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Abstract

Depicting the spatial distribution of wildlife species is an important first step in

developing management and conservation programs for particular species.

Accurate representation of a species distribution is important for predicting the

effects of climate change, land-use change, management activities, disease, and

other landscape-level processes on wildlife populations. We developed models

to estimate the spatial distribution of little brown bat (Myotis lucifugus) winter-

ing populations in the United States east of the 100th meridian, based on

known hibernacula locations. From this data, we developed several scenarios of

wintering population counts per county that incorporated uncertainty in the

spatial distribution of the hibernacula as well as uncertainty in the size of the

current little brown bat population. We assessed the variability in our results

resulting from effects of uncertainty. Despite considerable uncertainty in the

known locations of overwintering little brown bats in the eastern United States,

we believe that models accurately depicting the effects of the uncertainty are

useful for making management decisions as these models are a coherent organi-

zation of the best available information.

Introduction

Management and conservation of wildlife species requires

accurate information on the spatial distribution of a spe-

cies in order to identify habitats important for sustaining

populations (Thogmartin and Knutson 2007; Guisan et al.

2013). However, obtaining accurate information on spa-

tial distributions of wildlife species is often difficult par-

ticularly for species such as bats that range widely across

a variety of habitats (Kunz and Fenton 2003; Altringham

2011). In general, the process of mapping a species distri-

bution requires knowledge of the ecological process gen-

erating the observed distribution, a statistical model that

includes important predictor variables and determines the

structure of the estimated error, and a data stream, usu-

ally consisting of records of species presence and/or

absence (Austin 2002; Fitzgerald et al. 2008; Elith and

Leathwick 2009). Species distribution models (SDM), like

all models, include varying amounts of error including

deficiencies in the observations, such as misidentification

of species, inaccurate geographic locations, lack of infor-

mation on true absences, and a lack of knowledge regard-

ing the ecological process that is generating the

observations (Barry and Elith 2006; Laurent et al. 2010).

By accurately portraying uncertainty in the state of

knowledge surrounding the predicted population distribu-

tion of wildlife, decision makers can proceed with an

informed decision that accounts for this uncertainty

(Harwood and Stokes 2003). However, the quantification

and portrayal of uncertainty in species distribution

modeling is often neglected.

Estimating the spatial distribution of the wintering

population of bats is particularly subject to uncertainty

because of the difficulty in conducting systematic surveys

for overwintering sites and estimating the size of the

overwintering population. Without systematic surveys,

our ability to estimate the number of undetected but

occupied hibernacula is limited because no quantitative
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estimates of detection probabilities exist. As recently as

2012, a new hibernaculum containing tens of thousands

of bats, including the endangered Indiana myotis bat

(Myotis sodalis), was discovered in Missouri (USFWS

2013), indicating that our current knowledge of hiberna-

cula is incomplete. Once discovered, the size of the bat

population inside the hibernaculum is also difficult to

estimate. Observers are limited by time, because staying

in the cave for long periods rouses the bats (Kunz et al.

1996), and are constrained to accessible parts of the cave,

often leaving areas deeper in the cave unsurveyed. Addi-

tionally, bats in hibernacula are often packed close

together and/or overlapping each other, making visual

counts difficult (Kunz et al. 1996). Lastly, identifying

individual species in mixed species hibernacula can be

difficult.

Currently, bat populations are experiencing popula-

tion-level changes from a variety of threats including

white-nose syndrome (WNS) (Frick et al. 2010; Dzal

et al. 2011; and Foley et al. 2011) and wind energy devel-

opment (Kunz et al. 2007; Arnett et al. 2008; Arnett and

Baerwald 2013). Declines in bat populations not only rep-

resent a loss of biodiversity but also affect the ecosystem

services bats provide (L�opez-Hoffman et al. 2014). For

example, insectivorous bats provide natural pest control

by consuming large volumes of insects, seed- and pollen-

eating bats assist with plant reproduction by dispersing

seeds and pollen, and bats redistribute nutrients through

the production of guano (Kunz et al. 2011). The eco-

nomic loss of ecosystem services from reductions in bat

populations caused by WNS has been estimated at

$3.7 billion per year (Boyles et al. 2011). Despite these

important services, much remains unknown regarding bat

populations, including estimates of bat abundance, distri-

butions of bat species, and locations of overwintering

hibernacula.

