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Abstract

Fiber tracking in crossing regions is a well known issue in diffusion tensor imaging (DTI). Multi-

tensor models have been proposed to cope with the issue. However, in cases where only a limited 

number of gradient directions can be acquired, for example in the tongue, the multi-tensor models 

fail to resolve the crossing correctly due to insufficient information. In this work, we address this 

challenge by using a fixed tensor basis and incorporating prior directional knowledge. Within a 

maximum a posteriori (MAP) framework, sparsity of the basis and prior directional knowledge are 

incorporated in the prior distribution, and data fidelity is encoded in the likelihood term. An 

objective function can then be obtained and solved using a noise-aware weighted ℓ1-norm 

minimization. Experiments on a digital phantom and in vivo tongue diffusion data demonstrate 

that the proposed method is able to resolve crossing fibers with limited gradient directions.
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1 Introduction

Diffusion tensor imaging (DTI) provides a noninvasive tool for investigating fiber tracts by 

imaging the anisotropy of water diffusion [3]. A well known issue in DTI is fiber tracking in 

crossing regions, where the tensor model is incorrect [11]. Multi-tensor models have been 

proposed to cope with this issue. For example, [4] and [12] use two-tensor models to recover 

crossing directions, [13] deconvolves diffusion signals using a set of diffusion basis 

functions, and [11] uses a sparse reconstruction, where a fixed tensor basis is used to 

produce the crossing patterns. Using the number of gradient directions that is common in 

clinical research (around 30), these methods are able to resolve crossing fibers.
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However, in cases where limited gradient directions are used, current multi-tensor models 

have insufficient information for successful resolution of crossing fibers. For example, in the 

tongue, where involuntary swallowing limits the available time for in vivo acquisition, 

usually only a dozen (or so) gradient directions are achievable, and the acquisition usually 

takes around two or three minutes. Thus, distinguishing interdigitated tongue muscles, which 

constitute a large percentage of the tongue volume, is very challenging.

In this work, we present a multi-tensor method that incorporates prior directional 

information within a Bayesian framework to resolve crossing fibers with limited gradient 

directions. We use a fixed tensor basis and estimate the contribution of each tensor using a 

maximum a posteriori (MAP) framework. The prior knowledge contains both directional 

information and a sparsity constraint, and data fidelity is modeled in the likelihood. The 

resulting objective function can be solved as a noise-aware version of a weighted ℓ1-norm 

minimization [6]. The method is evaluated on in vivo tongue diffusion images.

2 Methods

2.1 Multi-tensor Model with a Fixed Tensor Basis

Suppose a fixed tensor basis comprises N prolate tensors Di, whose primary eigenvectors 

(PEVs) are oriented over the sphere. In this work, N = 253, the primary eigenvalue of each 

basis tensor is equal to 2 × 10−3 mm2/s, and the second and third eigenvalues are equal to 0.5 

× 10−3 mm2/s. At each voxel, the diffusion weighted signals are modeled as a mixture of the 

attenuated signals from these tensors. Using the Stejskal-Tanner tensor formulation [14], we 

have [11]

Sk = S0 ∑
i = 1

N
f ie

−bgk
TDigk + nk, (1)

where b is the b-value, gk is the k-th gradient direction, S0 is the baseline signal without 

diffusion weighting, fi is the (unknown) nonnegative mixture fraction for Di, and nk is noise. 

Each Di represents a fiber direction given by its PEV. Note that here we do not require 

Σi f i = 1 as in [11]. Assuming K gradient directions are used, by defining yk = Sk/S0 and ηk = 

nk/S0, (1) can be written as

y = G f + η, (2)

where y = (y1, y2, …, yK)T, G is a K × N matrix comprising the attenuation terms 

Gki = e
−bgk

TDigk, f = (f1, f2, …, fN)T, and η = (η1, η2, …, ηK)T.

