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Abstract

A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element 

method is employed to simulate the motion of a nanocarrier in a quiescent fluid contained in a 

cylindrical tube. The nanocarrier is treated as a solid sphere. Thermal fluctuations are 

implemented using two different approaches: (1) fluctuating hydrodynamics; (2) generalized 

Langevin dynamics (Mittag-Leffler noise). At thermal equilibrium, the numerical predictions for 

temperature of the nanoparticle, velocity distribution of the particle, decay of the velocity 

autocorrelation function, diffusivity of the particle and particle-wall interactions are evaluated and 

compared with analytical results, where available. For a neutrally buoyant nanoparticle of 200 nm 

radius, the comparisons between the results obtained from the fluctuating hydrodynamics and the 

generalized Langevin dynamics approaches are provided. Results for particle diffusivity predicted 

by the fluctuating hydrodynamics approach compare very well with analytical predictions. Ease of 

computation of the thermostat is obtained with the Langevin approach although the dynamics gets 

altered.
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INTRODUCTION

The major motivation for the present study is the simulation of a nanoparticle thermal 

motion in a fluid flow that occurs in targeted drug delivery. Targeted drug delivery often 

uses nanocarries laden with drugs in blood vessels for transport. The binding interactions 

between the ligands on the nanocarrier and the receptors on the cell membrane at the 

involved sites define the efficacy of nanocarrier arrest by the targeted cell. In order to more 

broadly integrate this technology into medicine, a precise understanding of how to guide the 

nanoparticle to the target site is necessary. To achieve this goal, as a first step, it is necessary 

to accurately determine the motion of a nanocarrier (due to thermal and hydrodynamic 

effects) in a fluid medium.

Nanoparticles undergo thermal motion in a fluid which can be simulated either using the 

fluctuating hydrodynamics (FHD) or using the generalized Langevin dynamics (GLD). The 

fluctuating hydrodynamics method essentially consists of adding stochastic stresses to the 

stress tensor (random stress) in the momentum equation and stochastic fluxes to the heat 

flux where an energy equation is present in the formulation [1]. In generalized Langevin 

approach, the thermal fluctuations from the fluid are incorporated as random forces and 

torques in the particle equation of motion where the power spectrum for the variance of the 

random force and torque terms are in terms of a correlated or colored noise with a well 

defined characteristic memory time [2]. In this paper, we have considered both the 

procedures to evaluate the suitability and efficacy of any particular procedure for future 

comprehensive evaluations.

Over the years, numerical simulations based on these procedures have been carried out 

employing the finite volume method [3], lattice Boltzmann method (LBM) [4,5], stochastic 

immersed boundary method [6], smoothed profile method [7, 8] and the finite element 

method [1, 2]. In this paper, a direct numerical simulation adopting an arbitrary Lagrangian-

Eulerian (ALE) based finite element method (FEM) is employed to simulate the Brownian 

motion of a nanoparticle in an incompressible Newtonian fluid contained in a horizontal 

micron sized circular tube. Both translational and rotational motions of a nanoparticle in a 

stationary fluid medium are investigated. The results for the attainment of thermal 

equilibrium between the particle and the surrounding medium, diffusivity for the particle in 

the medium, effect of the presence of the confining vessel wall on particle displacement and 

diffusivity are evaluated using both procedures and comparisons are summarized in the 

conclusions.

THEORETICAL FORMULATION

The Brownian motion of a nanoparticle in an incompressible Newtonian stationary fluid 

medium in a horizontal circular vessel is considered (Figure 1). The fluid and particle 

equations are formulated in an inertial frame of reference with the origin coinciding with the 

center of the vessel. The diameter, D, and the length, L, of the vessel (tube) are very large 

compared to the particle size, d, the diameter of the particle. Initially, a nanoparticle is 

introduced either at the vessel centerline or at suitably chosen locations away from the 
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center line towards the bounding wall. Initially both the fluid and particle are at rest. No 

body force is considered either for the particle or for the fluid domain. Starting at time t = 0, 

the nanoparticle experiences Brownian motion. The motion of the nanoparticle is 

determined by the hydrodynamic forces and torques acting on the particle and subject to the 

wall interactions.

