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Introduction

This represents an overview, and not an exhaustive (or systematic literature) review of the 

use of animal models to study the adverse pregnancy outcomes seen in humans. For several 

of the outcomes mentioned herein there exist more in-depth reviews and there likely will be 

more to follow. Nor is this a review of all the data and mechanisms relating to normal and 

abnormal pregnancy and parturition. I have decided to include a balance between older 

reports and observations and reviews by revered scientists, as well as newer observations 

and reviews by seasoned and perhaps less-seasoned investigators. My hope is that clinicians 

will be able to utilize some of this information to seek out the literature and have more 

meaningful and profitable discussions with their academic colleagues. I further hope that 

they will be enticed to engage in regular interactions that will enhance transdisciplinary 

research in reproductive health. My ultimate agenda is to eliminate the tendency to dismiss 

work in animal models out of hand because they don’t exactly capture human physiology. In 

addition, I want to prevent the thinking that little can be learned from observations in 

humans because of inability to modulate and study specific mechanisms. I would like to see 

more support for conversations starting from both sides with “This is how I understand how 

the model behaves and how it might (or not) be reflected in humans. What is your 

understanding?” I would also like to see the literature, including titles of manuscripts and 

key words increase visibility of the animal models (e.g. including the words “animal model” 

and species name) involved in the observations conveyed.

Why animal models?

The limitations of human studies to establish disease causality and of in vivo animal models 

to replicate human physiology support the use of animal models in an iterative manner. In 

this process, phenomena described following observational studies in humans drives 

hypotheses to be tested in animal experiments. Animal experimentation in turn refines 

hypotheses that can then be tested in humans. This in turn leads to further questions and 

more productive animal experimentation. In this iterative approach, studies in humans and 

animals complement each other and can synergize to move our understanding of disease 

forward. That being said, my bias is that a good animal is not meant to primarily replicate all 

of what happens in humans, nor is it meant to be directly transferable. A well-working 

model generates logical and testable hypotheses that are consistent first foremost with 

existing data in the animal, and possibly in humans as well. The drive for those who 
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primarily use animal models should be to “know thy model”, be able to communicate it 

effectively to others, and to generate productive integrative and iterative study.

An approach to animal models

In studies in humans, several properties are taken into consideration to determine the 

appropriateness of the group of patients accessed for a study. These properties may be 

related to certain demographics or to prevalence of disease. When considering animal 

models to study adverse pregnancy outcomes, several issues come to mind.

Resources

With decreasing funding through federal and other sources, cost may play a large role in the 

choice of mode. Larger animal models are likely more costly and research based on these 

models is receiving less support1. However, certain strains of genetically manipulated mice 

are also very expensive (http://jaxmice.jax.org). The animal welfare regulatory requirements 

for non-human primate work are increasingly stringent as is the administrative oversight. 

Another constraint is the ability to deal with the public relations issues necessary to utilize 

primate models. Only certain institutions have the capacity, specialized facilities and highly-

trained veterinary staff. Depending on the species, there are some zoonotic disease issues 

which require a very rigorous occupational health program. Another practical issue related 

to choice of animal models is the presence of experts working with that model. Just as it is 

often better to watch a relative cooking a family tradition, rather than relying on a recipe, 

there are likely to be small bits of “inside” or not widely published information about the 

model that are more easily obtained by direct contact with the investigator utilizing the 

model.

Placentation

Current thinking would refute the notion that the placenta is just a passive membrane 

between mother and fetus. Early studies of nutrient uptake suggest that most of the resources 

delivered to the uterus are utilized by this organ. The placenta is selfish. It is a metabolically 

hormonally, and immunologically active entity in a triune necessary for successful 

pregnancy: mother, fetus, placenta. Structurally, the purpose of the placenta in mammals is 

to bring maternal and fetal circulatory systems in close proximity to facilitate exchange of 

nutrients, oxygen, waste and other factors2. Several good reviews of comparative 

placentation exist3–7. Placentae are usually described by the layers existing between fetal 

trophoblast, which itself envelops fetal vessels and mesenchymal cells, and maternal blood2. 

The controversy of placentation and the validity of animal models will likely continue 

because while it is assumed that differences in placentation will lead to different adaptive 

mechanisms, experimental changing of placentation in certain animals is likely extremely 

challenging.

