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SUMMARY

This paper builds on the methods of local instrumental variables developed by Heckman and 

Vytlacil (1999, 2001, 2005) to estimate person-centered treatment (PeT) effects that are 

conditioned on the person’s observed characteristics and averaged over the potential conditional 

distribution of unobserved characteristics that lead them to their observed treatment choices. PeT 

effects are more individualized than conditional treatment effects from a randomized setting with 

the same observed characteristics. PeT effects can be easily aggregated to construct any of the 

mean treatment effect parameters and, more importantly, are well suited to comprehend 

individual-level treatment effect heterogeneity. The paper presents the theory behind PeT effects, 

and applies it to study the variation in individual-level comparative effects of prostate cancer 

treatments on overall survival and costs.

1. INTRODUCTION

Much of the literature on treatment effects has focused on estimating effect parameters that 

inform population-level or policy-level decisions. Even when distributional impacts of 

treatments and policies are studied, the impacts are viewed as informing a social decision 

maker to help choose across alternative options (Heckman, 2001). However, in the presence 

of heterogeneous treatment effects, it is natural to expect that individual choices of 

treatments may vary from the socially optimal treatment that is identified based on some 

average social welfare criterion. More importantly, treatment effect information that can 

help change future individual-level behavior on treatment choices would automatically 

influence social choice of treatments through positive self-selection. Hence estimating 

treatment effects that can inform individual-level decision making can be of great social 

value.
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This conundrum manifests in its most acute form in the healthcare setting. In traditional 

clinical outcomes research, the focus has always been on finding average effects either 

through large clinical trials or observational datasets. Estimating treatment effect 

heterogeneity has mostly been relegated to post hoc analysis, rather than becoming the 

central goal of the analysis.1 Yet the clinical setting is an obvious place where individual-

level decision making is most relevant as a physician–patient dyad tries to decide on the best 

line of treatment for that patient. There is a growing recognition, based on fundamental 

theoretical principles, that more nuanced estimates of treatment effects between alternative 

medical interventions that can provide evidence on individualized treatments by possibly 

conditioning on a variety of risk factors can lead to increased welfare through more efficient 

use of medical technologies (Basu, 2009, 2011a). In contrast, failing to generate such 

individualized estimates and also producing results on population average effects without 

recognizing the underlying heterogeneity could lead to welfare losses including faster 

growth in healthcare expenditures (Basu et al., 2011; Basu, 2011a, 2011b).2

In this paper, we develop and present a new individualized treatment effect concept called 

person-centered treatment (PeT) effects, which can be estimated using local instrumental 

variable (LIV) methods (Heckman and Vytlacil, 1999). We begin in Section 2 with a 

motivating example from healthcare evaluation in patients diagnosed with prostate cancer 

(PCa) where the use of PeT effects will be valuable. In Section 3, we provide a brief 

background on the heterogeneous treatment effects literature. We then present a formal 

definition, identification and estimation of PeT effects. In Section 4, we apply the proposed 

methods to estimate PeT effects of surgery versus active surveillance on 7-year survival and 

costs among patients diagnosed with clinical localized PCa. Discussions follow in Section 5.

2. A MOTIVATING EXAMPLE

2.1. Prostate Cancer: Background

PCa is the most commonly detected non-cutaneous malignancy among American men, with 

an estimated 241,740 cases to be diagnosed in 2012 and more than 28,000 men dying from 

the disease. As the cohort of ‘baby boomers’ age, the incidence and prevalence of PCa will 

likely continue to increase as long as contemporary screening patterns continue. Elderly men 

(65+ years) account for over 60% of all diagnosed PCa; 80% of those diagnoses are for 

clinically localized cancer. Because prostate tumors are usually characterized by slow 

progression rates, active surveillance (AS) of PCa patients, where no invasive procedures 

are employed, is common in clinical practice. However, up to 60% of elderly PCa patients 

receive some form of aggressive therapy: either prostatectomy (PS) or a form of radiation 

therapy (RT). We focus on the questions of understanding the effects of PS over AS on 

overall and on total expenditures among elderly patients and the effect moderation by 

various patient-level factors.

1In randomized settings, heterogeneity analyses are often accomplished using post hoc subgroup analyses (Wilt et al., 2012). In some 
of our recent work, we have shown that such approaches are likely to be futile since these subgroups are often defined based on broad 
characteristics (e.g. gender) that only explain a very small fraction of the individual-level variance in treatment effects (Basu et al., 
2012).
2In fact, such insights and assertions line up well with the political economy of outcomes research funding in the USA, which 
witnessed the creation of the Patient-Centered Outcomes Research Institute (PCORI) through the 2010 Patient Protection and 
Affordable Care Act.
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2.2. Prior Evidence

Despite the high prevalence and burden of PCa among elderly American men, there is a 

considerable dearth of evidence on the comparative effectiveness of treatments for patients 

with PCa (Wilt et al., 2008). As the cohort of ‘baby boomers’ age, the incidence and 

prevalence of PCa will continue to increase and the value of such research would likely 

continue to grow.

Although it has been suggested that patients overestimate benefits of treatment and 

underestimate benefits of AS while making treatment choices (Mohan et al., 2009), it is not 

clear on what basis patients and physicians continue to form their expectations about 

survival benefits of RP over AS. An 18-year long Scandinavian trial was conducted prior to 

the era of common PSA screening, which compared PS versus AS (Bill-Axelon et al., 

2009). Only a fraction of patients older than 65 years was enrolled in this trial, which found 

no significant difference in mean overall survival among elderly patients. Many factors 

render this RCT evidence to be obsolete. Besides the fact that this RCT was not powered to 

look at differences among the elderly group of patients, life expectancies for elderly 

individuals have dramatically improved over the last two decades. Between 1975 and 2005, 

15-year survival probabilities for 65-year-old men have increased by 17 percentage points in 

the USA (Muening and Glied, 2010). This indicates that the survival gains from eliminating 

cancer are likely to be more than those 20 years ago, even when the underlying disease 

progression from diagnosis had remained the same. Moreover, with a more aggressive 

screening regimen implemented during the late 1980s and early 1990s, and especially with 

the advent of prostate-specific antigen (PSA) screening, distribution of PCa diagnosed 

among elderly men in the late 1990s was less advanced than in those diagnosed during the 

pre-PSA era. Last, but not least, the quality of surgery has risen over the past two decades, 

as evident from the declining morbidity from such procedures. Therefore, exploring the 

comparative effectiveness of alternative PCa treatments among elderly patients using recent 

data becomes important.