The motion of an incompressible Newtonian fluid satisfies the conservation of mass and 

momentum given by

(1)

(2)

where u and ρ(f) are the velocity and density of the fluid, respectively, σ is the stress tensor, 

p is the pressure, J is the identity tensor, μ is the dynamic viscosity, D[u] is the rate of 

deformation tensor. The random stress tensor S is assumed to be zero (S = 0) for generalized 

Langevin method, and is assumed to be a Gaussian with

(3)

for fluctuating hydrodynamics (FHD) method. Here 〈 〉 is the ensemble average, kB is the 

Boltzmann constant, T is the absolute temperature, δij is the Kronecker delta, and the Dirac 

delta function δ(x −x′) denotes that the components of the random stress tensor are spatially 

uncorrelated (Markovian). The right hand side of equation (3) shows that the mean and 

variance of the thermal fluctuations are chosen to be consistent with the fluctuation-

dissipation theorem [9–11] for an incompressible fluid.

For a rigid particle suspended in an incompressible Newtonian fluid, the translational and 

rotational motions of the particle satisfies

(4)

where m is the mass of the particle, I is its moment of inertia, and, U and ω are the 

translational and angular velocities of the particle, respectively. The hydrodynamic force F 
and torque T acting on the particle are given by

(5)

Uma et al. Page 3

Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012). Author manuscript; available in PMC 2015 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where X is the position of the centroid of the particle, (x − X) is a vector from the center of 

the particle to a point on its surface, ∂Σp denotes the particle surface, and n̂ is the unit 

normal vector on the surface of the particle pointing into the particle. The random force R 
and random torque Ω are assumed to be zero (R = 0; Ω = 0) for FHD and are assumed to be 

Gaussian with

(6)

(7)

for generalized Langevin dynamics (GLD). Here α and β are the dissipative memory kernels 

for force and torque, respectively. The equations (6) and (7) satisfy the fluctuation-

dissipation theorem [12,13]. The right hand sides of equations (6) and (7) denote the mean 

and variance of the thermal fluctuations.

For a non-Markovian stochastic process, the random-noise depends on the memory effects 

considered through time-correlations. For a time correlated Mittag-Leffler noise (MLN) [2, 

14, 15], the dissipative memory kernel for force and torque in equations (6) and (7) are 

given by

(8)

respectively, where τ is the characteristic memory time, λ is the exponent taken as 0 < λ < 2, 

α0(λ) (units of α0(λ) is sλ−2) and β0(λ) (units of β0(λ) is sλ−2) are the proportionality 

coefficient dependent on the exponent λ but independent of t or τ and Eλ (y) is the Mittag-

Leffler function [16] defined through the series given by equation

(9)

When λ ≠ 1, the noise correlation function in equation (8) behaves as a stretched exponential 

for short times and as an inverse power-law in the long time limit [17].

The initial and boundary conditions for the problem are

(10)
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(11)

(12)

where Σ0 is the domain occupied by the fluid and ∂Σi and ∂Σo are the inlet and outlet 

boundaries, respectively. The stochastic governing equations (1) – (5) along with the initial 

and boundary conditions (10) – (12) are solved numerically. It is assumed that there is no 

body torque acting at any point in the fluid and the viscous stress tensor, σ, is symmetric. A 

numerical simulation at a mesoscopic scale involving a particle in a fluid could be based on 

a discretization of the equations (1) – (12). However, the discrete forms have to satisfy the 

fluctuation-dissipation theorem [18]. The details of the finite-element spatial and temporal 

discretization, and, mesh movement algorithm are discussed in Uma et al. [1, 2].

