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Abstract

We investigate a new type of decision under risk where—to succeed—participants must 

generalize their experience in one set of tasks to a novel set of tasks. We asked participants to 

trade distance for reward in a virtual minefield where each successive step incurred the same fixed 

probability of failure (referred to as hazard). With constant hazard, the probability of success (the 

survival function) decreases exponentially with path length. On each trial, participants chose 

between a shorter path with smaller reward and a longer (more dangerous) path with larger 

reward. They received feedback in 160 training trials: encountering a mine along their chosen path 

resulted in zero reward and successful completion of the path led to the reward associated with the 

path chosen. They then completed 600 no-feedback test trials with novel combinations of path 

length and rewards. To maximize expected gain, participants had to learn the correct exponential 

model in training and generalize it to the test conditions. We compared how participants 

discounted reward with increasing path length to the predictions of nine choice models including 

the correct exponential model. The choices of a majority of the participants were best accounted 

for by a model of the correct exponential form although with marked overestimation of the hazard 

rate. The decision-from-models paradigm differs from experience-based decision paradigms such 

as decision-from-sampling in the importance assigned to generalizing experience-based 

information to novel tasks. The task itself is representative of everyday tasks involving repeated 

decisions in stochastically invariant environments.
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Decision-making is often modeled as a choice among lotteries. A lottery is a list of mutually 

exclusive possible outcomes Oi,i = 1,…,n with corresponding probabilities of occurrence pi,i 
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= 1,…, n such that . A decision maker may, for example, be constrained to choose 

one of the following:

Lottery A: 50% chance to win $900 and 50% chance to get nothing; versus

Lottery B: $450 for sure.

Decision tasks can be divided into classes based on the source of probability information 

available to the decision maker (Barron & Erev, 2003; Hertwig, Barron, Weber, & Erev, 

2004). In the traditional “decision from description” task—illustrated above—(e.g. 

Kahneman & Tversky, 1979), participants choose between lotteries where the probability of 

each outcome is explicitly given.

In a new and growing research area known as “decision from experience” or “decision from 

sampling”1 (Barron & Erev, 2003; Hadar & Fox, 2009; Hertwig et al., 2004; Ungemach, 

Chater, & Stewart, 2009; see Rakow & Newell, 2010 for a review), participants learn 

probabilities by repeatedly sampling outcomes from multiple lotteries and then decide which 

they prefer. The participant may, for example, repeatedly execute Lottery A above and 

receive a stream of outcome values $900 and $0 with roughly as many of the former as the 

latter. Sampling from Lottery B leads only to outcomes $450.

With large enough samples2 the information about probability in decision from sampling 

converges to that available in decision from description. However, participants in decision 

from description and decision from sampling experiments seem to treat probabilities very 

differently. In decision from description, human choices deviate from those that maximize 

expected utility as if small probabilities were overweighted and large probabilities 

underweighted (Tversky & Kahneman, 1992). In decision from sampling, the reverse pattern

—small probabilities underweighted and large probabilities overweighted—is found (Erev et 

al., 2010; Hertwig et al., 2004; Teodorescu & Erev, 2014).

Decision from sampling captures many real-world situations where explicit probability 

information is unavailable but individuals may “try out” the various choices repeatedly 

before committing to a decision. There are, however, situations where people must make 

decisions, probabilities are not given, and repeated sampling is either not possible or 

undesirable. They might not, for example, want to learn how to cross a wide, busy street by 

trial and error. However, if people can somehow generalize their experience with narrow, 

safe streets by modeling how their probability of survival varies with traffic density and 

speed, they are potentially able to estimate probabilities of survival in novel situations (e.g. 

high speed traffic) without direct experience. Generalization extends the benefits of learning 

to a wider range of potential decision tasks.

In decision-from-sampling tasks (Barron & Erev, 2003; Hertwig et al., 2004), there is—by 

design—little basis for generalizing to novel conditions (lotteries). The focus of research is 

1Later on, we will use the term “decision from sampling” rather than the more general term “decision from experience” to refer to this 
research area and its tasks, to avoid confusion with other decision tasks that have experience-based components.
2One striking result in the decision from sampling literature is that participants tend to take very small samples even when they are 
free to sample as much as they wish (Hertwig et al., 2004).
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on experience—not generalization. If, for example, the individual samples Lottery A’s 

outcomes from a red deck of cards and Lottery B’s outcomes from a green deck he has 

information concerning the frequencies of possible rewards from each of the two decks. He 

has no basis for generalizing to an un-sampled blue deck of cards representing Lottery C.