Precisely for the reasons stated above, a more recent randomized trial (PIVOT) was 

conducted that explored the comparative survival of PS versus AS for clinically localized 

PCa. It recruited most patients during 1995–2002 and followed them through January 2010 

with a median follow-up time of 10 years (Wilt et al., 2012). This trial is of specific 

importance to us as our analyses will be conducted over a very similar time period, but using 

population-based registry data. PIVOT investigators found that among men with localized 

PCa detected during the early era of PSA testing radical prostatectomy did reduce, but not 

significantly, the all-cause and PCa mortality, as compared with observation, through at least 

12 years of follow-up.

Many drawbacks remain in interpreting the results of this trial. Not only was the trial under-

powered for its primary outcomes, as exemplified by its failure to meet its projected sample 

size (Thompson and Tangen, 2012), but the reported results were also based on an intention-

to-treat analysis which does not accurately capture the comparative effectiveness of receipt 

of treatment. For example, about 20% of patients in the AS arm received curative treatment, 

whereas about 15% of men randomized to the PS arm did not receive the treatment. 
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Moreover, the generalizability of results from such trials remains to be a contentious issue. 

Only 15% of the eligible patients agreed to enroll in the PIVOT trial (Wilt et al., 2009). 

Moreover, the investigators report that, compared to men who were PIVOT eligible but 

declined enrollment, PIVOT enrollees were slightly older, more likely to be African-

American, had well-differentiated PCa and reported their health status as excellent or very 

good.

2.3. Evidence on Heterogeneity

Examinations of treatment effect heterogeneity within these trials have also been limited. 

Typically, post hoc analyses of broad subgroups are conducted to evaluate variation in 

effects – for example by stage or grade of the prostate tumor at diagnosis. Most often they 

are age adjusted but rarely age stratified (Bill-Axelson et al., 2009). Similarly, in the PIVOT 

trial, subgroups analyses were performed by age (<65 years vs. ≥65 years), race, Charlson 

comorbidity score, stage and grade. In most of these subgroups, surgery was found to be 

better than watchful waiting, but did not reach statistical significance. However, it is not 

clear whether the inefficiency is driven due to small sample sizes within a subgroup or the 

lack of specificity of these subgroups in identifying individuals who would truly benefit 

from surgery. For example, a secondary analysis of the Scandinavian trial data revealed 

substantial individual-level variability in treatment effects, especially across the dimensions 

of age and tumor characteristics when considered simultaneously (Vickers et al., 2012). The 

authors found that only a quarter of the patients had individual level benefits that lay within 

50% of the average effect. This implies that broad subgroup analyses based on one risk 

factor cannot explain much of the individual-level variation in treatment effects. We plan to 

answer this question directly based on our methods.

3. PERSON-CENTERED TREATMENT EFFECTS

3.1. Econometrics of Treatment Effect Heterogeneity

In the evaluation literature, nuanced treatment effects are most popularly characterized by 

conditional average treatment effects (CATE) where an average treatment effect is estimated 

conditional on certain values of observed covariates over which treatment effects vary. For 

example, if age is the only observed risk factor, one can establish a conditional effect of 

surgery versus active surveillance on mortality for patients of age 60 years diagnosed with 

clinically localized PCa. This is an average effect for all 60-year-olds in this condition. 

However, does this estimate apply to all men with clinically localized PCa at age 60 years? 

Certainly not, as there may be many other factors that determine heterogeneity in treatment 

effects in this population. For example, clinical stage and grade of cancer not only determine 

overall survival but may also determine differential effects from alternative treatments. To 

the extent that all potential moderators of treatments effects are observed to the analyst of 

the data, a nuanced CATE can be established conditioning on values of all of these factors.

In most applied work, however, not all moderators of treatment effects are observed. One 

reason is that many of these moderators are yet to be discovered and hence remain unknown 

to scientific knowledge. They are typically represented by the pure stochastic error term in 

statistical analysis of data. However, there are some moderators that fall within the purview 
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of scientific knowledge but remain unmeasured in the data at hand. This is usually the case 

for most randomized studies that rely on randomization to equate the distribution of all these 

factors across the randomization arms and forgo measurement of several factors in the 

interest of time and expenses.

In observational studies, these unmeasured moderators of treatment effects play a vital role 

in generating essential heterogeneity as often they are observed by individuals and acted 

upon by some while making treatment selection (Heckman, 1997; Heckman and Vytlacil, 

1999).3 An entire genre of methods, including methods based on local instrumental variable 

(LIV) approaches, have been developed to estimate policy-relevant and structurally stable 

mean treatment effect parameters in the presence of essential heterogeneity (Heckman and 

Vytlacil, 1999, 2001, 2005). Basu et al. (2007, 2011) introduced these methods to the health 

economics literature. where essential heterogeneity is widespread and instrumental variable 

methods are gaining meteoric popularity.

More importantly, distributions of treatment effects are useful for policy makers who care 

about distributional effects of policies (Heckman and Robb, 1985). For individual decision 

makers, such distributional effects are of central importance. Although difficult to establish, 

the most useful metrics to study distributional impacts of policies and treatments are the full 

marginal and joint distributions of potential outcomes. Previous work by Imbens and Rubin 

(1997) and Abadie (2002, 2003) have developed estimators for the marginal distributions of 

potential outcomes under the local average treatment effect (LATE) framework, where the 

instrument corresponds to the specific policy question that is being studied. Carniero and 