RESULTS AND DISCUSSION

A solid spherical particle of radius a = 200 nm is initially placed at the center of a cylindrical 

tube (R = 5 μm) containing a stationary Newtonian fluid. From the particle location, the ends 

of the computational domain are at a distance of 20a at any instant of time [1]. The physical 

parameters chosen are: kB = 1.3806503 × 10−23 kg m2/s2 K; μ = 10−3 kg/m s; ρ(f) = ρ(p) = 103 

kg/m3. The temperature of the fluid is initially set to Tp = 310K and the particle at zero 

degrees.

The time scale for the computation of the Brownian motion of the particle may be derived 

from evaluating the various time scales (macroscopic and mesoscopic) governing the 

problem. The different time scales involved in this study are: (i) hydrodynamic time scale, 

τν = a2/ν (the time scale for momentum to diffuse over a distance equal to the radius of the 

nanoparticle); Brownian time scales, (ii) τb = m/ζ(t) (Brownian relaxation time over which 

velocity correlations decay in the Langevin equation) and (iii) τd = a2ζ(t)/kBT (Brownian 

diffusion time over which the nanoparticle diffuses over a distance equal to its radius). Here, 

a is the radius of the nanoparticle, ν is the kinematic viscosity and ζ(t) = 6πμa is the Stokes 

dissipative friction force coefficient for a sphere.

It is noted that the time scales encountered in this problem are such that τb < τν < τd. For a 

nanoparticle of radius 200 nm, τb ≈ 8.8×10−9s, τν ≈ 4×10−8s and τd ≈ 3.5×10−2s. As a 

consequence, the relevant time scales for the Brownian motion of a nanoparticle in an 

incompressible fluid can span many orders of magnitude. It is required that the time step for 

the numerical simulation Δt be smaller than the smallest of all the physical time scales. The 

simulations presented in this study have been carried out for long enough durations to allow 

for the temperature of the particle to equilibrate - i.e., if N is the number of simulated time 

steps then N ·Δt = t ≫ τν. The number of time steps depends upon equilibration of particle 

temperature, or determination of velocity autocorrelation functions (VACFs) and mean 

square displacements (MSDs). In order to ensure the uniqueness of the realizations, different 

initial seeds are chosen for a Gaussian random number generator.
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Figure 2 shows the minimum time step for the numerical simulation, Δt, required by the 

fluctuating hydrodynamics (FHD) and the generalized Langevin dynamics with Mittag-

Leffler noise (GLD with MLN) procedures to achieve the convergence in the translational 

and rotational temperatures of the nanoparticle as a function of radius of the particle. Radius 

of the particle, a, and the time step for the numerical simulation, Δt, are non-

dimensionalized with the radius of the cylindrical vessel, R, and the hydrodynamic time 

scale, τν, respectively. It is observed that the minimum time step required in FHD to obtain 

converged numerical results is about two orders of magnitude less compare to the GLD. The 

later procedure is therefore attractive for routine computations that may be required in 

modeling targeted drug delivery.

From the equipartition theorem, at thermal equilibrium, the translational and rotational 

temperatures of the nanoparticle are given by

(13)

For GLD with MLN (λ = 0.5), the proportionality coefficients α0 and β0 are chosen such 

that the MLN satisfies the equipartition theorem. In our numerical simulations, initially α0 

and β0 are dynamically optimized during the course of a trajectory according to the scheme 

described by Iwashita et al. [7] (for details, see [2]). Figures 3(a) and (b) show that for λ = 

0.5 and τ/τν = 2, α0, β0 converge to constant values over an ensemble average of 15 different 

realizations. Each realization consists of N = 50,000 time steps. Thus, to optimize α0 and β0 

as independent of t, we have employed 15 × 50,000 = 750,000 time steps. The 

proportionality coefficients α0 and β0 are non-dimensionalized using  (for λ = 

0.5).

Figures 3(c) and (d) show α0 and β0 as functions of τ. For any given value of τ/τν, if α0 and 

β0 are chosen from Figures 3(c) and (d), respectively, then the evaluated temperature of the 

nanoparticle is noted to agree with the preset temperature of fluid within 3% error. As a 

result, the model serves as a general thermostat for a range of the characteristic memory 

time τ/τν.