In the present study, we introduce a new class of decision task, “decision from models”, 

where—in order to do well—people must generalize probability information from past 

experience to a novel task based on an internal model of the probabilistic environment. In 

our study, on each trial, participants had to choose between two paths through a virtual 

minefield (Fig. 1). A fixed number of invisible mines were randomly and uniformly 

distributed in the minefield. The probability of successfully traversing a linear path in the 

field without running into a mine is a decreasing exponential3 function of path length x (the 

survival function):

(1)

The parameter λ > 0 is the hazard rate. On most trials4, the participant had to choose 

between a shorter, thus safer, path towards a smaller reward and a longer, more dangerous 

path towards a larger reward. Surviving the path they chose would result in the specified 

reward; otherwise, they would receive nothing. The participant could potentially estimate 

the hazard rate λ from feedback in the training phase. Whether he adopts the correct, 

exponential model of Eq. 1, though, is a separate question, one we return to below.

The tasks in the test phase differed only in the path lengths and values of the lotteries 

presented; no feedback was provided. The new conditions and absence of feedback 

prevented the participant from using stimulus-response mappings or “model free” 

reinforcement learning (Daw, Gershman, Seymour, Dayan, & Dolan, 2011) to complete his 

choices. He had to use the information in the training phase to work out how the probability 

of survival changes with path length, i.e. the model that maps probability information from 

training to paths of novel lengths in the test phase in Eq. 1. If he could make effective use of 

Eq. 1 with an accurate estimate of λ then he could precisely predict survival probabilities for 

any path length.5

We test whether the individual acquires and makes use of the exponential survival function 

of Eq. 1 with correct hazard rate, allowing correct translation of information from the 

training to the test phase. The internal model, analogous to E. C. Tolman’s cognitive map 

(Tolman, 1948) would allow people to choose among novel lotteries that they have never 

had direct experience with.

3If the observer takes discrete steps of a fixed size his length of survival is a geometric distribution. As the steps become smaller and 
smaller, the limiting distribution is the exponential which we use in the following analysis.
4On a few “catch trials” participants were asked to choose between a shorter path with larger reward and a longer path with smaller 
rewards. The catch trials were used to screen out participants as described in Methods.
5The correct generalizations are somewhat non-intuitive. If the probability of surviving a path of length L is p then the probability of 
surviving a path of length 2L is p2.
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We do not assume that the internal model would come exclusively from the individual’s 

experience in training: In the training phase, we sought to give participants every 

opportunity to infer the correct model, including instructing them that the mines were 

randomly distributed and that the probability of surviving a specific path depended only on 

the path length. They also received feedback that includes display of the full minefield at the 

end of each training trial. And of course they experienced success or failure in each training 

trial. Any of this information could have contributed to their learning the correct model.

The task and environment we considered is of interest in itself. It is an example of a process 

of constant hazard: no matter how long an organism has survived, on its next step it has the 

same chance of encountering a mine as it did on the first. For a process to be a process of 

constant hazard simply means the environment is memoryless: the number of success in past 

attempts has no influence on the probability of success in the next attempt given that one has 

survived until now.

Of course, repeated choices in many environments are properly modeled with changing 

hazard functions: repeated successes in the past may increase the probability that the next 

step will lead to success—or decrease it. Yet—in many environments—repeated choices can 

be approximated as processes of constant hazard on time or distance or trial. All that is 

needed is a plausible basis for assuming that each successive step in time or space incurs the 

same probability of failure: unprotected sex, clicking on an email from an unknown sender, 

darting across a busy street at lunchtime, moving across a meadow exposed to predators—or 

crossing a minefield.

People have been found to be surprisingly sensitive to the forms of probability distributions 

(exponential, Gaussian, Poisson, etc.) they encounter in everyday life: They can accurately 

estimate the distributions of the social attitudes and behaviors of their group (Nisbett & 

Kunda, 1985); they can also use appropriate probability distributions for inference or 

prediction (Griffiths & Tenenbaum, 2006, 2011; Lewandowsky, Griffiths, & Kalish, 2009; 

Vul, Goodman, Griffiths, & Tenenbaum, 2009). We investigate whether they adopt the 

exponential survival function (constant hazard) when it is appropriate.

Our focus on model-based transfer also distinguishes the path lottery task from sampling-

based decision tasks that have a similar risk structure, such as the Balloon Analogue Risk 

Task (BART, Lejuez et al., 2002; Pleskac, 2008; Wallsten, Pleskac, & Lejuez, 2005). In the 

minefield, every tiny step along the path incurred a fixed probability of triggering a mine and 

the participant need to make use of this constraint to infer the probability of survival for 

novel path lengths in the test phase. In the BART, participants repeatedly pumped a 

breakable balloon to accumulate reward. They received an amount of reward for each 

“pump” but would lose all reward if the balloon broke. The decision at any moment was 

whether to risk one more “pump” for additional reward. Participants were never required to 

generalize their knowledge of the probability of failure incurred by one “pump” to that of an 

arbitrary number of “pumps”. Furthermore, in the test phase of the minefield task there was 

no feedback, precluding any trial-by-trial learning strategies and making the task a rigorous 

test of model-based transfer.
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We analyzed human choices in the path lottery task to answer two questions. First, were 

people’s choices based on the correct exponential model of probability of survival? If not, 

what model did they use? Second, do people correctly estimate the parameters of whatever 

model they assume? That is, if they correctly adopted an exponential survival function, was 

their estimation of the hazard rate (λ in Eq. 1) accurate? Or, if they assumed a model of a 

different form, are the parameters of that model appropriately estimated?