2.2 Mixture Fraction Estimation with Prior Knowledge

We use MAP estimation to estimate the mixture fractions f. Accordingly, we seek to 

maximize the posterior probability of f given the observations y:
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p f ∣ y = p f p y ∣ f
∫ p f p y ∣ f d f ∝ p f p y ∣ f . (3)

Since at each voxel the number of fiber directions is expected to be small, we first put a 

Laplace prior into the prior density p(f) to promote sparseness: p f ∝ e
−λ ∣ ∣ f ∣ ∣1. Sparsity 

alone is not sufficient prior information when the observations do not include a large number 

of gradient directions (as in diffusion imaging of the in vivo tongue). Therefore, we further 

supplement the prior knowledge with directional information. For example, the muscles in 

the tongue have fairly regular organization involving an anterior-posterior (A-P) fanning of 

the genioglossus and vertical muscles, and a left-right (L-R) crossing of the transverse 

muscle.

Suppose prior information about likely fiber directions, which we call prior directions (PDs), 

were known at each voxel of the tongue. Let the PDs be represented by the collection of 

vectors {w1, w2, …, wP, where P is the number of the PDs at the voxel. Note that the PDs 

can vary at different locations, and such information could be provided, for example, by 

deformable registration of a prior template into the tongue geometry. A similarity vector a 
can be constructed between the directions represented by the basis tensors and the PDs:

a = max
m

∣ v1 ⋅ wm ∣ , max
m

∣ v2 ⋅ wm ∣ , …, max
m

∣ vN ⋅ wm ∣
T

, (4)

where vi is the PEV of the basis tensor Di. We modify the prior density by incorporating the 

similarity vector: p f ∝ e
−λ ∣ ∣ f ∣ ∣1eγa ⋅ f . In this way, basis tensors closer to the PDs are 

made to be more likely a priori. Note that wm and vi are unit vectors and thus each entry in a 
is in the interval [0, 1]. Since f ≥ 0,

λ ∣ ∣ f ∣ ∣1 − γa ⋅ f = λ1 ⋅ f − γa ⋅ f = λ 1 − γ
λ a ⋅ f = λ 1 − αa ⋅ f = λ ∣ ∣ C f ∣ ∣1, (5)

where α = γ
λ  and C is a diagonal matrix with Cii = (1 − αai). Therefore, p(f) has a truncated 

Laplace density given by

p f = 1
Zp α, λ

e
−λ ∣ ∣ C f ∣ ∣1, f ≥ 0, (6)

where Zp(α, λ) is a constant. We require 0 ≤ α < 1 to ensure that Cii > 0.
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Suppose the noise η in (2) follows a Rician distribution; then it can be approximated by a 

Gaussian distribution when the signal to noise ratio is above 2:1 [9]. Therefore, we model 

the likelihood term as a Gaussian density: p y ∣ f ∝ e
− ∣ ∣ G f − y ∣ ∣2

2 ση
2
, where ση is the 

noise level normalized by S0. Then, according to (3), we have the posterior density

p f ∣ y = 1
Z α, λ, ση, G

e
− ∣ ∣ G f − y ∣ ∣2

2 ση
2 + λ ∣ ∣ C f ∣ ∣1 , (7)

where Z(α, λ, ση, G) is a normalization constant. The MAP estimate of f is found by 

maximizing p(f|y) or ln p(f|y), which leads to

f = arg min
f ≥ 0

1
ση

2 ∣ ∣ G f − y ∣ ∣2
2 + λ ∣ ∣ C f ∣ ∣1 (8)

= arg min
f ≥ 0

∣ ∣ G f − y ∣ ∣2
2 + β ∣ ∣ C f ∣ ∣1, (9)

where β = λση
2. The problem in (9) is a noise-aware version of a weighted ℓ1-norm 

minimization as discussed in [6]. We note that this formulation is equivalent to the CFARI 

objective function developed in [11] when α = 0 (i.e., C = I). Thus, our approach, developed 

with an alternative Bayesian perspective, should be considered as a generalization of CFARI.

To solve (9), we use a new variable g = Cf. Since C is diagonal and Cii > 0, C is invertible 

and therefore f = C−1 g. Letting G = GC−1, we have

g = arg min
g ≥ 0

∣ ∣ Gg − y ∣ ∣2
2 + β ∣ ∣ g ∣ ∣1 . (10)

We find g using the optimization method in [10] and the mixture fractions f can be estimated 

as:

f = C−1g . (11)

Directions associated with nonzero mixture fractions are interpreted as fiber directions, and 

the value of fi indicates the contribution of the corresponding direction in the diffusion 

signal. In practice, as in [11], we only keep the directions with the largest 5 mixture fractions 

fni (i = 1, 2, 3, 4, 5) to save memory, which is sufficient to represent all fiber directions. 