It is interesting to note from Figures 3(c) and (d) that α0 and β0 remain constant (i.e., 

independent of τ) over a finite plateau region where the characteristic memory time τ is 

larger than the hydrodynamic time scale, τν. The significance of this numerical result is that 

when τ is sampled from the interval defined by the plateau region, the values of α0 and β0 

for which the nanoparticle translational as well as rotational temperatures agree with the 

preset temperature (Figure 3(e)) are independent of τ and t. In order to adhere to the 

equipartition theorem within the statistical error, the characteristic memory time in the 

external noise has to be chosen consistent with the inherent time scale of the memory kernel, 

i.e., the hydrodynamic time scale. The error bars have been plotted from standard deviations 

of the temperatures obtained with 15 different realizations.
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Figure 4 shows the translational and rotational temperatures of the particle in a stationary 

medium as a function of the normalized surface mesh length (mesh length divided by 

particle radius) using FHD and GLD with MLN. For GLD with MLN, λ = 0.5, τ/τν = 2, 

 and . These are obtained from five 

different realizations in each coordinate direction. To account for compressibility effects in 

the FHD method, the particle mass m is augmented by an added mass m0/2, M = m + m0/2, 

where m0 is the mass of the displaced fluid [1, 19]. Each realization consists of N = 20,000 

time steps. Thus, to evaluate the equilibration of the particle temperature with the preset 

fluid temperature, we have employed 3 × 5 × 20,000 = 300,000 time steps. The error bars 

have been plotted from standard deviations of the temperatures obtained with 15 different 

realizations (3 × 5 = 15). It is observed that translational and rotational temperatures of the 

nanoparticle agree with the preset temperature to within 5% error and the convergence is 

noted as the normalized mesh size is decreased. It is observed that compared to GLD, FHD 

requires finer mesh to achieve convergence for the temperature of the nanoparticle.

Figure 5 demonstrates the approximate number of CPU cycles required for the computation 

of a single time step for a particle of radius 200 nm in a cylindrical tube of radius 5 μm. All 

simulations are carried out on a 2.93 GHz processor. Each CPU cycle displayed on the 

figure corresponds to the average of 300 time steps, spread across three realizations. The 

number of mesh nodes are displayed on the horizontal axis. Number of days required to 

complete the simulations with 20,000 time steps using two different methods are specified 

inside the brackets and for 100,000 time steps this will be five times higher. It is observed 

from Figure 4 that for a given mesh size, the computational cost for both the methods are 

comparable. In order to obtain a converged numerical result, FHD requires finer mesh 

compare to GLD. Thick solid and dotted lines in Figure 5 correspond to the converged 

normalized surface mesh size in Figure 4. The mesh size chosen for the present numerical 

simulations are represented by filled circle and square for GLD and FHD, respectively.

The apparent translational and rotational velocities of the nanoparticle are determined as U 
and ω. For determining the velocity distribution of the nanoparticle, 5 realizations in each 

coordinate direction consisting of 5 × 20,000 = 100,000 time steps have been computed. 

Thus, a total of 300,000 time steps have been computed. In Figure 6, the numerically 

simulated components of U (FLD: Figure 6(a) and GLD: Figure 6 (c)) and ω (FHD: Figure 

6(b) and GLD: Figure 6(d)) (represented by three different symbols) of the nanoparticle with 

radius a = 200 nm are compared with the analytical Maxwell-Boltzmann distribution with a 

zero mean and variance of kBT/M and kBT/I, respectively. It is observed that each degree of 

freedom individually follows a Gaussian distribution. In particular, the mean and the 

variance calculated by using the FHD and GLD agrees within 5% error (see dotted line in 

Figure 6) with that of the analytical Maxwell-Boltzmann distribution.