Modeling

Modeling stochastic choice

Human choices are stochastic (Rieskamp, 2008): People do not necessarily make the same 

choice when confronted with the same options. To predict the choice behavior in individual 

trials, we constructed choice models that are stochastic.

Denote the pair of path lotteries on a specific trial as L1: (v,x) and L2: (w,y) where v,w denote 

rewards and x,y denote path lengths. In each choice model, we computed Pr(L2), the 

participant’s probability of choosing L2, and modeled the participant’s choice on the trial as 

a Bernoulli random variable with mean Pr(L2) (Erev, Roth, Slonim, & Barron, 2002). For 

each participant, we fitted the free parameters in each choice model to the participant’s 

choices using maximum likelihood estimation (Edwards, 1972, see Online Supplement).

Except for the resampling choice models (that we present later), Pr(L2) is determined by the 

normalized expected utilities of L1 and L2 and a free parameter τ that reflects the 

randomness in the participant’s choices (Busemeyer & Townsend, 1993; Erev, Roth, 

Slonim, & Barron, 2002; Sutton & Barto, 1998, see Online Supplement).

Utility

The utility of a specific monetary reward was modeled as a power function with parameter α 

>0 (Luce, 2000):

(2)

Pleskac (2008) has pointed out that the utility function and probability weighting function in 

the task of Wallsten et al. (2005) were not simultaneously identifiable. We also found that α 

and the free parameters in some choice models could not be simultaneously estimated (see 

Supplemental Appendix C online for proof). To overcome this issue, we treated α in all the 

choice models as a constant for each fit (i.e. not a free parameter in the actual fit) and 

estimated each choice model under a range of different α ’s that are typical in the decision 

making literature (Gonzalez & Wu, 1999; Tversky & Kahneman, 1992). In this way we 

could verify that any conclusions we drew were valid across the range of utility functions 

typically encountered.

Equivalent length

We introduce an intuitive measure of participants’ preference in the path lottery task, the 

equivalent length, and then show how different survival functions (increasing, constant, or 

decreasing) would lead to different predictions for equivalent length.
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Suppose participants choose between a shorter path of length x towards a smaller reward v 

and a longer path of length y towards a larger reward w. For any specific (v,x) and w, we 

estimate the equivalent length ỹ where the participant is indifferent between the two 

options, i.e. (v,x)~(w,ỹ) experimentally. We assume an equivalence of expected utilities:

(3)

where u(.) is the utility function and P(.) is the probability of success. Let β = u(w)/u(v) (β>1 
as w>v). Eq. 3 can then be written as:

(4)

When the survival function is specified (e.g. Eq. 1), for any specific β, we can compute the 

equivalent length ỹ, based on Eq. 4, as a function of x. The functional form of ỹ against x is 

determined by the survival function the participant assumed. Conversely, we can use the 

measured relationship of ỹ to x to rule out some possible choice models.

We first describe three choice models below, which differ in their assumptions concerning 

the survival function. Their assumptions and predictions are illustrated in Figure 2. We will 

later consider additional choice models (notably models based on resampling) that are 

motivated by the observed choice patterns. These will be introduced in the Results section.

Exponential choice model

When the hazard rate is constant, the probability of success (survival function) is an 

exponential function of the path length, as indicated by Eq. 1. The larger the hazard rate λ, 

the riskier the minefield, and the smaller the probability of success. Substituting Eq. 1 into 

Eq. 4 and, taking logarithms, we have (see Supplemental Appendix A for derivation):

(5)

That is, for any specific choice of β, if participants (correctly) assumed the exponential 

model, their measured ỹ would be a linear function of x whose slope equals 1 (Fig. 2, left 

bottom). Intuitively, if you are indifferent between traveling 1 cm for $1 and 3 cm for $2, 

you should be indifferent between traveling 11 cm for $1 and 13 cm for $2.

Weibull choice model

The Weibull survival function (Weibull, 1951) is a generalization of the exponential that 

includes smoothly increasing and decreasing hazard functions6:

(6)

When γ = 1 it coincides with the exponential. The corresponding Weibull hazard function is

6If the participant correctly assumes an exponential survival function but has a probability distortion in the one-parameter Prelec form 
(Prelec, 1998), his survival function is of the form of a Weibull function. The survival function is probability versus distance and any 
distortion of the survival function can be treated as a form of probability distortion.
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(7)

which is an increasing power function when γ > 1, a decreasing power function when 0 < γ 

< 1, and constant when γ = 1. The Weibull equivalent length (see Supplemental Appendix A 

for derivation) is:

(8)

For any specific β, it is a curve that converges to the identity line when x approaches infinity 

(Fig. 2, central bottom). The curve is convex when γ > 1 and concave when 0 < γ < 1.