Little brown bats (M. lucifugus) are cave-dwelling bats

that are distributed widely throughout the United States.

In the eastern United States, little brown bats primarily

overwinter in caves and mines (Fenton and Barclay 1980)

unlike other species of bats such as big brown (Eptesicus

fuscus) (Whitaker and Gummer 1992). White-nose syn-

drome is a disease of cave-dwelling bats caused by the

fungus Pseudogymnoascus destructans (Blehert et al. 2009)

that was first discovered in 2006 in a cave in upstate New

York (Hefferman 2014). Surveillance indicates the disease

has reached as far west as Missouri, as far south as central

South Carolina and northern Alabama, and as far north

as the Canadian Provinces of Nova Scotia, New Bruns-

wick, Ontario and Quebec (Hefferman 2014).

Research indicates little brown bats are particularly sus-

ceptible to the effects of WNS, likely due to their propen-

sity for overwintering colonially, and populations in the

northeastern United States have undergone recent declines

attributed to the disease (Frick et al. 2010; Brooks 2011;

Dzal et al. 2011). Precise estimates of little brown bat

population sizes are nonexistent; however, Frick et al.

(2010) estimated little brown bat populations at 6.5 mil-

lion pre-WNS with an average of 75% population

declines at affected hibernacula. To assess the current sta-

tus of the little brown bats in light of WNS and other

environmental stressors, we developed a model of little

brown bat wintering population size and spatial distribu-

tion that captures the uncertainty in our current state of

knowledge.

We used information solicited from state agencies on

known hibernacula locations to develop models estimat-

ing the number of little brown bat hibernacula per county

for the United States east of the 100th meridian. We

quantified the uncertainty associated with this process by

simulating multiple realizations of the model assuming

different population sizes and assessing the variability

between the outcomes. Output from this model can be

used as a basis for developing conservation and manage-

ment strategies for little brown bats, and the modeling

process, we describe is applicable to a wide variety of spe-

cies with sparse information available on their current

distributions.

Methods

Data source and parameterization

We conducted an email survey of state biologists located

east of the 100th meridian in the United States, for infor-

mation on known wintering locations of little brown bats.

U.S. state agency biologists were requested to provide

information on the location of known hibernacula, the

number of bats wintering in the hibernacula, and whether

WNS had been documented in the hibernacula. States

returned information on all hibernacula where little

brown bats had been recorded historically, including

those where WNS had severely reduced or eliminated

bats. Nonresponses or uncertainty in the answers from

the email surveys led to follow-up telephone surveys.

We considered biologist estimates of the number of

hibernacula per county as minimum counts. We used the

estimated counts by county to develop a predictive model

of hibernacula counts using spatial and environmental co-

variates. Specifically, we modeled the observed counts as

Poisson random variables yi ~ Pois(ki), where y was the

observed counts. Counts were modeled as a function of

covariates including the percentage of karst coverage (To-

bin and Weary 2004), forest coverage (Xian et al. 2009),

an offset term log(A), where A was the area of the

county, and Latitudinal and Longitudinal coordinates of
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the county centroids. Modeling was conducted in a

Bayesian framework with WinBUGS (Lunn et al. 2000)

and R2WinBUGS (Sturtz et al. 2005). Priors for the inter-

cept term, a, and regression coefficients, b, were normally

distributed random variables; N(l, s), with mean (l) of 0
and precision (s) of 0.001 (Note, s = 1/r2, where r is the

variance). The response variable was related to the covari-

ates with the equation: log(k) = a + log(A) + bX, where
X was a matrix of covariate values, b was a vector of co-

variate parameters, and a was the intercept. We ran 4

candidate models: an intercept-only model (a model of

homogeneous spatial distribution), a model with percent-

age of forest and karst per county, a model with latitude

and longitude, and a model with both spatial and envi-

ronmental variables. We used an information-theoretic

approach to model selection using DIC (Spiegelhalter

et al. 2002) to select the best model (lowest DIC

score = the best fit); this best model provided us with an

estimate of the number of hibernacula per county that

was used in subsequent steps.