Figure 7 shows the VACF of the translational and rotational motions of a nanoparticle (a = 

200 nm) in a quiescent fluid medium in a circular vessel as obtained from our numerical 

simulations. For determining the VACF of the nanoparticle, 45 (15 × 3 = 45) realizations 

have been employed with total computation of 45 × 100,000 = 4,500,000 time steps. It may 
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be observed that the translational and rotational VACFs of the Brownian particle have 

power-law decays over long times that are ~t−3/2 and ~t−5/2, respectively. Hauge and Martin-

Löf [10] have analytically shown that the decay of the translational and rotational VACFs at 

long time obeys a power-law:

(14)

(15)

where the values of constants a0 and b0 are provided in Table 1. It is observed from Figures 

7(a) and (b) that at short times, the translational and rotational VACFs of the nanoparticle 

using FHD follow an exponential decay, exp(−ζ(t)t/M) and exp(−ζ(r)t/I)), respectively, while 

with GLD (Figures 7(c) and (d)) they follow a stretched exponential decay, exp{−(t/τν)3/2}. 

At long times, the translational and rotational VACFs follow a power-law decay, a0(t/τν)−3/2 

and b0 (t/τν)−5/2, respectively, using both the FHD and the GLD with MLN. The error bars 

have been plotted from standard deviations of the decay at particular time instants obtained 

with 45 different realizations.

Figure 8 shows the numerically obtained translational and rotational MSDs of a neutrally 

buoyant nanoparticle (a = 200 nm) in a quiescent fluid medium, initially placed at the center 

of the vessel (R = 5 μm), for both short and long times. For determining the MSD of the 

nanoparticle, 45 (15 × 3 = 45) realizations have been employed with each realization 

computed up to 100,000 time steps. It is observed that in the regime where the particle’s 

motion is dominated by its own inertia (ballistic), the translational and rotational motions of 

the particle obtained using FHD follow (3kBT/Ma2)t2 (Figure 8(a)) and (3kBT/I)t2 (Figure 

8(b)), respectively, whereas the translational and rotational motions of the particle obtained 

using GLD with MLN follow 0.18 × (3kBT/ma2)t2 (Figure 8(c)) and 10 × (3kBT/I)t2 (Figure 

8(d)), respectively.

In the diffusive regime, the translational and rotational MSDs of the particle obtained using 

FHD increase linearly in time to follow  (Figure 8(a); Stokes-Einstein relation [20]) 

and  (Figure 8(b); Stokes-Einstein-Debye relation [21]), respectively, where 

, and  are the translational and rotational self-

diffusion coefficients. The translational and rotational MSDs of the particle obtained using 

GLD with MLN follow Stokes-Einstein and Stokes-Einstein-Debye relations, respectively, 

with scaling factors of 3 (Figure 8(c)) and 102.54 (Figure 8(d)), respectively.

The hydrodynamic wall effects on the particle diffusivity are important for a nanoparticle 

thermal motion in a fluid flow that occurs in TDD and similar microparticle flows. For a 

particle initially located at the center of the cylindrical vessel, the wall effects play a 
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minimal role (≤ 3%, compared to an unbounded fluid domain) on the diffusion coefficient 

(in other words MSD) (see Figure 8) [22]. When a particle of radius a is initially placed at a 

distance h from the tube wall to the center of the particle, h < R, the particle-wall 

interactions modify the particle diffusivity. For a ≪ R, in a quiescent fluid, the Brownian 

motion near the vessel wall is similar to that of motion in the vicinity of a plane wall 

(curvature effects may be neglected) [22, 23]. For a particle initially located in the near 

vicinity of the wall, there is reduced space for the surrounding fluid to negotiate the particle, 

and the corresponding drag force in a direction parallel to the wall is higher. The diffusivity 

of the particle in the proximity of the wall may be estimated to be  in x, 

y and z directions [24], while  depends on the particular direction.