Finally, the mixture fractions are normalized so that they sum to one: f ni
= f ni

Σi = 1
5 f ni

.
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3 Experiments

3.1 Digital Phantom

A 3D crossing phantom with two tracts crossing at 90° was generated to validate the 

proposed algorithm (see Fig. 1 for an axial view). Twelve gradient directions were used. 

CFARI [11] and our proposed method were applied on the phantom.

First, we used horizontal and vertical directions as PDs for the horizontal and vertical tracts, 

respectively. An example of reconstructed directions (for α = 0.5 and β = 0.05) is shown in 

Fig. 1(b), and is compared with CFARI results in Fig. 1(a). The standard color scheme in 

DTI is used. Directions with small f ni
’s are interpreted as components of isotropic diffusion; 

therefore we only show directions with f ni
> 0.1. It can be seen that in crossing regions, 

CFARI fails to produce the correct configuration while the proposed method successfully 

generates the correct crossing pattern.

Next, we studied the effect of inaccurate PDs. To introduce errors in the PDs, we rotated the 

true directions by θ = 15° to obtain PDs. We tested two cases of rotations: in and out of the 

axial plane. Specifically, in the first case, the horizontal and vertical directions are both 

clockwise rotated in the axial plane; and in the second case, the horizontal directions are 

rotated around the vertical line out of the axial plane and the vertical directions are rotated 

around the horizontal line out of the axial plane. The results are shown in Figs. 1(c) and 1(d) 

for the two cases, respectively. In both cases, the proposed method correctly reconstructs 

noncrossing fiber directions. For the PDs with in-plane rotation, the proposed method is still 

able to find the crossing directions, although it also produces incorrect fiber directions. For 

the PDs with out-of-plane rotation, the proposed method successfully reconstructs the 

crossing directions.

To make the simulation more realistic, besides the noise-free phantom test, Rician noise (σ = 

0.06) was also added to the digital phantom. And we tested with different values of and . To 

quantitatively evaluate the results, we define two error measures:

e1 = 1
N1

∑
i = 1

f ni > t

5
min

j
arccos vni

⋅ u j ⋅ 180°
π (12)

e2 = 1
N2

∑
j = 1

N2
min

i: f ni
> t

arccos vni
⋅ u j ⋅ 180°

π . (13)
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Here N1 is the number of directions with normalized mixture fractions f ni
 larger than a 

threshold t (in this case t = 0.1), vni is the reconstructed fiber direction, and N2 is the number 

of ground truth crossing directions uj. N2 can be 1 or 2, depending on whether fiber crossing 

exists at the location. e1 measures if the reconstructed directions are away from the ground 

truth, and e2 measures if each true direction is properly reconstructed. Note that using only 

e1 or e2 is insufficient because the reconstructed directions can agree well with one of the 

true crossing directions and ignore the other, or each true direction is properly reconstructed 

but there are other incorrect reconstructed directions.

The average errors in the noncrossing and crossing regions are plotted in Figs. 2 to 5. Here 

we used the true fiber directions and their 15° rotated versions as PDs. For the rotated 

directions, the results in the in-plane and out-of-plane cases are averaged. Note that α = 0 is 

equivalent to CFARI results.

In noncrossing regions, from Figs. 2 and 3, it can be seen that when errors are introduced in 

the PDs, the correct fiber directions can still be obtained with proper weighting of prior 

knowledge. For example, as shown in Figs. 2(b) and 3(b), α = 0.3 and β = 0.6 give zero e1 

and e2 errors. When noise is added, the use of ground truth as PDs leads to more accurate 

estimation, as shown in Figs. 2(c) and 3(c). When an error of 15° is introduced, the proposed 

method can still reduce the effect of noise with proper α and β (see α = 0.5 and β = 0.6 in 

Figs. 2(d) and 3(d)).