Model predictions and uncertainty
quantification

Once we generated estimates of hibernacula counts per

county, we then estimated the size of each hibernaculum

using a power-law scaling function developed for Indiana

bats. Thogmartin and McKann (2014) described a power-

law relation between the frequency of wintering popula-

tions, f(n), for the congeneric Indiana bat (M. sodalis)

and the size, n, of those wintering populations. This rela-

tionship was f(n) � n�0.44. When the logarithm of this

function was calculated, the scaling exponent was coinci-

dent with a metabolically defined ¾-power law (West

et al. 1997; Brown et al. 2004; Sibly et al. 2012). We

assumed a similar power law applied to the size-frequency

distribution of little brown bats for determining the num-

ber of wintering populations of various sizes. We used a

priori information that Tennessee and Kentucky con-

tained smaller hibernacula than northern states within the

little brown bat distribution, by drawing random esti-

mates from the distribution of hibernacula sizes below

35,000 bats. This process was simulated 1000 times to

generate estimates of the mean number of bats in each

county, and provided estimates of little brown bat popu-

lations pre-WNS.

Finally, to generate estimates of current bat populations

(post-WNS), we relied on expert judgment to develop

estimates of the current little brown bat population size

and the relevant quantiles (Burgman 2005, Kuhnert et al.

2010). Using standard elicitation protocols (Kahneman

et al. 1982, Morgan and Henrion 1990; O’Hagan et al.

2006), we requested that 16 species experts provide

an answer to the following question, “What is your best

estimate of the current annual little brown bat population

size for the continental US east of the 100th meridian?”

(see Szymanski 2013 for details on the expert solicitation

process). Additionally, participants were provided with a

map and asked to designate “a rough boundary that con-

tains 80% of the current (2012) eastern little brown bat

population” (taking the effects of WNS into account).

Experts were invited to review and discuss their responses

with other participants prior to recording their final

opinions.

The final core area was determined by taking the aver-

age of the expert’s estimates of the boundary lines drawn

in response to the above question. On the basis of the

experts’ opinions, we separated counties into two catego-

ries, “within the core area” of current little brown bat

populations and “outside the core area”. We randomly

reordered the counties, and then selected the counties

according to their randomized order until the target pop-

ulation size (the target population size is either the mean,

median, lower or upper quantile of the expert’s estimates)

was reached. For the “within core area”, we stopped

selecting counties when we reached 80% of the target

population size. For the category “outside the core area”,

we stopped selecting counties when we reached 20% of

target population size. We repeated this process 1000

times for each of 4 expert-estimated population sizes

(mean, median, upper and lower quantiles from expert

opinions).

Results

Hibernacula information

We received information on 1788 hibernacula located in

18 states: Arkansas, Connecticut, Iowa, Illinois, Indiana,

Kentucky, Massachusetts, Maryland, Maine, Michigan,

Table 1. Mean, standard deviation, lower credible interval (LCL),

upper credible interval (UCL), and R̂ (a measure of fit) for standard-

ized parameter estimates from Poisson models of hibernacula counts

by county.

Parameters Mean SD LCL Median UCL R̂

Forest 1.56 0.27 1.03 1.55 2.09 1.00

Karst �0.16 0.14 �0.43 �0.16 0.11 1.00

Longitude 0.21 0.04 0.12 0.21 0.29 1.00

Latitude 0.16 0.06 0.05 0.16 0.28 1.00

Longitude 9

Longitude

0.06 0.04 �0.03 0.06 0.14 1.00

Latitude 9

Latitude

�0.40 0.05 �0.50 �0.40 �0.30 1.00

Intercept �6.74 0.19 �7.13 �6.74 �6.38 1.00
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Minnesota, New Jersey, New York, Ohio, Tennessee,

Virginia, Vermont, and Wisconsin. No little brown bat

hibernacula were reported for Alabama, Delaware, Florida,

Georgia, Kansas, Louisiana, and Mississippi. Information

on hibernacula was provided in various forms by different

states including estimates by county, estimates for the

state, or general descriptions of the distribution (i.e., ~100
hibernacula in the northwest section of the state).