The human placenta is said to be hemochorial2, in that maternal blood is in direct contact 

with fetal trohpblast. There are however, other points of contact between maternal and fetal 

tissues, for example in the villous structures that anchor the placenta8. The human placenta 

moreover is said to be interstitial, in that implantation occurs completely within the maternal 
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uterine wall4 thus allowing for multiple points of interaction between maternal and fetal 

tissues early in gestation. Primates commonly used in research, e.g. baboons, macaque, 

chimpanzee also have hemochorial placentas3, 6 with more or less invasion upon 

implantation, and a villous organization, although this is not true for all primates (e.g. 

lemurs3). The vascular structure of human placenta undergoes a revision in early gestation in 

which trophblast lines maternal uterine arteries9 to allow for maximal blood flow10. The 

placenta in rats (see recent review by Soares11) mice and guinea pigs (rodents) is similar to 

that in humans in that maternal blood is in direct contact with trophoblast. There are 

subtle(?) structural differences between human and rodent placentae, including the flow of 

blood due to a labyrinthine as opposed to a villous organization, the depth of trophoblast 

invasion6, and the trophoblast subpopulations2. For example, an additional layer of 

trophoblast, the giant cell layer, in addition to cytotrophoblast and syncytital trophoblast has 

led some authors to call the rodent placenta “hemotrichorial”. Because of only one 

trophoblast layer, the guinea pig placenta is sometimes referred to as “hemomonochorial”. 

In addition to structural differences, there are subtle differences in the expression of 

proteins, such as those involved in immune regulation12–15. While the definitive placenta is 

in place for a short time relative to gestation in mice and rats2, the longer gestation in guinea 

pigs makes this less true. Rabbits belong to the group of mammals called lagomorphs. Their 

placentas are hemochorial with two trophoblast layers, a syncytium and a cytotrophoblast 

layer which is similar to humans, but organized in a labyrinthine structure2, 5, 16. Sheep and 

pigs belong to the group of mammals called ruminants (order Artiodactyla) and have a 

different placental structure where both trophoblast and uterine epithelium are intact but 

interdigitate (epitheliochorial, think fingers of folded hands) allowing for contact close 

enough for efficient gas exchange2. In some areas of the sheep placenta, called placentomes 

there is aggressive interdigitation between trophoblast villi on the fetal side (cotyledon) and 

the uterus on the maternal side (caruncle) and at points the epithelia form a common 

syncytium allowing for more efficiency of gas and nutrient exchange. Pigs have a similar 

but more diffuse placental structure than sheep with less aggressive interdigitation217.

Uterine structure, dynamics

The human/primate uterus is a single muscular organ different structurally from the two-

horned uterus of rodents (for mice see Margaret J Cook’s book at www.jax.org), pigs18, 

rabbits16 or sheep19. While the electro-mechanics of the human/primate uterus may be 

fundamentally different from that seen in other species20, 21, the uteri of rodents22, rabbits23 

sheep24 and pigs18 respond to oxytocin, suggesting a common expression of the receptor 

and most have been used to study the mechanisms underlying uterine contractility in vitro.

Endocrinology of pregnancy

In addition to hormones such as estrogen (discussed elsewhere), progesterone is a key 

hormone of pregnancy that appears to be differentially regulated in humans and animals25. 

The particulars of the responsiveness to this hormone and its interaction with estrogen in 

successful pregnancy remain a topic of intense investigation. In humans, the corpus luteum 

is the major site of progesterone expression with help from chorionic gonadotropin released 

by the early conceptus26. Blockade of progesterone during this time causes pregnancy 

loss26. Major production of progesterone switches to the placenta by 5–6 weeks gestation. 
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Maternal serum levels of progesterone raise post conceptionally and continue to elevate 

beyond parturition25, 27. However, progesterone has been given with variable success with 

to treat women with recurrent miscarriage28 and anti-progesterone given late in pregnancy 

can cause cervical ripening and delivery in some women29 suggesting a complex biology.

Human fetal membranes can produce30 and metabolize progesterone31, and locally produced 

progesterone metabolites may be important in uterine quiescence and activation32. The 

human uterus can produce an inhibitory progesterone receptor which increases before 

parturition33. Finally, progesterone receptor regulation at multiple levels in the cytoplasm 

and the nucleus may regulate functional progesterone activity leading to parturition34. 