Lee (2009) extends the LIV framework of Heckman ad Vytlacil (1999, 2001, 2005) to 

identify distributions of potential outcomes and to develop a semiparametric estimator for 

the entire marginal distribution of potential outcomes. However, when it comes to 

understanding individualized decision making, estimating the marginal distribution of 

potential outcomes is not enough. They carry no information to help identify the quantile of 

the marginal distribution of counterfactual outcomes where an individual may lie had he 

taken an alternative treatment (Carniero et al., 2001). One must have knowledge about the 

full joint distribution of potential outcomes, which can only be established under much 

stronger assumptions (Heckman and Honoré, 1990; Heckman et al., 1997).4

LIV methods can seamlessly explore treatment effect heterogeneity across both observable 

characteristics and unobserved confounders and also be used to establish CATE based on 

observed factors. In this paper, we develop and present a new individualized treatment effect 

concept called person-centered treatment (PeT) effects, which can also be estimated using 

LIV methods. This new treatment effect concept is more personalized than CATE as it takes 

into account individual treatment choices and the circumstances under which people are 

making those choices in an observational data setting in order to predict their individualized 

3In fact, Basu (2011b) made the argument that the traditional ‘selection on gains’ rationale used in the education and labor literature is 
not the only mechanism to assert essential heterogeneity. Even if gains are unpredictable and selection is based on baseline factors, as 
long as those factors are not completely independent of the gains essential heterogeneity is induced.
4Heckman and Honoré (1990) use parametric assumptions. Heckman et al. (1997) assume that the persons at the qth percentile in the 
density of Y0 are at the qth percentile of Y1. More recently, using additional measurements in micro data, factor structure models have 
been used to establish the joint distribution of potential outcomes (Aakvik et al., 1999; Carniero et al., 2003).
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treatment effects. In our PCa example, suppose that we not only have data on age of the PCa 

patients but also the treatment they choose and the distances of their residence from the 

hospitals that offer surgical procedures. Assume that these distances impart a cost for 

accessing surgery and therefore influence treatment selection but do not affect the potential 

outcomes for these patients under either treatment, i.e. they are instrumental variables. 

Under such circumstances, 60-year-old patients, who live far from hospital and still choose 

surgery, are likely to have a different distribution of unobserved confounders than 60-year-

old patients who live close to the hospital and choose surgery. Therefore, by taking into 

account treatment choices and the observed circumstances under which those choices were 

made, we can enrich CATE to form a PeT effect that provides a conditional treatment effect 

that is averaged over a personalized conditional distribution of unobserved confounders and 

not their marginal distribution as in CATE.

There are several intuitive aspects about the PeT effects:

1. They help to comprehend individual-level treatment effect heterogeneity better than 

CATEs.

2. They are better indicators for the degree of self-selection than CATE. Specifically, 

they are better predictors of true treatment effects at the individual level both in 

terms of the positive predictive value and the negative predictive value.

3. They can explain a larger fraction of the individual-level variability in treatment 

effects than CATEs. The marginal distribution of PeT effects is a better proxy for 

the true marginal distribution of individual effects than that of CATEs.

4. All mean treatment effect parameters can be easily computed from PeT effects 

without any further weighting. Thus they also form integral components for 

population-level decision making.

All of these features of PeT effects will be studied here.

3.2. Structural Models for Outcomes and Choices

We start by formally developing structural models of outcomes and treatment choice 

following Heckman and Vytlacil (1999, 2001, 2005). For the sake of simplicity we will 

restrict our discussion to two treatment states: the treated state denoted by j = 1 and the 

untreated state denoted by j = 0. The corresponding potential individual outcomes in these 

two states are denoted by Y1 and Y0. We assume

(1)

where XO is a vector of observed random variables, XU is a vector of unobserved random 

variables, which are also believed to influence treatment selection (they are the unobserved 

confounders), and ϑ is an unobserved random variable that captures all remaining 

unobserved random variables.

Assumption 1—(XO, XU)∐ϑ and XO∐XU, where ∐ denotes statistical independence.
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We assume individuals choose to be in state 1 or 0 (prior to the realization of the outcome of 

interest) according to the following equation:

(2)

where Z is a (non-degenerate) vector of observed random variables (instruments) influencing 

the decision equation but not the potential outcome equations, μD is an unknown function of 

XO and Z, and UD is a random variable that captures XU and all remaining unobserved 

random variables influencing choice. By definition, UD∐ϑ, which also defines the 

distinction between XU and ϑ in equation (1). Equations (1) and (2) represent the 

nonparametric models that conform to Imbens and Angrist’s (1994) independence and 

monotonicity assumptions needed to interpret instrumental variable estimates in a model of 

heterogeneous returns (Vytlacil, 2002). As in Heckman and Vytlacil (1999, 2001, 2005), we 

can rewrite equation (2) as

(3)

where V = FUD|XO,Z[UD|xO, z], P(xO,z) = FUD|XO,Z[μD(xO, z)]. Therefore, for any arbitrary 

distribution of UD conditional on XO and Z, by definition, V ~ Unif[0, 1] conditional on XO 

and Z.

Assumption 2—Assume that (a) μD(xO, Z) is a non-degenerate random variable 

conditional on XO = xO; (b) (XU, ϑ, UD) are independent of Z conditional on XO = xO; (c) 

The distribution of UD conditional on (XO, Z) and that of μD(xO, Z) conditional on XO = xO 

are absolutely continuous with respect to the Lebesgue measure; (d) Y1 and Y0 have finite 

moments; and (e) Pr(D = 1) > 0.

An individual-level treatment effect is given as

(4)

Obviously, we never observe both the potential outcomes for each individual. Our observed 

outcome Y is given as

(5)

Therefore, the goal of the analysis is to obtain estimates of Y1 for subjects with D = 0 and of 

Y0 for subjects with D = 1. These outcomes are known as counterfactual outcomes as they 

represent the potential outcomes had the subjects chosen a different treatment from the one 

they have in practice. Differences in the counterfactual outcomes across individual subjects 

will depend on XO, XU and ϑ. Several individual-level treatment effect parameters can be 

defined that reflect these variations.

BASU Page 7

J Appl Econ (Chichester Engl). Author manuscript; available in PMC 2015 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.3. Treatment Effect Definitions

3.3.1. Individualized Expected Treatment Effect (IETE)—Since ϑ is typically not 

only unmeasured but also unknown (as otherwise it would have been used for treatment 

selection), the most precise IETE that one can hope for in terms of predictions is given by

(6)

Throughout this paper, we will denote IETE by ξ(xO, xU) and it will serve as a reference to 

which our proposed individual treatment effect parameter and other parameters will be 

compared. The typical population-level mean treatment effect parameters—average 

treatment effect (ATE), effect on the treated (TT) and effect on the untreated (TUT)—can be 

derived by appropriate aggregation of ξ(xO, xU)over the relevant subgroups.