In crossing regions, the use of ground truth as PDs produces correct crossing directions in 

both the noise-free and the noisy cases (see Figs. 4(a), 4(c), 5(a) and 5(c)). When errors are 

introduced in the PDs, in both the noise-free and the noisy cases, it is still possible to obtain 

crossing directions that are close to truth with proper α and β (for example, α = 0.6 and β = 

0.05 in Figs. 4(b) and 5(b), and α = 0.5 and β = 1.0 in Figs. 4(d) and 5(d)). Note that in the 

crossing regions, CFARI, represented by α = 0, cannot find the correct crossing directions. 

In these examples, the errors of the proposed method can be smaller than the errors 

introduced in the PDs, which indicates that the proposed result is a better estimate than 

simply using the prior directions as the estimate.

3.2 In Vivo Tongue Diffusion Data

Next, we applied our method to in vivo tongue diffusion data of a control subject. Diffusion 

weighted images were acquired on a 3T MR scanner (Magnetom Trio, Siemens Medical 

Solutions, Erlangen, Germany) in about two minutes and 30 seconds. Each scan has 12 

gradient directions and one b0 image. The b-value is 500 s/mm2. The field of view (FOV) is 

240 mm × 240 mm × 84 mm. The resolution is 3 mm isotropic.

To obtain PDs, we built a template by manually identifying regions of interest (ROIs) for the 

genioglossus (GG), the transverse muscle (T), and the vertical muscle (V) on a high 

resolution structural image (0.8 mm isotropic) of a subject according to [15]. T interdigitates 

with GG near the mid-sagittal planes and with V on lateral parts of the tongue. The b0 image 

was also acquired for this template subject in the space of the structural image. The ROIs 

were then subsampled to have the same resolution with the b0 image. Using SyN registration 
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[2] between b0 images with mutual information as the similarity metric, the template was 

deformed to the test subject.

Based on the deformed ROIs of GG, T, and V, PDs can be determined. GG and V are known 

to be fan-shaped; therefore, to calculate the PDs at each voxel (xi, yi, zi) belonging to GG or 

V, we manually identified the origin point (x0, y0, z0) of GG in the mid-sagittal slice only. 

Then the PD for GG or V is wGG/V = (0, yi − y0, zi − z0). Since T propagates transversely, 

we use wT = (1, 0, 0) as the PDs for T. An example of the PDs on the test subject is shown in 

Fig. 6(a). Note that in the sagittal view, left-right directions are not shown.

The proposed method was then performed with the PDs. We fixed β = 1 and tested with 

different α’s. The result is compared with CFARI in Figs. 6(b) and 6(c). We focus on the 

highlighted areas in Fig. 6(a). Only directions with normalized mixture fractions f ni
> 0.1

are shown. In Fig. 6(b), CFARI does not generate a good fanning pattern for GG, while by 

tuning α our method is able to reconstruct the fan-shaped directions. Also, in Fig. 6(c), 

CFARI does not produce the transverse fiber directions while in the proposed method, as α 
increases, transverse patterns become more obvious.

We then applied fiber tracking with the CFARI results and the proposed results (for α = 0.5 

and β = 1). We implemented a variation of INFACT tracking from [11]. The difference is 

that in seeding a voxel, all the reconstructed directions are used instead of only the one with 

the largest mixture. Seeding ROIs are placed in parts of T and GG near the mid-sagittal 

plane, and the results are shown in Fig. 7. Each fiber segment is color-coded by the local 

orientation using the standard DTI color scheme. Compared to CFARI, the proposed method 

reconstructs many more transverse fibers and produces a smoother fan-shaped GG.

4 Discussion

To recover crossing fiber directions, more advanced diffusion imaging, such as high angular 

resolution diffusion imaging (HARDI) [16] and diffusion spectrum imaging [17] (DSI), have 

been developed. Since HARDI and DSI usually require long acquisition time, which limits 

their use in clinical research, efforts have also been made to accelerate the imaging process 

[5]. For example, [5] reduces the scan time from 50 minutes to 17 minutes. However, in the 

application of tongue diffusion imaging, even accelerated imaging currently may not satisfy 

the scan time of around 2.5 minutes.