Figure 9 shows the numerically obtained parallel (x direction) and perpendicular (y 

direction) diffusion coefficients of a neutrally buoyant particle of radius, a = 200 nm, 

initially placed at various distances from the vessel wall, in a quiescent medium. As 

mentioned earlier, in the diffusive regime, the translational MSD of the particle increases 

linearly in time. We have numerically evaluated the gradient of the linear profile, 

normalized by the translational self-diffusion coefficient, , plotted as a function of a/h. 

The diffusivity of the particle obtained using (i) FHD (left hand side y-axis) agrees with the 

prediction of Happel and Brenner [22] (left hand side y-axis) and (ii) GLD with MLN (right 

hand side y-axis) agrees with the prediction of Happel and Brenner [22] with a scaling factor 

of 3. It is to be noted that for determining the translational MSD of a nanoparticle of radius, 

a = 200 nm, initially placed at various distances from the vessel wall, the scaling factor 3 

remains unchanged.

CONCLUSIONS

A direct numerical simulation adopting ALE based FEM is employed to simulate the 

Brownian motion of a nanoparticle in an incompressible Newtonian stationary fluid 

medium. The thermal fluctuations are incorporated using either of the following two 

methods:

1. Fluctuating hydrodynamics (FHD).

2. Generalized Langevin dynamics with Mittag-Leffler noise (GLD with MLN).

At thermal equilibrium, the numerical predictions are validated by comparing with 

analytical results. The comparison between the results obtained from FHD and GLD with 

MLN are summarized in the Tables 2 and 3.

Based on our observations presented in Tables 2 and 3, FHD approach captures the correct 

hydrodynamic correlations (algebraic decay) and normal diffusion, if compressibility effects 

are considered into account. A GLD thermostat based on the Mittag-Leffler noise captures 

hydrodynamic correlations and normal diffusion with a scaling factor with an altered 

dynamics. Our primary aim is to employ one of the approaches to evaluate the free energy 

landscapes of nanocarrier adhesion with surfaces in future applications. Either of the 
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approaches can be employed for future computations of free energy landscapes of 

nanocarrier adhesion subject to hydrodynamic interactions.
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FIGURE 1. 
Schematic representation of a nanoparticle in a stationary fluid medium in a circular vessel 

(not to scale). Diameter of the vessel: D = 2R = 10 μm; Length of the vessel: L = 10 μm; 

Diameter of the nanoparticle: d = 2a = 400 nm; Viscosity of the fluid: μ = 10−3kg/ms; 

Density of the fluid and the nanoparticle: ρ(f) = ρ(p) = 103 kg/m3. Particle locations away 

from the center are not displayed in this figure.
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FIGURE 2. 
Minimum time step for the numerical simulation required by fluctuating hydrodynamics 

(FHD) and generalized Langevin dynamics with Mittag-Leffler noise (GLD with MLN) 

methods to achieve the convergence in the translational and rotational temperatures as a 

function of radius of the particle.
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FIGURE 3. 
Convergence in the proportionality coefficient, (a) α0(λ), (b) β0(λ) for τ/τν = 2; 

characteristic memory time as a function of proportionality coefficient (c) α0(λ), (d) β0(λ) 

and (e) translational and rotational temperatures of the nanoparticle of radius a = 200 nm by 

using Mittag-Leffler noise (λ = 0.5). The proportionality coefficients α0 and β0 are non-

dimensionalized using . For a given τ/τν, if α0(λ), β0(λ) are chosen from (c) and 

(d), respectively, then the thermostat satisfies the equipartition theorem within 3% error. 