The best model of hibernacula counts was the full

model with percent forest, percent karst, and linear and

quadratic relationships between latitude and longitude.

Parameter estimates indicated that the percentage of for-

est in a county was positively related to the number of

hibernacula (Table 1), while the percentage of karst in a

county had an ambiguous relationship with the number

of hibernacula (i.e., the credible interval of the parameter

estimate included zero). There was also a spatial trend

indicating increasing numbers of hibernacula in the east-

ern versus western portion of the range (a positive

parameter estimate for latitude) and a quadratic trend in

longitude with a peak in the center of the north–south
range. The mean estimated number of hibernacula from

(A)

(B)

Figure 1. (A) Estimated number of

hibernacula per county for the mean

population size, (B) difference between the

estimated number of hibernacula for the upper

and lower quartile populations sizes.
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the Poisson model was 4061 (median = 4053, [95% Cred-

ible Interval 3616–4539]) (Fig. 1A). The average coeffi-

cient of variation by county for the estimated number of

hibernacula was ~13%. The states with the highest num-

ber of estimated hibernacula were Kentucky, Missouri,

and Illinois. The sum of the total number of hibernacula

estimated for each county assuming a mean population

estimate was 444, 345, and 301 for Kentucky, Missouri,

and Illinois, respectively. The states with the largest differ-

ence between the number of hibernacula estimates given

the population size was 6.5 million (the upper quantile)

versus 2.5 million (the lower quantile) were Missouri, Illi-

nois, and Arkansas, with a difference of 170, 155, and

136, respectively (Fig. 1B).

Results from 1000 different draws for the 4061 hiberna-

cula from the size distribution of hibernacula (Fig. 2)

indicated a mean estimated total population of bats pre-

WNS of 8,136,854 bats (median = 7,991,403, [95% Credi-

ble Interval 5,450,737–11,127,397]) (Fig 3A and B). The

average coefficient of variation per county in the esti-

mated number of bats was ~110%. For the current distri-

bution of little brown bats, 11 species experts provided

estimates of current population size and population dis-

tribution of little brown bats in the eastern United States.

The mean population size estimated by the experts was

5.5 million surviving little brown bats in 2012

(median = 4 million, 25th percentile = 2.5 million, 75th

percentile = 6 million). The experts estimated the core

population (where 80% of the population remained) of

current little brown bats to be in the upper Midwest

region (Fig. 4). Hibernacula count estimates per county

were made under different assumptions of population size

(4 million, 5.5 million, 2.5 million, and 6 million). The

assumed population size resulted in considerable within

scenario variation in the estimated number of hibernacula

and estimated number of bats in each county (Table 2).

Discussion

When making decisions regarding wildlife management

and conservation, baseline information regarding “how

many” and “where are they” is often lacking for wildlife

species (Guisan et al. 2013). Obtaining accurate estimates

of the spatial distribution of a wildlife species is often not

possible in the face of rapidly changing environmental

conditions resulting from disease, fire, human develop-

ment, or other large-scale disturbances. Species distribu-

tion models are essential for providing guidance

regarding the abundance and location of wildlife, how-

ever, overconfidence in the results of these models can

lead to erroneous decisions. Accurate representation of

uncertainty is necessary to provide policy makers with a

broader understanding of the current state of knowledge.

By providing a description of the uncertainty associated

with the prediction process, decision makers can quantify

how robust their decisions are in the face of uncertainty

(Regan et al. 2005).

