

Perceptual analysis of lexical stress and nonword repetition tasks.

Type and word Attempted, n Phonemes correct Stress correct Overall

n % of attempted n % of attempted n % of attempted

Trochee

        baba 447 350 78.3 358 80.1 304 68.0

        mama 446 366 82.1 373 83.7 335 75.1

        papa 459 350 76.3 356 77.6 289 63.0

    Total 1,352 1,066 78.9 1,087 80.4 928 68.6

Iamb

        baba 427 315 73.8 269 63.0 233 54.6

        mama 423 333 78.7 245 57.9 223 52.8

        papa 415 286 68.9 245 59.0 193 46.5

    Total 1,265 934 73.8 759 60.0 649 51.3

Nonword

        bada 476 366 76.9 NA NA 345 72.5

        bama 466 266 57.1 NA NA 246 52.8

        bamana 468 169 36.1 NA NA 158 33.8

        manaba 444 113 25.5 NA NA 99 22.3

    Total 1,854 914 49.3 NA NA 848 45.7

Grand total 4,471 2,914 66.2 1,846 70.5 2,425 54.2

Note. Includes number attempted and judged accuracy of phonemics and stress. Overall refers to the productions that were suitable for all measures 
in the analysis, which required correct phonemics and stress, as well as viable kinematics (i.e., without movement artifact). NA = not applicable.
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Table 3

Target and attribute (measures) rules defining each subgroup and overall significance after subgroup 

identification using both the training and testing sets.

Group and target-attribute rules Value

Subgroup A

    Target: Proportion of tasks attempted >.72

    Attribute 1: Proportion of tasks with correct phonemes >.36

    Attribute 2: Proportion of iambic targets imitated with correct stress >.17

    Overall significance .95

    Binomial probability .0006

Subgroup B

    Target: Proportion of iambic targets imitated with correct stress <.17

    Attribute 1: Proportion of tasks attempted <.72

    Attribute 2: Mean upper lip maximum displacement (cm) >.20

    Overall significance .99

    Binomial probability .036

J Speech Lang Hear Res. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Vick et al. Page 34

Table 4

Significant positive and negative correlations of specific measures with discriminant analysis (DA) factor.

Measure DA factor r Overall, M (SD) Group A, M (SD) Group B, M (SD)

Proportion with no phonetic errors and good kinematics (Index 
5)

–.654 0.54 (0.23) 0.63 (0.17) 0.28 (0.21)

Proportion trochees with correct stress (Index 3) –.603 0.80 (0.26) 0.88 (0.15) 0.47 (0.44)

Acoustic variability of iambic stress marking (Index 9) –.290 43.21 (20.04) 42.97 (17.88) 27.98 (15.49)

Age (Index 52) –.233 46.02 (6.36) 46.70 (6.30) 42.60 (5.80)

Intelligibility Index (Index 50) –.227 88.42 (11.28) 90.12 (10.00) 83.52 (6.38)

Trochees—jaw convergence index (Index 35) .258 22.78 (4.90) 22.43 (4.51) 25.81 (4.42)

Variability of lower lip maximum displacement (Index 18) .278 38.99 (10.61) 37.06 (7.86) 44.36 (15.34)

Two-syllable word duration (Index 10) .318 11.27 (3.24) 11.15 (2.52) 12.22 (5.12)

Variability of upper lip maximum displacement (Index 17) .429 43.49 (15.07) 40.02 (12.85) 57.30 (14.90)

Variability of jaw maximum displacement (Index 19) .511 34.87 (10.35) 32.14 (7.64) 45.99 (13.38)

Note. p < .05. Index numbers refer to Supplemental Table 1, which provides descriptive statistics for each measure.
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