Similarly

(7)

3.3.2. Conditional Average Treatment Effect (CATE)—Since XO are the only 

observed variables from the outcomes equation, a CATE (Heckman, 1997) can be formed, 

which is the average treatment effect conditioned on levels of XO only:

(8)

where the second equality follows from Assumption 1. We will denote CATE as ξ(xO). This 

is the treatment effect parameter that an ideal experiment can give where only XO are 

observed. Note that the outer expectation in CATE averages over the marginal distribution 

of XU. Although ATE can be obtained by trivial aggregation of CATEs over all individuals 

(as in equation (7)), aggregation of CATE over the treated or untreated individuals does not 

produce the TT or the TUT parameters respectively.

3.3.3. Marginal Treatment Effect (MTE)—The MTE is perhaps the most nuanced or 

individualized estimable effect (Heckman, 1997; Heckman and Vytlacil, 1999, 2001). It 

identifies an effect for an individual who is at the margin of choice such that one’s levels of 

XO and Z are just balanced by one’s level of V (which includes XU), i.e. P(xO, z) = v. MTE 

can be expressed as
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(9)

Note that, unlike CATE, the expectation in MTE averages over the conditional distribution 

of XU conditioned on meeting the definition for marginal patients. Heckman and Vytlacil 

(1999, 2001) have provided the weights needed to aggregate MTEs to form the mean 

treatment effect parameters. These weights need to be calculated from the data at hand.

3.3.4. Person-Centered Treatment Effect—Despite the granularity of MTEs, it may 

be hard to use MTEs directly as a representation of individual treatment effects as they 

themselves lack individual identity. This is because it is hard (if not impossible) to pinpoint 

an individual to whom an MTE estimate can be applied. Instead, another treatment effect 

parameter, which we call the person-centered treatment (PeT) effect (denoted by Δ), can be 

written as

(10)

where the expectation of unobserved confounders is made conditional on person-specific 

estimates of XO, P(Z) and D. Naturally, PeT effects are more nuanced than CATEs as the 

latter average ξ(xO, XU) over the entire marginal distribution of XU. Note that the PeT 

parameter was originally defined by Heckman and Vytlacil (1999). However, they use this 

parameter as a stepping stone for defining structurally stable mean effects on treated 

parameter whose definition does not depend on data (Y, X, Z). The PeT effect in equation 

(10) would take on different values corresponding to two values of Z = (z, z′), z ≠ z′, with (Y, 

X, D) being constant. However, this is exactly the variation we are after when we are 

envisioning PeT effects. The fact that two otherwise observably similar persons choose the 

same treatment under two values of Z informs us that their personalized treatment effects 

may be different.

Conceptually, a PeT effect is also a weighted version of MTEs. This is because an MTE is 

the treatment effect of a hypothetical individual who is at the margin of choice because their 

propensity to choose treatment based on X and Z is balanced by the propensity to select the 

alternative based on V. As the value of V is changed from this point, this person would either 

choose the treatment or the alternative. The PeT effect for a real individual is then the 

average of MTE, with the same X and Z levels as those for this real individual, over those 

values of V that corresponds to the real individual’s own treatment choice. Therefore, for 

any given individual, the PeT effects identify the specific margins where that individual may 

belong given its individual values of XO, P(Z) and D. It then averages the MTEs over those 

margins, but not all as in ATE. As we prove below, a PeT effect is basically the X–Z-

conditional effect on the treated (x–z-CTT) for persons undergoing treatment and is the X–Z-

conditional effect on the untreated (x–z-CTUT) for persons not undergoing treatment. 

Because conditioning is done based on identifiable individual-level characteristics, a PeT 

effect can be identified for each individual in the data.
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3.4. Uses of PeT Effects

All mean treatment effect parameters can be easily computed from the PeT effects without 

any further weighting. For example:

(11)

In fact, any policy parameter that shifts a certain subgroup of individuals, characterized by 

shifting the distribution of XO, to take up or give up treatment can be predicted. Therefore, 

these patient-centered treatment effects can form integral components for population-level 

decision making.

In the absence of identification of the joint distribution of potential outcomes, however, the 

marginal distribution of the PeT effect can be crucial for understanding individual-level 

decision making. The PeT effects can be used to more accurately comprehend individual-

level treatment effect heterogeneity that CATEs fail to convey. First, they may be better 

predictors of true treatment effects at the individual level both in terms of the positive 

predictive value (Pr(ξ(xO, xU) ≥ 0|Δ ≥ 0)) and the negative predictive value (Pr(ξ(xO, xU) < 0|

Δ < 0)) than the CATEs (we will study this using simulations). Second, PeT effects are more 

likely to explain a larger fraction of the individual-level variability in treatment effects than 

the CATEs. Both play a big role not only in identifying person characteristics to guide 

treatment allocations but also in guiding future research to focus on collection of relevant 

measures of XO and XU.

Naturally, in the absence of essential heterogeneity, the PeT effects converge to CATEs.

3.5. Identification of PeT Effects

Theorem 1—Consider the nonparametric selection and outcome models in equations (1) 

and (2). Under Assumptions 1 and 2:

provided that E(Y|XO, P = p) is continuously differentiable with respect to p for almost every 

xO.

Proof: The identification for PeT effects follows identification of MTEs (Heckman and 

Vytlacil, 1999, 2001, 2005) and is given in the Appendix.

However, while Heckman and Vytlacil (1999, 2001, 2005) are mainly concerned with 

average treatment effects in the population, we use their results to identify individualized 

expected treatment effects and their marginal distribution in the population.
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The PeT effects can be trivially aggregated over observed distribution of (XO, P(Z), D) in 

order to estimate mean treatment effect parameters such as the effect on the treated (TT), 

effect on the untreated (TUT) and the average treatment effect (ATE). These derivations are 

provided in Heckman and Vytlacil (1999).