In our system, our estimates included model uncer-

tainty, uncertainty in the estimated number of hibernacu-

la per county, uncertainty in the number of bats per

hibernacula, and uncertainty in the current total popula-

tion size. Our best models indicated that increased forest

cover was related to increased numbers of hibernacula, an

eastern and central distribution of hibernacula, and a neg-

ative relationship with percent karst (although the credi-

ble interval included zero). We believe the associations we

observed are due to the strong correlation between karst

and forest (72%), with the effects of forest cover mediat-

ing the effects of karst. However, it is possible due to the

fact that little brown bats will also overwinter in mines,

that percentage of karst in a county as not as strong a

predictor as we expected.

Our observed hibernacula data consisted of minimum

known hibernacula counts per county with no estimates

of detection probabilities. Without estimates of the survey

effort that led to these observations, it is difficult if not

impossible to quantify the number of hibernacula poten-

tially missed (Thogmartin and McKann 2014). Zeros in

our data may indicate that there truly are no hibernacula

in a county or that no effort has been expended in identi-

fying hibernacula in that county (Lobo et al. 2010); there-

fore, our efforts are reduced to presence-only modeling of

hibernaculum occurrence. Recent literature has ques-

tioned the broadscale use of “presence-only” methodology

due to frequent violation of assumptions, including
Figure 2. Distribution of hibernacula sizes on the log2 scale for 1000

random draws for the estimated 4061 hibernacula.
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assumptions that observed presences are the consequence

of random or representative sampling and that detectabil-

ity during sampling does not vary with the covariates that

determine occurrence probability (Yackulic et al. 2013).

Without designed systematic studies to identify new hib-

ernacula and true absences the real spatial distribution of

bats remains difficult to estimate.

Individual bats are also notoriously difficult to count

and obtaining accurate estimates of overwintering

population sizes is problematic (Thogmartin et al.

2012). Our study focused on little brown bats east of

the 100th meridian because information regarding little

brown bats numbers, and hibernacula distribution west

of this line was sparse. Many of these western states

reported having large numbers of little brown bats that

were distributed widely, but information regarding over-

wintering habitat locations and the estimated number of

bats was largely absent. New methodology using cameras

and quantifying survey effort may lead to improvements

in count data, but it is not realistic to expect that a

thorough census of bat populations rangewide can be

achieved without a considerable investment of resources.

Despite this, wildlife policy makers must make decisions

regarding the effects of alternative energy development,

WNS, and other landscape-level processes on bats,

therefore, the models and maps we provide

should prove to be essential for effective conservation

decision-making.

(A)

(B)

Figure 3. (A) Estimated population size pre-

WNS based on mean estimated number of

hibernacula. (B) Distribution of the estimated

population size of little brown bats in the

eastern United States, pre-WNS.
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Assessing the effect of the uncertainty in the modeled

estimates relative to the management decision at hand is

also important. For example, Frick et al. (2010) predicted

the extirpation of little brown bats from WNS-affected

areas using a nonspatially explicit model that did not

capture the uncertainty in the known population size of

the species. In the face of this fast-moving disease that

imposes severe mortality rates on infected bats, the

uncertainty in the number and spatial location of bats in

the eastern part of their range may not lead to different

conclusions regarding the overall consequences of the

disease. However, for predictions of the impact of wind

energy development on bat populations, the locations of

hibernacula in conjunction with maternity roosts is vital

for estimating the amount of mortality that can be

expected from new wind farms, although smaller resolu-

tion data may be needed. Assessing the collective impacts

of these factors on bat populations will be important

for providing management guidelines for energy

development and other human-mediated landscape-level

changes.

Conclusion

Uncertainty in model parameters should not prevent

informed predictions regarding population dynamics of a

population in response to a new stressor such as an emerg-

ing disease or changing land-use patterns. Uncertainty is

inherent in any modeling process, but by identifying

parameters contributing most to uncertainty, future stud-

ies can focus on reducing uncertainty in parameters most

crucial to making improved management decisions (Runge

et al. 2011). Models can provide information to managers

regarding which actions are most likely to influence the

overall impact of the threat on a species. Even with our

predicted uncertainty, management recommendations can

still be developed. For example, to minimize the impacts

of wind energy on bat populations, land managers may

want to avoid placing large wind farms in areas with many

hibernacula. Little brown bats are philopatric (Norquay

et al. 2013) and will likely return to the same hibernacula

even if conditions in the cave have deteriorated. Overall

minimizing disturbance to overwintering sites is likely

Figure 4. Geographical distribution of the

current little brown bat population; gray areas

are estimated to contain 80% of the

population in 2013.