Progesterone’s regulation during pregnancy in related non-human primates is similar to 

human pregnancy in several respects including dependence on early production of 

progesterone by the corpus luteum35, that early pregnancy can be interrupted by 

antiprogestins36 and that there is not systemic withdrawal before parturition37.

In rodents, the corpus luteum is the source of progesterone that maintains pregnancy. 

Luteolysis38, removal of the ovaries39, or administration of antiprogestational agents40 leads 

to uterine activation with increased effective signaling through oxytocin or other receptors 

and parturition. The difference in serum levels before parturition in mice and rats is said to 

make these animal a poor model for progesterone regulation in humans. However, further 

understanding of local progesterone metabolism and responsiveness is likely to reveal 

mechanisms that are to some extent important in humans and may be a natural stand in for 

women who do not respond to exogenous progesterone in the prevention of preterm birth. 

Rats also express an inhibitory receptor that increases in expression before parturition41.

In guinea pigs, in which early pregnancy can be disrupted by antiprogestins42, maternal 

serum levels, similar to what is seen in humans, rises from the time of conception to a peak 

in early gestation followed by a transient decrease in late gestation and increasing levels 

from that point beyond the time of parturition25. Rabbits and sheep in contrast have very low 

levels of progesterone in the serum as compared to humans, and in these animals, pregnancy 

brings a slight increase in serum progesterone and a rapid fall before parturition25.

Another important endocrine system related to pregnancy is the hypothalamic pituitary 

adrenal axis43, both of the mother and the fetus. Activation of the HPA axis by stress or 

other factors initiates a cascade involving release of corticotropin releasing hormone (CRH) 

from the hypothalamus, secretion of corticotropin (ACTH) from the anterior pituitary, and 

action of ACTH on the adrenal to release cortisol and other glucocorticoids which can then 

exert feedback suppression on their release. This system not only interacts with the immune 

system, but is also thought to be part of the mechanism underlying poor pregnancy outcomes 

related to emotional or physiologic stress4445. CRH, a principle mediator of the HPA axis is 

produced by the placenta and fetal membranes45, and may be a mediator of local estrogen 

production. In pregnant women, the possibility for multiple sources of increased systemic 

CRH presents an ongoing challenge in understanding the interaction between maternal 

stress, fetal stress and normal HPA development in the generation of parturition or preterm 

birth46. Animal models are likely critical in the examination of this issue in that they can be 
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used to isolate and understand the potential importance of maternal versus fetal HPA, and 

other factors47, 48 in this process.

In related non-human primates, the placenta also expresses CRH, and development of the 

fetal adrenal and activation of the fetal HPA axis generate important support signals for 

normal labor48. Compared to humans, the biochemistry of adrenal steroid production and the 

development of the fetal adrenal gland in various non-human primates show subtle 

differences that may need to be considered in choosing a primate model to examine the role 

of the HPA axis in normal development or prematurity49.

In rats and mice the HPA axis expresses important differences from that found in humans. 

For example, the major product of HPA axis activation in humans is cortisol, while that in 

most rodents it is corticosterone50. Moreover, the development of the fetal adrenal gland in 

rats and mice is markedly different with major relative deficiencies in important enzymes 

and preference for different substrates. In these species, the response to stress may lead to 

fundamentally different means of pregnancy failure, including a decreased level of 

circulating progesterone51. While rodent models may not be ideal for examination of the 

role of the HPA axis in normal pregnancy, evolving rodent models may be of interest in 

understanding the interaction of the HPA axis and stress in parental behavior52.

Sheep have been used as a model of maternal53 and fetal HPA axis function during 

pregnancy. In this animal model, it is the development and activation of the fetal HPA that is 

the primary driver of parturition54, and stresses such as hypoxia activate the HPA axis in 

sheep and lead to preterm labor55

Immune system

The maternal-fetal interface in humans includes not only close contact between maternal and 

fetal cells within the placenta and uterus8 but also within the maternal and fetal circulations, 

as cellular traffic has been shown in either direction56, 57. The expression of proteins unique 

to the mother on fetal cells has raised a decades-long debate over the critical pathways and 

mechanisms needed to assure both immune tolerance and protection of the fetus from 

infection58. Humans can mount an immune response against fetal antigens during 

pregnancy59, and it is clear that there is an intricate interaction between maternal immune 

cells and trophoblast60, 61. This interaction may be of benefit to the evolving conceptus62 or 

may be involved in early pregnancy loss or other adverse pregnancy outcomes63. Activation 

of local innate immunity within the myometrium is thought to play a role in parturition64, 

and in premature uterine contractions65. In humans, certain pathogens are more deleterious 

during pregnancy as compared to the non pregnant state66 while others are not67 and the role 

of the placenta as a safe harbor for evolving pathogens has been described68. Some infection 

syndromes that occur in humans occur only under contrived conditions in animals69. 