Hyperbolic choice model

There is an evident analogy between our task of trading-off distance for reward and 

temporal discounting (Frederick, Loewenstein, & O’Donoghue, 2002). The counterpart of 

constant hazard rate in temporal discounting is constant discount rate. Human decisions on 

delayed rewards, however, exhibit a declining discount rate (e.g. Thaler, 1981), which is 

well fit by a hyperbolic model (see Frederick et al., 2002 for a review; Kirby & Maraković, 

1995; Myerson & Green, 1995; Raineri & Rachlin, 1993).

Analogously, participants may assume a survival function that declines with distance 

following a hyperbolic function:

(9)

where δ > 0 is a parameter of discounting rate, analogous to the hazard rate λ in the 

exponential model. The larger the δ, the smaller the probability of success. Substituting Eq. 

9 into Eq. 4, we get a linear relationship (see Supplemental Appendix A for derivation):

(10)

Recall that β = u(w)/u(v) > 1. That is, the hyperbolic model predicts a line of a slope greater 

than one (Fig. 2, right bottom). If you are indifferent between traveling 1 cm for $1 and 

traveling 3 cm for $2, you would prefer traveling 13 cm for $2 to traveling 11 cm for $1.

Methods

Apparatus and stimuli

Stimuli were presented on a 32-in. (69.8×39.2 cm) Elo touch screen, using the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Figure 1 shows an example of stimuli. 

Two paths branched towards the upper left and right of the screen. Each treasure chest at the 

end of a path represented a reward of US$1 for completing the path. On each trial, 369 

invisible circular mines were independently and uniformly distributed at random. For every 

1 cm traveled along a path, there was an approximately 8% probability of hitting a mine.
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Procedure and design

The experiment consisted of two phases: training and test. It lasted approximately 75 min.

Training—The purpose of the training phase was to provide participants an opportunity to 

familiarize themselves with the task and estimate the hazard implicit in moving through the 

minefield. On each trial, participants chose between two paths of different rewards and 

different lengths: (v,x) and (w,y). They were informed that mines were randomly distributed 

and the probability of surviving a specific path depended only on the path length.

After choosing, the participant was shown an animation of her travel along the chosen path. 

If she hit a mine, the animation stopped and a graphical explosion marked the location of the 

mine (Fig. 1, bottom). Otherwise the animation continued to the end and the treasure box(es) 

flashed. Thereafter all the mines were briefly displayed as an aid to the participant in 

learning the hazard of traveling in the minefield and the correct form of the hazard function.

During training, the rewards (v vs. w) were $1 vs. $2. On each trial, P(x) was randomly 

chosen to be between 0.3 and 0.7, and P(y) was either 3/8 of P(x) or 2/3 of P(x) with equal 

likelihood. According, x was between 4.3 and 14.5 cm and y was 11.8 or 4.9 cm longer than 

x. There were 160 training trials (including 20 screening trials as described below). 

Participants were not told that there would be a subsequent test phase with no feedback.

Test—In the test phase, the task was the same except that feedback was withdrawn and the 

values of the rewards changed. There were two reward conditions (v vs. w): $1 vs. $3, and 

$2 vs. $3. The x value could be 11.1, 8.4, 6.2, 4.3, or 2.7 cm so that P(x) equaled 0.4, 0.5, 

0.6, 0.7, or 0.8. For each of the these 10 conditions, y was adjusted by a 1-up/1-down 

adaptive staircase procedure of multiplicative steps and we computed the equivalent length 

ỹ as the geometric mean of the x after the first two reversals. All staircases were interleaved 

and terminated after 60 trials, resulting in 10 × 60 = 600 test trials.

It is known that people accurately estimate length for lines ranging from 1 cm to 1m 

(Teghtsoonian, 1965). The path lengths we chose to use were well within this range, so there 

would be little chance that biases would arise from a misperception of path lengths.

Reward—After each phase, a few trials (one out of training, six out of test) were chosen at 

random and the participant’s was rewarded for the outcome of traveling along the chosen 

path. The sum of winnings on these reward trials was paid to the participant as a bonus. The 

participant knew, at the beginning of training, that some of the trials would be rewarded in 

this way. The participant received US$12 per hour in addition to the bonus.

Screening—In 20 trials of the training phase, the shorter path led to a larger reward and 

the longer path to the smaller reward. A participant who selected the higher risk path to the 

smaller reward has violated dominance. Any participant who failed to choose the non-

dominant option in more than 4 of the 20 trials was excluded from the remainder of the 

experiment.
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Participants

Data from seventeen participants—4 male and 13 female, aged 18–50, median 21—were 

analyzed. An additional two participants failed the dominance screening and did not 

complete the experiment. We determined the sample size in advance. No variables or 

conditions were dropped. The experiment was approved by the University Committee on 

Activities Involving Human Subjects at New York University.