Table 2. Estimated mean number of hibernacula for estimated total population sizes of 2.5 million, 4 million, 5.5 million, and 6 million. Mean

CV is the mean coefficient of variation in the number of hibernacula and individual bats across counties for a particular scenario; 95% C.I. indi-

cates the empirical 95% confidence interval obtained from generating 1000 realizations of each estimated population size.

Population Size Mean Number of Hibernacula Mean CV Hibernacula Mean CV Bat number

2.5 Million 1829 [95% C.I. 1084–2474] 96% 1095%

4 Million 2209 [95% C.I. 1701–2829] 75% 1033%

5.5 Million 2416 [95% C.I. 1841–3171] 63% 978%

6 Million 2470 [95% C.I. 1855–3209] 59% 970%
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crucial for providing little brown bats with their best

opportunity for recovery from large-scale landscape-level

changes.

Acknowledgments

We thank the biologists Mark Brigham, Scott Darling,

Rita Dixon, Graham Forbes, Karl Herzog, Al Kurta, Kirk

Navo, Jonathan Reichard, Craig Stihler, Greg Turner, and

Maarten Vonhof, who provided us with information

essential to this study. We also thank those U.S. states

Arkansas, Connecticut, Iowa, Illinois, Indiana, Kentucky,

Massachusetts, Maryland, Maine, Michigan, Minnesota,

New Jersey, New York, Ohio, Tennessee, Virginia, Ver-

mont, and Wisconsin, Alabama, Delaware, Florida, Geor-

gia, Kansas, Louisiana, and Mississippi that contributing

information to the U.S. Fish and Wildlife Service, without

which this study would have been made even more diffi-

cult. Any use of trade, product, or firm names are for

descriptive purposes only and do not imply endorsement

by the U.S. Government.

Conflict of Interest

None declared.

References

Altringham, J. D. 2011. Bats: from evolution to conservation.

Oxford Univ. Press, Oxford, U.K. Pp 272.

Arnett, E. B., and E. F. Baerwald. 2013. Impacts of wind

energy development on bats: implications for conservation.

Pp 435–456 in R. A. Adams, S. C. Pedersen, eds. Bat

evolution, ecology, and conservation. Springer, New York.

Arnett, E. B., W. K. Brown, W. P. Erickson, J. K. Fieldler, B.

L. Hamilton, T. H. Henry, et al. 2008. Patterns of bat

fatalities at wind energy facilities in North America. J.

Wildlife Manage. 72:61–78.

Austin, M. P. 2002. Spatial prediction of species distribution:

an interface between ecological theory and statistical

modelling. Ecol. Model. 157:101–118.

Barry, S., and J. Elith. 2006. Error and uncertainty in habitat

models. J. Appl. Ecol. 43:413–423.

Blehert, D. S., A. C. Hicks, M. Behr, C. U. Meteyer, B. M.

Berlowski-Zier, E. L. Buckles, et al. 2009. Bat white-nose

syndrome: an emerging fungal pathogen? Science 323:

227–227.

Boyles, J. G., P. M. Cryan, G. F. McCracken, and T. H. Kunz.

2011. Economic importance of bats in agriculture. Science

332:41–42.

Brooks, R. T. 2011. Declines in summer bat activity in

central New England 4 years following the initial

detection of white-nose syndrome. Biodivers. Conserv.

20:2537–2541.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G.

B. West. 2004. Toward a metabolic theory of ecology.

Ecology 85:1771–1789.

Burgman, M. 2005. Risks and decisions for conservation and

environmental management. Cambridge Univ. Press,

Cambridge, U.K. Pp. 488.

Dzal, Y., L. P. McGuire, N. Veselka, and M. B. Fenton. 2011.