3.6. Semiparametric Estimation

In order to avoid certain disadvantages of full nonparametric estimation of the models in 

equations (1) and (2), we propose a partially separable outcomes model as follows:

(12)

where μ(XO, XU, D) is an unknown nonlinear function of observable (XO) and unobservable 

(XU) characteristics and treatment indicator (D); ϑ is a purely random error term. 

Conditional on specific levels of XO and XU, idiosyncratic expected gains (or losses) from 

treatment over control is given by μ(xO, xU, D = 1; β) − μ(xO, xU, D = 0; β). These 

idiosyncratic gains or losses may vary either over observed characteristics XO or over 

unobserved characteristics XU or both, giving rise to treatment effect heterogeneity. The 

terms observable and unobservable pertain to the analyst’s perspective and these covariates 

enter the structural model symmetrically in determining potential outcomes (Mullahy, 

1997). We will refer to this formulation of the symmetric structural nonlinear model as the 

pure nonlinear model. It encompasses the broad categories of all parametric and 

semiparametric generalized linear models (McCullagh and Nelder, 1989) that include 

models for limited dependent variables.

In addition to the assumption of XO, XU∐ ϑ, XO∐ XU and that of Assumption 1, we make 

the following additional assumptions.

Assumption 3—E(μ(XO, XUD, β)|P = p, Z) = ϖ(XO, K(P); α) is continuously 

differentiable with respect to p, where K(P) is a nonlinear kernel for P.

Estimation of PeT effects proceeds in four steps:

1. An estimate P is constructed using a semiparametric regression of D on XO and Z 

(Das et al., 2003).

2. α is estimated using local polynomial approximation of ϖ(XO, K(P); α) over P 

(Robinson, 1988; Fan and Gijbels, 1996). Here, K(P) is represented by the 

polynomial approximation. Such approximation can be estimated using GMM 

estimators using the well-known quasi score equations (Wedderburn, 1974). For N 

individuals:

(13)

where i denotes individuals. α is estimated by solving Gα = O, yielding estimator 

α̂
N. Under mild regularity conditions, α̂N →P α as N → ∞ and (α̂N − α) is 

asymptotically normal with mean 0 and covariance matrix AN given by
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(14)

Replacing α by âN and  with  in equation (9) yields a 

sandwich estimator of the variance–covariance of âN (Huber, 1972; Liang and 

Zeger, 1986).

1 Obtain estimates for MTE following Assumption (2):

(15)

1 Construct PeT effects for each individual as Δ̂(xO, p, D) = I(D = 1) · EV|D*=1 

(MT ̂E(xO, V)) + I(D = 0) · EV|D*=0 (MT̂E(xO, V))

where5

(16)

The proof follows directly realizing that V~Unif[0,1].

Variance estimates for PeT effects at the individual level can be readily obtained by 

bootstrap, which is in line with obtaining variance estimates of CATEs. For each replicate of 

the bootstrap with-replacement sample, the average effect for each person is saved. In any 

given replicate, only those persons who are sampled would have an estimate. However, 

multiple bootstrap replicates should be able to cover all individuals. The required total 

number of bootstrap replicates can be determined by monitoring the minimum number of 

times each individual is sampled across replicate datasets.

We used an extensive set of Monte Carlo simulations to demonstrate the consistency of the 

PeT estimators in finite samples, where we study the effects of a binary treatment variable 

on three different types of outcomes. First is a typical normally distributed outcome. Second 

is a binary outcome and the third is a count data outcome. These results are presented in an 

online Appendix as supporting information. The simulations present strong evidence that the 

PeT estimates can provide consistent and nuanced individual-level treatment effects in 

observational data.

4. DISTRIBUTIONAL IMPACTS OF PROSTATE CANCER TREATMENTS ON 

7-YEAR COSTS AND SURVIVAL

4.1. Background

We study the distributional effects of alternative treatment modalities on health and 

economic outcomes in PCa patients using PeT effects. Note that although this empirical 

5We thank James Heckman and Philipp Eisenhauer for suggesting this approach to numerical computation.
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example is set to look at an evaluation in healthcare, the methods employed have broad 

applicability to a wide variety of evaluations across many different fields.

4.2. Data

Our data come from the 1995–2009 SEER–Medicare linked dataset. SEER is an 

epidemiologic surveillance system consisting of population-based tumor registries designed 

to track cancer incidence and survival in the USA. The SEER–Medicare data links claims 

for health services collected by Medicare for its beneficiaries to the SEER registry (Cooper 

et al., 2002; Viring et al., 2002). We extracted data for patients of age 66 years or older and 

who were diagnosed with PCa between 1995 and 2002. The data contain zip codes for 

patient residences which were used to link to hospital referral regions (HRR) identifiers and 

HRR–year-specific characteristics based on Dartmouth Atlas data.6 We used the linked 

claims data from these patients for up to December 2009 or their death if that occurred 

before December 2009. We have 7 years’ follow-up data for everyone in our sample. The 

key variables in our sample are categorized as (a) outcomes variables (Y); treatment (D); 

independent risk factors (XO); instrumental variable (Z). These categories are common to 

any type of evaluation analysis:

(a) Outcome variables. We look at two outcomes. On the benefits side we use a 

binary indicator for 7-year overall survival. On the costs side we use the total 

undiscounted 7-year expenditures on healthcare expressed in 2009 dollars. 

Expenditures accumulate over all types of medical costs reimbursed by 

Medicare or a third-party payer and patients’ out-of-pocket costs.

(b) Treatment (D). Comparison is made between the use of surgery (without any 

form of radiation of hormone therapy) in the first 6 months of diagnosis versus 

active surveillance that is defined as no use of surgery, hormone therapy or 

radiation in the first 6 months of diagnosis, along with at least two PSA tests 

within the first year of diagnosis. Treatment indicator takes a value of one for 

surgery.