Results

Choices in the training

In the training phase of the experiment, participants chose between pairs of path lotteries 

L1 : (v,x) and L2 : (w,y). We use L2 to denote the lottery that had the larger reward and the 

longer path length. The larger reward was always twice the smaller reward ($2 vs. $1). The 

probability P (y) of surviving the longer path was 2/3 of the probability P (x) of surviving 

the shorter path for 70 trials and 3/8 of the probability P (x) of surviving the shorter path for 

an additional 70 trials, all trials interleaved. Figure 3A shows how the participants’ mean 

probability of choosing L2 evolved with experience. In both conditions, the participants 

showed a trend toward picking the less risky option L1. This trend, however, was not 

significant, according to a 2 × 5 repeated-measures ANOVA7, F(4, 144) = 1.57, p = .19.

We did not model the choices in training. What we can infer from Figure 3A, without any 

further assumptions on the underlying decision process, is that there was no significant 

indication that the participants were becoming more and more risk-seeking during their 

training. We will return to this point in the Discussion.

Measured equivalent lengths in the test

Before testing participants’ choice behavior against the choice models we introduced earlier, 

we would like to give an overview of their choice patterns. In the test phase, we measured 

the equivalent length ỹ, the length for which the participant was indifferent between the two 

options, i.e. (v,x)~(w,ỹ). The mean equivalent length across participants, plotted as dots in 

Figure 3B, visually agrees with the pattern predicted by a survival model of the correct 

exponential form (Eq. 4): ỹ is a linear function of x whose slope is one.

The lines in Figure 3B shows the predictions of the correct model, an exponential model 

whose hazard rate was estimated from the random samples each participant actually saw 

using the maximum likelihood method. The measured equivalent lengths were smaller than 

those predicted by the correct model. Participants appeared to be highly risk-averse: When 

choosing between a shorter path leading to $1 and a longer path leading to $3, at the 

indifference point, the expected gain of the shorter path was only 49% of that of the longer 

path. Participants sacrificed over half of their potential winnings to avoid the longer, riskier 

path. According to Eq. 4, a smaller equivalent length implies an overestimation of the hazard 

rate.

7The degrees of freedom correspond to 2 P(y) P(x) conditions by 5, the number of bins of 14 trials each.
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Model comparison for participants’ choices in the test

An examination of Figure 3B by eye, as we described above, suggests that an average 

participant correctly based his choices on an exponential internal model but overestimated 

the hazard rate. We wanted to see whether these observations are supported by formal model 

comparison procedures and whether they held on the individual level.

For each participant, we fit the exponential, Weibull, and hyperbolic models to the 

participants’ 600 choices in the test using the maximum likelihood method (Online 

Supplement). We used the Bayesian information criterion (BIC, Schwarz, 1978) to choose 

the model that best accounted for the participant’s choice behaviors, that is, the model which 

maximized:

(11)

where Λ denotes the log likelihood of the model fit, k denotes the number of free parameters 

in the model, and N denotes the number of data points fitted.

Form of the survival function—Table 1 shows the number of participants best fit by 

each choice model under a few representative utility functions: u(v) = v, u(v) = v088 

(Tversky & Kahneman, 1992), and u(v) = v049 (Gonzalez & Wu, 1999). The distribution of 

best fits for each model barely changed with the assumed utility function. Among the three 

choice models, most participants were best fit by an exponential model (constant hazard 

rate); the runner-up was the Weibull model; few participants were best fit by the hyperbolic 

model.

The Weibull model is a generalized form of the exponential model, which allows the hazard 

rate to be increasing (γ > 1), constant (γ = 1), or decreasing (γ < 1) over distance. We used 

the estimated γ in the Weibull model to provide additional information about the hazard-

changing trend assumed by the participant. Figure 4A shows γ for each participant 

(assuming u(v) = v): The γ of most participants was close to one (median 1.16), implying an 

assumption of constant hazard. Across participants there was no trend away from constant 

hazard.

Estimation of hazard—In the training phase, participants observed whether and where 

their chosen paths hit mines. Based on the random samples that each participant actually 

saw, we estimated the hazard rate λ0 that most likely generated these samples using the 

maximum likelihood method. It ranged from 0.069 to 0.091 (median 0.078); if the 

participant’s choices were consistent with this hazard rate we would judge that she correctly 

estimated hazard during training.

Figure 4B shows the estimated hazard rate λ when the participant’s choices were fitted to the 

exponential model (assuming u(v) = v), relative to her true hazard rate λ0. Most participants 

overestimated the hazard rate. The median ratio was 3.53, 3.13, and 2.41, respectively for u 

(v) = v, u (v) = v0.88, and u (v) = v0.49.
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Learning-based choice models

What would lead participants to overestimate their hazard rate? We constructed a delta-rule 

learning algorithm to estimate the survival function based on experience in the training 

phase (Online Supplement). The algorithm could potentially result in the observed 

overestimation of hazard rate. The basic idea was that positive and negative outcomes could 

be weighted in an unbalanced way. In particular, the overestimation of hazard rate was 

implemented as an overweighting of negative outcomes (running into a mine) compared to 

positive outcomes (survival).