Going, going, gone: the impact of white-nose syndrome on

the summer activity of the little brown bat (Myotis

lucifugus). Biol. Lett. 7:392–394.

Elith, J., and J. R. Leathwick. 2009. Species distribution

models: ecological explanation and prediction across space

and time. Annu. Rev. Ecol. Evol. Syst. 40:677–697.

Fenton, M. B., and R. M. R. Barclay. 1980. Myotis lucifugus.

Mamm. Sp. 142:1–8.

Fitzgerald, J. A., W. E. Thogmartin, R. Dettmers, T. Jones, C.

Rustay, J. M. Ruth, et al. 2008. Application of models to

conservation planning for terrestrial birds in North America.

Pp. 593–624 in J. J. Millspaugh, F. R. Thompson III, eds.

Models for planning wildlife conservation in large

landscapes. Academic Press, Boston MA, USA.

Foley, J., D. Clifford, K. Castle, P. Cryan, and R. S. Ostfeld.

2011. Investigating and managing the rapid emergence of

white-nose syndrome, a novel, fatal, infectious disease of

hibernating bats. Conserv. Biol. 25:223–231.

Frick, W. F., J. F. Pollock, A. C. Hicks, K. E. Langwig, D. S.

Reynolds, G. G. Turner, et al. 2010. An emerging disease

causes regional population collapse of a common North

American bat species. Science 329:679–682.

Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis,

P. R. Sutcliffe, A. I. Tulloch, et al. 2013. Predicting species

distributions for conservation decisions. Ecol. Lett. 16:

1424–1435.

Harwood, J., and K. Stokes. 2003. Coping with uncertainty in

ecological advice: lessons from fisheries. Trends Ecol. Evol.

18:617–622.

Hefferman, L. 2014. White-nose syndrome map. https://www.

whitenosesyndrome.org/resources/map (accessed July 15th

2014).

Kahneman, D., P. Slovic, and A. Tversky. 1982. Judgment

under uncertainty: heuristics and biases. Cambridge Univ.

Press, Cambridge, U.K.

Kuhnert, P. M., T. G. Martin, and S. P. Griffiths. 2010. A

guide to eliciting and using expert knowledge in Bayesian

ecological models. Ecology Letters 13:900–914.

Kunz, T. H., D. W. Thomas, G. C. Richards, C. R. Tidemann,

E. D. Pierson, P. A. Racey, et al. 1996. Observational

techniques for bats. Pp. 105–114 in D. E. Wilson, ed.

Measuring and monitoring biological diversity, standard

methods for mammals. Smithsonian, Washington, D.C.

Kunz, T. H., and M. B. Fenton. 2003. Bat ecology. The Univ.

of Chicago Press, Chicago, IL, USA, 779 Pp.

Kunz, T. H., E. B. Arnett, W. P. Erickson, A. R. Hoar, G. D.

Johnson, R. P. Larkin, et al. 2007. Ecological impacts of

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 3753

R. E. Russell et al. Distribution of Little Brown Bat Hibernacula



wind energy development on bats: questions, research needs,

and hypotheses. Front. Ecol. Environ. 5:315–324.

Kunz, T. H., E. Braun de Torrez, D. Bauer, T. Lobova, T. H.

Fleming, et al. 2011. Ecosystem services provided by bats.

Ann. N. Y. Acad. Sci. 1223:1–38.

Laurent, E. J., C. A. Drew, and W. E. Thogmartin. 2011. The

role of assumptions in predictions of habitat availability and

quality. Pp. 71–90 in C. A. Drew, Y. Wiersma, F.

Heuttmann, eds. Predictive species and habitat modeling in

landscape Ecology. Springer, New York.

Lobo, J. M., A. Jim�enez-Valverde, and J. Hortal. 2010. The

uncertain nature of absences and their importance in species

distribution modelling. Ecography 33:103–114.

L�opez-Hoffman, L., R. Wiederholt, C. Sansone, K. J. Bagstad,

P. Cryan, J. E. Diffendorfer, et al. 2014. Market forces and

technological substitutes can cause declines in the value of

bat pest-control services for cotton. PLoS One 9:e87912.