An indicator of surgery is likely to be endogenous for three reasons: True severity of cancer 

is unobserved as we only have data on the cross-sectional characteristics of the tumor at 

diagnosis, but not how the tumor is growing or prostate-specific antigen (PSA) levels (used 

to detect PCa) is rising. Higher severity may be positively correlated with surgery receipt 

and also negatively correlated with survival, but positively correlated with costs.7 These 

correlations render the naïve effects on surgery to be biased downward and that on costs to 

be biased upward. Second, general frailties of the patients are unobserved, which again 

would follow the same correlations as tumor severity.8 Third, the psychological anxiety of 

being diagnosed with cancer would be positively correlated with both surgery receipt and 

costs and utilizations. Its correlation with survival remains ambiguous.

6http://www.dartmouthatlas.org/
7Decreased survival within a fixed window of time is usually associated with higher costs due to expenditure spikes at the end of life 
(Brown et al., 2002).
8Although one may expect that higher frailty would be negatively correlated with surgery, our first-stage regression shows that 
patients with a higher number of hospitalizations and more comorbidities are more likely to have surgery.
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(c) Independent risk factors (XO). These include clinical stage and grade of cancer 

for patients at diagnosis using standard definitions (Meltzer et al., 2001), 

demographics, indicator for metropolitan area, Elixhauser comorbidity indices 

based on hospitalization in year preceding diagnosis, year and state fixed effects, 

zip-code level area characteristics on racial makeup, density and education 

levels. We also adjust for HRR-level characteristics using logged versions of 

population size, and per 100,000 patients’ supply of hospital beds, physicians, 

specialists and urologists.

(d) Instrumental variable (Z). We use HRR-specific rates of active surveillance in 

PCa patients in the year prior to the diagnosis of a patient. Such an instrument 

has been used in the past in the context of PCa (Hadley et al., 2010); however, 

concerns exist about the contamination in area-level variations that would 

violate the exclusion restriction for two reasons: first, such variations may be 

correlated with variations in case-mix of patients; second, contamination may 

exist due to productivity spillovers that make areas with more efficient 

deliveries of treatments correlated with higher rates of treatment (Chandra and 

Staiger, 2007). We try to address both of these concerns and mitigate the effect 

of such contaminations on the IV. In order to address the first concern, we 

control for many concurrent area-level fixed effects and variations, as mentioned 

above. Contamination due to productivity spillovers (Chandra and Staiger, 

2007) are directly controlled by adjusting for the number of urologists per 

capita, as the urologists are the main specialists delivering surgery for PCa 

patients. We study the properties of our IV after controlling for these factors and 

believe that it meets the requirements for a valid and strong instrumental 

variable.

4.3. Methods

We study the strength of the IV in a logistic model for surgery along with all other 

independent risk factors. To explore plausible contamination in the IV due to patient-level 

characteristics, we run a separate logistic model for treatment with only the IV as a 

regressor. We then compare the imbalance in the patient-level independent risk factors 

across treatment categories with the imbalance in the same across the median of the IV-only 

predicted propensity to choose surgery. A valid IV would necessarily appear to reduce such 

imbalances. We explore these comparisons mainly for individual-level demographic and 

illness severity factors after converting them to their respective z-scores.

Next, MTEs and PeT effects are estimated using standard LIV methods described in our 

estimation and simulation sections. For the binary survival outcome we use a logistic 

regression. For the expenditure outcome, we use a semiparametric generalized linear model 

with log link and Gamma variance. Various goodness-of-fit tests were employed to ensure 

good model fit to these data. We study both the mean treatment effect parameters and also 

the joint distribution of PeT effects across survival and costs and the implications of such 

distributions for treatment choices.
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4.4. Results and Discussion

Our final analytic sample consists of 13,495 patients, of whom 9913 (73.5%) received 

surgery. As is evident from the first-stage regression results in Table I, the likelihood of 

receiving surgery increases with ages younger and older than 74 years, T1 stage, advancing 

grade and increased number of hospitalization in previous year. The instrumental variable 

was found to be strongly predictive of surgery receipt conditional on other factors (F-

statistic: 10.9, p < 0.0001).

Figure 1 illustrates that the IV may be particularly suitable in reducing residual confounding 

in this application since it is able to reduce imbalance in observed factors considerably.9 The 

identified support of the IV-based predicted propensity score (PS) ranges from 0.07 to 

0.995.

Polynomials of propensity scores were not found to be significant in either of the LIV 

models. The final models for either outcomes contained covariates, interaction of covariates 

with PS and PS.10 This indicates that essential heterogeneity is small for these outcomes.11 

This is presumably because we capture a very rich array of observed factors and estimate 

significant treatment effect heterogeneity across those factors. In essence, in this application 

PeT effects become similar to CATEs, where conditioning is done on the entire vector of 

observed factors. The mean treatment effect estimates are given in Table II. The average 

treatment effect was estimated to be −$30,056 and 7.4% points for costs and survival 

respectively, which were not significant. The average survival effects, although not 

significant, indicates the potential for substantial benefits of surgery over AS in this 

population, which are in stark contrast to the results from the largest and only randomized 

trial comparing these two treatments that was conducted on patients diagnosed with PCa 

about a quarter century ago (Holmberg et al., 2002).

Figure 2 illustrates the joint distribution of PeT effects for 7-year survival and costs in an 

incremental cost-effectiveness plane where the x-axis represents PeT effects on survival and 

the y-axis the PeT effects on costs. Each dot on the plane represents a patient. The size of the 

treatment effect marker for each patient is driven by the z-score of their respective treatment 

effect. Patients with more significant effects have larger markers. The correlation between 

estimated PeT effects on costs and survival was small: 0.03 (95% CI: −0.20, 0.25). Only 

21% of patients were found to have negative incremental survival from surgery. Surgery 

was found to be a dominant treatment in 61% of patients (southeast quadrant of graph) as it 

incurs lower costs and increased survival.

There is little evidence of positive self-selection in practice. Surgery rates were 74% among 

patients for whom surgery produces negative effects versus 73% among those who would 

benefit from surgery. This is reflected in the estimates for the effect on the treated (TT) and 

untreated (TUT) (Table II). Both TT and TUT are identical to ATE and neither reach 

9An LPM version of the IV model rejects under-identification of the IV (p < 0.0001) and passes the weak identification test based on 
its F-statistic.
10The models passed all goodness-of-fit tests. No systematic biases were detected from residual analyses.
11Note that since we use nonlinear models absence of polynomial of PS does not mean absence of essential heterogeneity in the 
additive scale, which is our scale of interest.
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statistical significance for costs or survival. This indicates that although allocation of surgery 

varied across various patient-level characteristics, patients receiving surgery are not 

benefiting more on average than if everyone were to receive surgery.