The survival function produced by the learning algorithm is a step function. We call the 

choice model based on it the learning-based non-parametric model. We constructed a 

second learning-based model, the learning-based exponential model, whose survival 

function is simply a smoothing of the survival function of the non-parametric model. 

Remarkably, most participants were better fit by the learning-based exponential model than 

by the learning-based non-parametric model (Table 2), providing further evidence that 

participants assumed survival models of the correct exponential form.

Survival-based vs. resampling choice models

Instead of building a one-to-one mapping between path length and probability of survival, as 

implemented in the survival-based choice models above, participants might memorize all the 

path lotteries they attempted during training together with their outcomes and use these 

instances to estimate the probability of survival for each test path. However, participants 

could not simply recall paths of the same length as the test path because there was no exact 

match from the training set—the path lengths in the training set were randomly chosen from 

a continuum. The issue then is, how can the participant generalize the information gained in 

the training phase? This information can be thought of as ordered triples (x,x′,O) where, x is 

the path length on a trial, x′ is the path length traveled until a mine was encountered on a 

failure trial or the total length of the path on a reward trial, and O represents the observed 

outcome (success or failure).

We explored simple rules based on resampling from the information gathered during 

training, stored in memory. We constructed three resampling models, all of which assume 

that participants randomly (re)sample8 from their training experience. The models differ in 

the memory populations to resample from and the generalization rule applied to the 

resampled paths.

The first resampling model assumed that participants resample only from paths that are 

longer than the test path. Each resampled path that ran into a mine before reaching the length 

of the test path corresponded to a possible failure for the test path (the test path would have 

encountered the same mine as the resampled path if placed on the same minefield). The 

probability of survival for the test path was computed as the number of survivals averaged 

across all the sampled paths. We call this model the unbiased resampling model: the 

8In statistics, resampling is a method based on drawing random samples from data with replacement. It is the basis for bootstrapping 
methods (Efron & Tibshirani, 1993). We use the terms “resampling”, etc. to distinguish the reuse of the training phase data from the 
actual gathering of information during the training phase which is a form of sampling.
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estimated probability of survival for any test path would not deviate from the true 

probability of survival in any systematic way.

To accommodate possible biases in participants’ choices, we considered two additional 

resampling models that involve biased (but plausible) usage of the resampled paths. Both of 

them assumed that resamples could be drawn from any path the participant has experienced 

in training. When the resampled path length was longer than the test path, the rule was the 

same as in the unbiased resampling model. When the resampled path was shorter than the 

test path, the optimistic resampling model assumed that the resampled path counted as a 

success if the resampled path itself ended in success, i.e. success on the shorter, resampled 

path was treated as a guarantee of success on the longer path; conversely, the pessimistic 

resampling model, treated the same case as a failure. The probability of survival is typically 

overestimated in the optimistic resampling model and underestimated in the pessimistic 

model.

Could participants’ choice behaviors arise from a resampling process? We compared the fits 

of the survival-based choices models with the resampling models. As shown in Table 3, only 

3 out of 17 participants could be better captured by a resampling model than by a survival-

based model.

We noticed three facts. First, on average the resampling models fit much worse to 

participants’ choice behaviors than most of the model-based models did (mean BIC in Table 

3). Second, the pessimistic resampling model fit better than the other two resampling models 

(number of best-fit participants). Recall that the pessimistic resampling model would yield 

an underestimation of the probability of survival, i.e. an overestimation of hazard rate. 

Third, for all the participants who were best fit by a resampling model, the fitted sample size 

was 1, in contrast to a typical sample size of 5 for sampling-based decisions (Erev et al., 

2010).

The BIC difference between the survival-based models and the resampling models was 

smaller for u (v) =v0.49. At first glance it appears that the resampling models do “relatively 

less poorly” when the utility function is most concave. This is simply due to the fact that 

larger rewards are associated with longer path lengths (lower probabilities) and failure to 

generalize correctly is not punished as much if larger rewards are scaled to be relatively less 

important.

Discussion

In the present paper, we introduce decision from models as a class of decisions parallel to 

decision from description (Tversky & Kahneman, 1992) and decision from sampling 

(Barron & Erev, 2003). It has an experienced-based component but is focused on 

generalization: participants need to develop a model allowing them to generalize probability 

information from their past experience to novel tasks. We investigated whether people could 

correctly learn an exponential survival model and base their choices in novel tasks on the 

correct model.
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In order to maximize their expected reward, participants needed to take the information 

acquired during training and use it to generalize to novel conditions. If their memory for this 

information is distorted then their choice of model and/or estimate of its hazard rate 

parameter could be affected. But remembering this information accurately is not sufficient to 

guarantee that they pick the correct model or correctly use it to generalize.