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000.

WinBUGS – a Bayesian modelling framework: concepts,

structure, and extensibility. Stat. Comput. 10:325–337.

Morgan, M. G., and M. Henrion. 1990. Uncertainty: a guide

to dealing with uncertainty in quantitative risk and policy

analysis. Cambridge University Press, Cambridge, U.K.

Norquay, K. J. O., et al. 2013. Long-distance movements of

little brown bats. J. Mammal. 94:506–515.

O’Hagan, A., C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H.

Garthwaite, D. J. Jenkinson, et al. 2006. Uncertain

judgments: eliciting experts’ probabilities. John Wiley &

Sons, West Sussex, UK.

Regan, H. M., Y. Ben-Haim, B. Langford, W. G. Wilson, P.

Lundberg, S. J. Andelman, et al. 2005. Robust

decision-making under severe uncertainty for conservation

management. Ecol. Appl. 15:1471–1477.

Runge, M., S. J. Converse, and J. E. Lyons. 2011. Which

uncertainty? Using expert elicitation and expected value of

information to design an adaptive program. Biol. Conserv.

144:1214–1223.

Sibly, R. M., J. H. Brown, and A. Kodric-Brown. 2012.

Metabolic ecology: a scaling approach. Wiley-Blackwell,

West Sussex.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. der van

Linde 2002. Bayesian measures of model complexity and fit

(with discussion). J. R. Stat. Soc. Ser. B 64:583–639.

Sturtz, S., U. Ligges, and A. Gelman. 2005. R2WinBUGS: a

package for running WinBUGS from R. J. Stat. Softw. 12:

1–16.

Szymanski, J. 2013. Expert elicitation process and results for

the little brown bat status assessment. USFWS Final Report

submitted to Region 3, Division of Endangered Species,

Bloomington, MN.

Thogmartin, W. E., and M. G. Knutson. 2007. Scaling local

species-habitat relations to the larger landscape with a

hierarchical spatial count model. Landscape Ecol. 22:61–75.

Thogmartin, W. E., and P. C. McKann. 2014. Large-scale

climate variation modifies winter group size in the

endangered Indiana bat. J. Mammal. 95:117–127.

Thogmartin, W. E., R. A. King, P. C. McKann, J. A.

Szymanski, and L. Pruitt. 2012. Population-level impact of

white-nose syndrome on the endangered Indiana bat.

J. Mammal. 93:1086–1098.

Tobin, B. D., and D. J. Weary. 2004. Digital engineering

aspects of Karst map: a GIS version of Davies, W.E.

et al. 1984. Engineering aspects of Karst: U.S. Geological

Survey, National Atlas of the United States of

America, Scale 1:7,500,000. USGS Open-File Report:

2004-1352.

U. S. Fish and Wildlife Service. 2013. Rangewide Population

Estimate for the Indiana Bat (Myotis sodalis) by USFWS

Region, compiled by A. King, U.S. Fish and Wildlife Service,

Bloomington, Indiana, Ecological Services Field (http://www.

fws.gov/midwest/endangered/mammals/inba/pdf/

2013inbaPopEstimate26Aug2013.pdf).

West, G. B., J. H. Brown, and B. J. Enquist. 1997. A general

model for the origin of allometric scaling laws in biology.

Science 276:122–126.

Whitaker, J. O. Jr, and S. L. Gummer. 1992. Hibernation of

the big brown bat, Eptesicus fuscus, in buildings. J. Mammal.

37:312–316.

Xian, G., C. Homer, and J. Fry. 2009. Updating the 2001

National Land Cover Database land cover classification to

2006 by using Landsat imagery change detection methods.

Remote Sens. Environ. 113:1133–1147.

Yackulic, C. B., R. Chandler, E. F. Zipkin, J. A. Royle, J. D.

Nichols, E. H. C. Grant, et al. 2013. Presence-only

modelling using MAXENT: when can we trust the

inferences?. Method Ecol. Evol. 4:236–243.

3754 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Distribution of Little Brown Bat Hibernacula R. E. Russell et al.