The heterogeneity of treatment effects illustrated in Figure 2, however, indicates that there 

may be much room for improvement. In a hypothetical world of perfect selection (Meltzer et 

al., 2003), where patients who would get hurt by surgery are removed from being eligible 

for comparing these two modalities of treatment, the ATE and TT of surgery would climb to 

12.6% points (95% CI: 2.5, 37.0) and 12.7% pt (95% CI: 1.5, 40.5) respectively for 7-year 

survival (Table II). These estimates can also be used to establish the value of a more targeted 

approach to treatment allocation in terms of survival. However, compared to the ATE and 

TT estimates without selection, the ATE and TT estimates with perfect selection indicate 

only modest cost savings and better survival (Table II), which do not reach statistical 

significance.

Since survival outcomes are revealed several years after treatment, it is expected that any 

learning process would be slow. However, based on these data it is challenging to infer that 

choices are suboptimal or that clinicians are not learning from their experiences from 

treating multiple patients. This is because there may be other dimensions of outcomes, such 

as quality-of-life impacts of treatments on which treatment choices are being made that are 

not captured here but are important for evaluating PCa treatments.

5. CONCLUSIONS

This paper interprets a treatment effect parameter, originally defined by Heckman and 

Vytlacil (1999), to represent PeT effects. Heckman and Vytlacil (1999) use this parameter to 

establish the relationship between mean treatment effect parameters such as LATE, ATE, 

TT and TUT with the MTE parameter but do not use it further. A PeT effect is derived as an 

alternative weighting of MTEs and is shown to represent individualized treatment effects 

that not only condition on the individual’s observed characteristics but also average over a 

conditional distribution of unobserved characteristics (in contrast to their marginal 

distributions as in CATEs) that condition on treatment choice made by an individual and the 

circumstances under which that choice was made. The paper presents the theory behind PeT 

and proposes semiparametric estimators to estimate PeT effects using instrumental variables.

The introduction of PeT effects and its role in identifying treatment effect heterogeneity line 

up well with the political economy of healthcare evaluations. Despite the age-old practice of 

evaluating healthcare technologies using randomized trials and more recently with 

observational data that were used to estimate average treatment effects (and often local 

average effects), the Affordable Care Act of 2010 specifically asked for production of 

estimates at a more nuanced and individualized level. It created a Patient Centered 

Outcomes Research Institute (PCORI) as an independent, non-profit research organization to 

conduct research to provide information about the best available evidence to help patients 

and their healthcare providers make more informed decisions. Its mission is to help people 

make informed healthcare decisions – and to improve health care delivery and outcomes –by 

producing and promoting high-integrity, evidence-based information – that comes from 
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research guided by patients, caregivers and the broader healthcare community (PCORI 

Mission Statement, 2011). PCORI is positioned to be one of the largest funders of outcomes 

research in the USA in the coming years and has so far asserted that one of the primary 

focus in patient-centered outcomes research (PCOR) should be answering the question for 

patients: ‘Given my personal characteristics, conditions and preferences, what should I 

expect will happen to me?’

While CATEs can provide answers to these questions, estimating CATEs directly based on 

multiple observed covariates can be tricky. In contrast, PeT effects can serve as outcomes 

that can be used to develop predictive algorithms for CATEs based on combinations of 

patient and other observed characteristics in the data. Such an approach would be most 

valuable for allocating category II and III treatments, as defined by Chandra and Skinner 

(2011), since uncertainties in their comparative effectiveness either precludes them from 

access in some settings or facilitates rapid adoption that leads to welfare loss. Furthermore, 

since PeT effects allow for estimating more nuanced individual treatment effects, 

understanding the difference in variance between PeT effects and CATEs can help establish 

the value of future research that can identify factors relevant for treatment effect 

heterogeneity that are not collected in the current databases (Basu and Meltzer, 2007).

Our application of these methods to evaluating PCa treatments revealed the empirical 

distribution of individual-level treatment effects on 7-year overall survival and costs. We are 

unaware of any clinical or social science study that has revealed such nuanced treatment 

effects for this population. Almost all of this research had focused on estimating average 

effects. Nevertheless, our previous discussions with PCa survivors reveal that there is a 

strong demand for information on the side effects of treatments and the impact of treatments 

on survival that are more suited to their own characteristics, since that would enable them to 

apply their own preferences to these outcomes and more accurately weigh the benefits and 

risks of alternative PCa treatments. We believe that this can be better achieved by using PeT 

effects rather than large subgroup-specific CATEs as are typically studied in clinical trials. 

Table III highlights the limitations of these CATEs and presents the estimated CATEs by 

averaging the PeT effects within specific subgroups. There appears to be some variability of 

CATEs across these broad subgroups but none reach statistical significance. These results, 

especially the effects on survival, align well with the CATEs reported in the recent PIVOT 

trial (Wilt et al., 2012).12 However, the proportion of variance in PETs that is explained by 

each of these subgroup-specific CATEs is quite small, implying that it would be hard to 

achieve true individualization of care based on such broad subgroup analyses.

The PeT effects can help in establishing algorithms that take into account multiple factors 

simultaneously in order to explore the dimensions (factors) along which treatment selections 

are efficient (i.e. they conform to gains) and where they are inefficient (i.e. they conform to 

losses). In our analyses, compared to patients for whom survival effects are significantly 

positive (at the 10% level), patients with significant negative survival effects with surgery 

had significantly higher rates of cancer with well grade, higher number of pre-period 

hospitalization and higher rates of every comorbidity listed in Table I except for peripheral 

12The only difference was that surgery was found to have a negative effect on survival compared to AS among blacks in our analysis.
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vascular disease. Future work can refine and validate these prediction algorithms for 

treatment effects using split-sample analyses.