Like [13] and [11], we do not explicitly enforce the constraint of ||f||1 = 1. As discussed in 

[7], the general sparse reconstruction problem (without prior knowledge) should be 

formulated as

f = arg min
f ≥ 0, ∣ ∣ f ∣ ∣1 = 1

∣ ∣ G f − y ∣ ∣2
2 + β ∣ ∣ f ∣ ∣0 . (14)

The CFARI algorithm [11] can be viewed as first relaxing the constraint ||f|| = 1, then 

approximating the ℓ0-norm with the ℓ1-norm, and finally reprojecting f onto the plane ||f||1 = 
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1. As shown in [11], the approximation is able to resolve crossing fibers. The proposed work 

further generalizes the approximation with weighted ℓ1-norm using a Bayesian framework, 

where prior directional information is incorporated. As demonstrated in the results, the 

generalization can better distinguish interdigitated tongue muscles with limited gradient 

directions.

We have assumed a Rician noise model and approximated it with a Gaussian model. It 

should be noted that in the case of parallel imaging, the noise can follow a noncentral χ 
distribution [8]. However, in our application, the Gaussian model provides a reasonable 

approximation in practice.

The PDs are calculated based on the deformed muscle ROIs. An alternative way of 

calculation is deforming the PDs drawn on the template to the target with the deformation 

field. As well as the spatial position, the orientation of the PDs should also be rotated 

according to the deformation field, as suggested in [1]. However, we discovered that 

although deformable registration can provide a general location of the tracts, due to the low 

contrast of b0 images, the detailed local deformation is not necessarily accurate, leading to 

distorted PDs. Therefore, we choose to calculate the PDs as proposed.

The proposed method relies on the ability of specifying PDs. Because of the well organized 

structures of the tongue muscles, the PDs are achievable for normal subjects. When applied 

to patients with glossectomy, the current prior knowledge in the lesion may be misleading. 

Thus, a criterion for using the PDs should be decided or the PDs for patients can be 

determined in a different way.

Currently, the choice of α and β is empirically fixed for all the voxels. However, the weight 

of sparsity and prior knowledge can depend on the signal-to-noise ratio (SNR). An 

improvement could be to determine adaptive α and β based on the estimation of SNR. For 

example, the SNR can be roughly estimated using image intensities of background and 

foreground voxels.

5 Conclusion

We have introduced a Bayesian formulation to introduce prior knowledge into a multi-tensor 

estimation framework. It is particularly suited for situations where acquisitions must be fast 

such as in in vivo tongue imaging. We use a MAP framework, where prior directional 

knowledge and sparsity are incorporated in the prior distribution and data fidelity is ensured 

in the likelihood term. The problem is solved as a noise-aware version of a weighted ℓ1-norm 

minimization. Experiments on a digital phantom and in vivo tongue diffusion data 

demonstrate that the proposed method can reconstruct crossing directions with limited 

diffusion weighted imaging.
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Fig. 1. 
Axial view of the FA of the crossing phantom. Reconstructed fiber directions are shown for 

(a) CFARI and (b)–(d) the proposed method. The PDs are ground truth directions in (b), 

ground truth directions with 15° in-plane rotation in (c), and ground truth directions with 15° 

out-of-plane rotation in (d).
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Fig. 2. 
Average e1 errors in noncrossing regions with different noise level σ, PD inaccuracy θ, and 

the parameters of α and β.
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Fig. 3. 
Average e2 errors in noncrossing regions with different noise level σ, PD inaccuracy θ, and 

the parameters of α and β.
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Fig. 4. 
Average e1 errors in crossing regions with different noise level σ, PD inaccuracy θ, and the 

parameters of α and β.

Ye et al. Page 13

Bayesian Graph Models Biomed Imaging (2014). Author manuscript; available in PMC 2015 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Average e2 errors in crossing regions with different noise level σ, PD inaccuracy θ, and the 

parameters of α and β.
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Fig. 6. 
Fiber directions. Results are compared between the proposed method and CFARI in (b) and 

(c) in the highlighted regions in (a).
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Fig. 7. 
Fiber tracking results: CFARI results seeded in (a) T and (b) GG; proposed results seeded in 

(c) T and (d) GG. T is viewed from above and GG is viewed from the left.
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