We found that most participants made choices consistent with a survival model of the 

correct exponential form: The exponential model fit better to participants’ choices than the 

Weibull model and the hyperbolic model.

Prelec and Loewenstein (1991), and Green and Myerson (2004) suggested a number of 

parallels between decision under risk and inter-temporal decision. The correct exponential 

functional form provided better fits to participants’ data than the hyperbolic form found in 

the temporal discounting literature. If risk in our task were exchangeable with temporal 

delay, we would have expected a hyperbolic discounting of distance (i.e. hyperbolic survival 

function) in the minefield. However, hyperbolic internal models were favored by fewer than 

1/8 of the participants.

Evidence in favor of the correct assumption of the exponential form also came from a model 

comparison with a non-parametric model. We “piped” the participant’s training experience 

through a specific learning algorithm and found that, if the resulting survival function was 

then smoothed to approximate an exponential function (no parameter added), it would 

provide a better fit for most participants than that of the survival function originally learned. 

That is, choice models that assumed internal models of the correct exponential form better 

captured participants’ choices than those that assumed no specific functional forms.

We further verified that participants’ choices in the test could not be reduced to a resampling 

process that is analogous to decision from sampling but based on resampling from memory 

(Erev et al., 2010). The performance of most participants were better accounted for by 

choice models that rely on a survival function than by resampling models. Even for the few 

participants who may have depended on resampling, the sampling process was based on 

very small samples. The sample size was typically 1, even smaller than the number of 

samples (~5) found in decision-from-sampling tasks (Erev et al., 2010). This result echoes 

Vul et al.’s (2009) claim that a sample size of one is efficient for inference from probability 

distributions.

But most participants did not base their choices on the correct model exactly: they 

overestimated the hazard rate of the exponential survival function. They did not go as far as 

they should go when offered a larger reward. According to participants’ average response in 

the $1 vs $3 condition, the expected gain of the shorter path was only 49% of that of the 

longer path. We noticed a similar “risk-averse” outcome in the BART: Their participants 

pumped the balloon fewer times than would maximize expected gain (Lejuez et al., 2002). 

When the optimal number of pumps was 64, participants on average pumped only 37.6 

times (Wallsten et al., 2005).

The BART and our path lottery task, put together, shed light on this overestimation of 

hazard. Wallsten et al. (2005), in their modeling of the BART, attributed it to an incorrect 
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prior belief that would be corrected by experience. Our results cast doubt on this 

explanation. Since the hazard rates of both tasks were arbitrarily chosen by the 

experimenter, why should people have a prior hazard rate in both tasks that is higher than 

the true? Moreover, if participants in the path lottery task did have an overestimation of 

hazard before the task but were able to correct it through experience, we would expect an 

increasing trend in their probability to choose the more risky option (L2) during training. 

This was not the case (Fig. 3A). We conjecture that participants’ overestimation of hazard 

reflects an improper estimation of probability information from their experience and not 

simply lack of experience.

It is natural to expect people to correctly estimate both the correct functional form and the 

correct parameters (as in Griffiths & Tenenbaum, 2006) or neither. Mozer, Pashler, and 

Homaei (2008) pointed out the possibility that the seemingly accurate human predictions for 

a specific distribution may be based on a few memorized samples of the distribution. A 

similar possibility can hardly be true for our decision task. If we assume that participants’ 

memory of samples was faithful and that they combine sample information correctly, their 

decisions should not systematically deviate from the predictions of the true hazard rate. 

Conversely, if their memory of samples were distorted, there would be no reason to assume 

that the form of the distribution would be unaffected. And as we demonstrated earlier, 

resampling models did not provide good fits to participants’ choices. Of course, we did not 

test all possible resampling models and could not exclude the possibility that a different 

generalization model based on resampling such as the similarity-based sampling model of 

Lejarraga and Gonzalez (2011) might work better than the three sampling models we tested. 

However, we see no way to develop a sampling-based model that could account for the co-

existence of the correct functional form and the overestimation of hazard.

Two basic approaches to learning a specific functional relationship are (1) to rely on a set of 

hard-wired base functions or (2) to use associative learning free of functional forms 

(McDaniel & Busemeyer, 2005). The disassociation of learning of the form and the 

parameter of the hazard function in our task, however, poses something of a challenge for 

associative learning for the similar reason we discussed above for the sampling approach. 

We conjecture instead that the exponential (or an approximation to the exponential) is one of 

the hard-wired functions in the cognitive “repertoire” of functions permitting extrapolation 

and interpolation. Selection of a particular function (exponential or otherwise) is then seen 

to be analogous to contour completion in human perception (Metzger, 2006). We have 

argued that processes of constant hazard are appropriate models of many repeated tasks in 

everyday life, consistent with the claim that the exponential is hard-wired.