In summary, PeT effects can serve as a useful treatment concept for a variety of evaluations 

both at the policy and at the individual level.
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APPENDIX

Theorem 2

Consider the nonparametric selection and outcome models in equations (1) and (2). Under 

Assumption 1 and 2:
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provided that EY|XO,P(Y|xOp) is continuously differentiable with respect to p for almost every 

xO.

Proof

The identification for PeT effects follows identification of MTEs. Assumptions 1(a) and (c) 

ensure that P is a nondegenerate, continuously distributed random variable conditional on 

XO. Assumption 2(d) is needed to ensure that the expectations considered are finite. First, 

following Heckman and Vytlacil (1999, 2001, 2005), the marginal treatment effect is 

identified as

where the second to last equality comes from the fact that V is uniformly distributed on [0,1] 

conditional on XO and Z. Therefore, differentiating both sides with respect to p, we have

(17)

It then follows that

(18)

Similarly, the conditional effect on the untreated (CTUT) is obtained by integrating MTEs 

over values of V that are greater than p.
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Figure 1. 
Covariate imbalance across treatments versus across instrumental variable.
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Figure 2. 
Distribution of PeT effects on survival and costs, differentially illustrated by significance.
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Table I

First-stage results from logistic regression on surgery indicator

Covariate Logit coefficient (SE) [z-statistic]

IV

ivrate_activesurv −1.496 (0.5) [−3.02]++

DEMOGRAPHICS

Age (centered at 74) −0.176 (0.01) [−30.95]++

Age^2 0.0124 (0) [17.89]++

T1-stage (Ref: T2) 1.05 (0.05) [22.11]++

Grade – Well (Ref: Undetermined) 1.402 (0.14) [9.67]++

Grade – Moderate 1.424 (0.13) [11.04]++

Grade – Poor 2.261 (0.14) [16.14]++

White (Ref: Other) −0.425 (0.15) [−2.76]++

Black −0.347 (0.19) [−1.82]+

Hispanic −0.089 (0.23) [−0.39]

Metropolitan area of residence −0.052 (0.09) [−0.58]

ILLNESS SEVERITY

1 hospitalization last year (Ref: No hosp) 0.283 (0.09) [3.02]++

2 hospitalizations last year 0.288 (0.15) [1.87]+

>2 hospitalizations last year 0.545 (0.21) [2.6]++

Congestive heart failure 0.338 (0.21) [1.59]

Valvular disease −0.113 (0.23) [−0.48]

Peripheral vascular disease 0.02 (0.21) [0.1]

Paralysis 0.638 (0.34) [1.89]+

Other neurological disorders −0.22 (0.23) [−0.97]

Chronic lung disease 0.13 (0.14) [0.9]

Diabetes 0.05 (0.16) [0.32]

Diabetes with chronic complications 0.226 (0.36) [0.63]

Hypothyroidism 0.232 (0.26) [0.88]

Obesity −0.03 (0.36) [−0.08]

Fluid and electrolyte disorders 0.136 (0.15) [0.88]

Deficiency anemias 0.258 (0.2) [1.28]

Alcohol abuse 0.116 (0.35) [0.34]

Depression 0.167 (0.31) [0.54]

Hypertension with complications −0.053 (0.11) [−0.48]

ZIPCODE-LEVEL 2000 CENSUS XTICS YES

YEAR FIXED EFFECTS YES

STATE FIXED EFFECTS YES

HRR-SPECIFIC XTICS YES

+
p-val. < 0.10;
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++
p-val. < 0.05.
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Table II

Mean treatment effects based on estimated PeT effects (surgery versus active surveillance)

Effect
7-year costs, 2009 $

Mean (95% CIa)
7-year surv. pr., %pt

Mean (95% CIa)

Average treatment effect (ATE) −30,056 (−115,807, 19,355) 7.4 (−17.7, 40.2)

Effect on the treated (TT) −28,191 (−115,877, 20,451) 7.4 (−17.1, 43.2)

Effect on the UNTREATED (TUT) −35,255 (−109,419, 16,543) 7.4 (−19.3, 30.8)

TT – TUT 7064 (−8,969, 15,340) 0.01 (−5.8, 13.3)

With perfect selection on survival PeTs

Average treatment effect −30,641 (−119,640, 22,116) 12.6 (2.5, 37.0)

Effect on the treated −28,332 (−119,927, 22,859) 12.7 (1.5, 40.5)

Effect on the untreated −28,332 (−117,645, 17,882) 12.4 (5.1, 26.7)

Gains with perfect selection

ATE(Sel) – ATE −585 (−14,394, 4,885) 5.2 (−3.4, 23.3)

TT(Sel) – TT −141 (−14,035, 5,475) 5.3 (−3.0, 21.9)

Note: Bold face indicates exclusion of zero from 95% CI.

a
95% CI based on bias-corrected estimates from 1000 bootstrap replicates.
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Table III

Subgroup-specific CATEs

7-year costs, 2009 $

% of PET variance explained

7-year surv. pr., %pt

% of PET variance explainedMean (95% CIa) Mean (95% CIa)

Age

66–69 years −12873 (35,572) 8.8 (16.0)

70–74 years −25850 (35,589) 8.7 (14.8)

75–79 years −43,728 (36,900) 7.1 (14.7)

80+ years −52,643 (39,996) 15% 2.9 (16.2) 2%

Race

White −32,325 (35,866) 8.6 (15.0)

Black −10,707 (35,928) −7.7 (15.8)

Other −27,306 (45,487) 3% 13.1 (17.9) 10%

Stage

T1 −48,783 (49,120) 8.0 (17.0)

T2 −13,266 (24,383) 21% 6.8 (13.5) 0.1%

Grade

Well −39,434 (41,627) 1.9 (16.4)

Moderate −29,565 (34,120) 6.3 (14.0)

Poor −24,563 (43,029) 12.4 (20.2)

Undetermined −50,155 (45,959) 2% 20.5 (14.8) 6%

No. of comorbidities

0 −23,975 (33,157) 9.9 (15.0)

1 −25,738 (33,9998) 9.4 (15.0)

>1 −33,261 (36,847) 1% 6.1 (14.9) 1%

Note: Bold face indicates exclusion of zero from 95% CI.

a
95% CI based on bias-corrected estimates from 1000 bootstrap replicates.
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