When  (a) and  (b) are independent 

of τ, the thermostat satisfies the equipartition theorem in the plateau region given by (e). It is 

to be noted that in the same plateau region ((c) and (d)), α0 and β0 remain constant and agree 

with the values given in (a) and (b) respectively.
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FIGURE 4. 
Translational and rotational temperatures of the nanoparticle as a function of the normalized 

surface mesh length (mesh length divided by particle radius) in a stationary Newtonian fluid 

medium using FHD and GLD with MLN (λ = 0.5, τ/τν = 2,  and 

).
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FIGURE 5. 
Computational cost for fluctuating hydrodynamics (FHD) and generalized Langevin 

Dynamics with Mittag-Leffler noise (GLD with MLN). Number of days required to 

complete the simulations with 20,000 time steps are specified inside the brackets. Thick 

solid and dotted lines correspond to the converged normalized surface mesh size in Figure 4. 

The mesh size chosen for the present numerical simulation is represented by filled circle and 

square for GLD and FHD, respectively.
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FIGURE 6. 
Equilibrium probability of the translational ((a) and (c)) and rotational ((b) and (d)) 

velocities of the nanoparticle (a = 200 nm) in a stationary fluid medium using FLD ((a) and 

(b)) and GLD ((c) and (d)).
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FIGURE 7. 
Translational and rotational VACFs of a nanoparticle particle of radius a = 200 nm in a 

stationary fluid medium. The values of constants a0 and b0 are provided in Table 1.
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FIGURE 8. 
Translational and rotational MSDs of a nanoparticle particle of radius a = 200 nm in a 

stationary fluid medium.
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FIGURE 9. 
The translational diffusion coefficient of neutrally buoyant Brownian particle of radius a 

initially placed at different locations h from the wall of the circular vessel in a quiescent 

medium. Solid and dashed lines correspond to the perturbation solutions given in Happel 

and Brenner [22].
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TABLE 1

Values of a0 (translational) and b0 (rotational) for long time decay of VACF.

Method a0 b0

FHD (Hauge and Martin-Löf [10]) 0.094 0.014

GLD with MLN 0.943 0.215
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TABLE 2

Comparion between the FHD and the GLD with MLN methods. Abbreviations, CC: Computational cost.

Comparison: FHD & GLD with MLN

Method

FHD: Thermal fluctuations from the fluid are added as random stress tensor in the fluid equation, that depends on the 
temperature and viscosity of the fluid.

GLD: Thermal fluctuations from the fluid are added as random force and torque in the particle equations of motion, 
that does not depends on position and shape of the particle.

Mesh, time step & 
CC

For a given mesh size, the computational cost for both the methods are comparable. In order to obtain a converged 
numerical result, FHD requires finer mesh and smaller time step compare to GLD.
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TABLE 3

Comparion between the numerically predicted results by FHD and GLD with MLN methods. Abbreviations, 

EQT: Equipartition theorem; VACF: Velocity autocorrelation function; MSD: Mean square displacement.

Comparison: FHD & GLD with MLN

EQT

FHD: Equipartition theorem is satisfied. The particle mass m is augmented by an added mass m0/2, to account for compressibility.

GLD: Equipartition theorem is satisfied. When the thermostat adheres to the equipartition theorem, the characteristic memory time in 
the noise is consistent with the inherent time scale of the memory kernel.

VACF

FHD: The translational and rotational VACFs of the particle follow an exponential decay, exp(−ζ(t)t/M) and exp(−ζ(r)t/I)), 
respectively, at short times, and a power-law decay, a0 (t/τν)−3/2 and b0 (t/τν)−5/2, respectively at long times. The value of a0 and b0 

agrees with Hauge and Martin-Löf [10].

GLD: The translational and rotational VACFs of the particle follow a stretched exponential decay, exp{−(t/τν)3/2}, at short times, and 
a power-law decay, a0 (t/τν)−3/2 and b0 (t/τν)−5/2, respectively, at long times. The value of a0 and b0 differs from those predicted by 
Hauge and Martin-Löf [10].

MSD

FHD: In the diffusive regime, translational and rotational MSDs obey Stokes-Einstein and Stokes-Einstein-Debye relations, 
respectively.

GLD: In the diffusive regime, translational and rotational MSDs obey Stokes-Einstein and Stokes-Einstein-Debye relations, with 
scaling factors of 3 and 102.54, respectively.
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