We conjecture that participants were able to choose the correct form of model to use simply 

based on their understanding of the minefield and possibly a few trials of experience. There 

is evidence that in their use of probability information people take into account how 

stochastic events or processes are generated physically (C. S. Green, Benson, Kersten, & 

Schrater, 2010; Pleskac, 2008). However, people also stick to particular probabilistic models 

in spite of extensive exposure to contradictory evidence. For example, people incorrectly 

assume an isotropic model of their motor error distribution after 300 trials of exposure to the 

vertically elongated true distribution (Zhang, Daw, & Maloney, 2013). In the BART (Lejuez 
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et al., 2002), the probability of breaking the balloon with the next pump increased with the 

number of pumps, but most participants were better modeled as assuming a constant hazard 

rate (Wallsten et al., 2005).

In sum, the above findings allow us to claim decision from models as a new class of 

decisions that are distinct from decision from description and decision from sampling. 

People do make choices that generalize to novel tasks using models that allow them to 

translate experience into accurate probability estimates associated with the novel tasks.

The major goal of the present study was to evaluate decision from models at the 

computational-theory level in Marr’s scheme (Marr, 1982, p.25). In addition, a process 

model is needed to account for the patterned choice behaviors we have observed, in 

particular, how people interpolate and estimate hazard rate as a function of path length and 

why they sometimes get it wrong.

There are many open questions in this new class of decision tasks. For example, our results 

do not enable us to ascribe participants’ deviations from optimality (maximizing utility) to 

errors in learning (training phase) or choice (test phase). Further work is needed to elucidate 

the source of error: what is learned vs. how it is used. Another untreated problem is 

probability distortion. As we noted above, any distortion of the survival function is 

equivalent to applying a probability distortion function to the correct, exponential survival 

function.

Last of all, turning a finite set of observations into a predictive mechanism for an infinite 

number of possible cases is the problem of induction. An exciting direction for future 

research would be to compare tasks with different, correct generalization functions (such as 

minefields with non-uniform distributions of mines) to test human ability to generalize 

correctly.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Example of the task
Top: Participants in a virtual minefield chose between a shorter path leading to a smaller 

reward and a longer path leading to a larger reward. The probability of failure with each 

successive step—the hazard rate—is constant. Each treasure chest denoted $1. Middle and 
Bottom: Possible feedback on the chosen path (success and failure). Feedback was present 

in the training phase and absent in the test phase. See Methods.
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Figure 2. Illustration of three classes of survival models
Top: Survival functions (probability of success as a function of path length) assumed by the 

models. Black (thickest) line denotes an exponential model. Red (second thickest) line 

denotes a Weibull model (γ > 1). Blue (least thick) line denotes a hyperbolic model. 

Bottom: Predicted equivalent length as a function of the shorter length in the lottery pair. 

The left, central, and right panels denote the predictions of the exponential, Weibull, and 

hyperbolic models. Lighter and darker colors in each panel correspond to a higher and a 

lower β’s. See Eq. 1–9. The unit of length is arbitrary.
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Figure 3. Summary of participants’ choices in training and test
A. Training: How the probability of choosing the lottery of the longer path (L2) and the 

larger reward evolved with trials. Probabilities were computed for bins of 14 trials and 

averaged across participants. The rewards for the shorter and longer paths were $1 vs. $2. 

Blue and green correspond to long-to-short-probability-ratio of 2/3 and 3/8. Errors bars 

denote 1 SE. B. Test: Measured equivalent length, ỹ, as a function of the length of the 

shorter path, x. The measured are plotted against those predicted by a correct exponential 

internal model. Dots denote data. Errors bars denote 1 SE. The correct model varied with the 

random samples each participant actually observed in the training. Lines denote the mean of 

the model predictions. Shadows denote the range of the model predictions. Red for $1 vs. 

$3, black for $2 vs. $3.
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Figure 4. Survival models assumed in participants’ choices in the test
Each bar is for one participant. Bar color codes whether the participant was best fit by the 

exponential, Weibull, or hyperbolic survival model: black for exponential, gray for Weibull, 

light gray for hyperbolic. The utility function was assumed to be u(v) = v. A. Subjective 
hazard-changing index for each participant. When a participant’s choices were fitted to 

the Weibull survival model (Eq. 6), the estimated parameter γ provided an index whether the 

participant assumed an increasing (γ >1), constant (γ = 1), or decreasing (γ < 1) hazard rate 

across distance. The γ of most participants was close to one (median 1.16), echoing the 

results of model comparison that most participants were best accounted for by the 

exponential model (i.e. Weibull model with γ = 1). B. Subjective relative to true hazard 
rate for each participant. The subjective hazard rate λ was the estimated hazard rate 

parameter when the participant’s choices in test were fitted to the exponential survival 

model (Eq. 1). The true hazard rate λ0 was what the participant experienced in training. 

Almost all participants overestimated the hazard rate to a large extent (median 3.53).
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