Moreover, some organisms, such as CMV are different in different hosts70. Both the 

peculiarities of the immune response and the infectious agent must be taken into 

consideration when using an animal model to understand the function of the immune 

response during pregnancy.
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The maternal- fetal interface in primates expresses similar oligomorphic Major 

Histocompatibility (MHC) molecules71 and other immune modulating factors48 as are found 

in humans. Similar populations of immune cells have also been observed in the primate 

uterus and placenta during pregnancy72–74. Moreover, shared susceptibility to certain 

infections exists75. In addition, the high degree of sequence similarity between key human 

and non-human primate protein sequences has supported the use of anti-human antibodies in 

ELISA and other immune assays to examine the immune response in non-human primates. 

These factors have made primate models useful for the study of infection, immunity and 

adverse pregnancy outcome.

Mice have also been used extensively to model both maternal innate and adaptive immunity. 

There has been extensive study on the trafficking of cells across the maternal-fetal 

interface76–78 and on the intricate interaction between trophoblast and innate immune cells 

in gestation79, 80. While there are some differences in the phenotype of natural killer (NK) 

cells at the maternal-fetal interface81, and differences in the diversity of the MHC molecules 

expressed on trophoblast subpopulations in humans and mice82, both systems have been 

used to delineate specific mechanisms and paint a picture of NK cells as “educable”83, 84, 

supportive of placental structure and development82, but potentially participating in 

disruption of pregnancy85 (and see below).

The mouse has also been used to examine maternal T cell regulation during pregnancy. As 

in the human, the pregnant mouse can generate a fetus specific immune response77, 

including effector and regulatory T cells86, 87. An advantage to the mouse is the ability to 

vary the genetic difference between mother and fetus. For example, some strains of mice 

respond to the male antigen, H-Y, and thus maternal immunity can be studied in a situation 

where mother and fetus are genetically identical, except for the expression of proteins 

relevant to maleness. The so- called anti H-Y response is generated in mouse pregnancy77, 

and has been shown to shown modulate both CD488 and CD889 maternal T cells. Several 

genetically modified antigen systems have been used to examine maternal anti fetal 

immunity in pregnant mice90. Although human but not mouse T cells can present antigen 

via MHC II, the mouse has also been used to examine fetal antigen presenting cells during 

pregnancy91, 92. Integrated studies in mice and humans will likely increase our knowledge of 

the function of the immune system during pregnancy and reveal the presence and 

importance of specific pathways.

Guinea pigs and humans have similar immune systems making them a useful tool in the 

study of relevant human infectious diseases93. Guinea pigs are extensively used in models of 

anaphylaxis and allergy94. Many tools are now available to examine the immune system in 

these animals95.

The rabbit has also been used for a variety of immunology and infectious disease research. 

The whole genome of the rabbit has been sequenced and utilized to determine possible 

genomic differences in loci responsible for immunity96.

As in humans and mice, systemic immunity during pregnancy has been examined in sheep. 

Some studies have found no alteration during pregnancy97 while other studies have found 
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the sheep produces pregnancy-specific agents that can suppress immune responses98. In 

human pregnancy, there is a systemic turnover of a subtype of T cells, bearing gamma and 

delta chain T cell receptor in the peripheral blood99. These gamma-delta T cells are also 

present in the deciduas100 and may play a role in fetal protection101. A highly diverse 

population of gamma delta T cells is present in sheep uterus during pregnancy, providing 

large numbers of cells for study102, 103. Pigs have also been studied to understand immunity 

at the maternal- fetal interface, and for example underlined the importance of uterine NK 

cells104.

Length of gestation and fetal development

In human and other primate gestation, implantation is ~ 7–8 days after ovulation followed 

by a 10 week long pre-embryonic and embryonic period28. This is followed by a prolonged 

fetal period resulting in a highly developed fetus in relatively low numbers. During this time 

multiple insults inside and outside the uterus can disrupt both pregnancy and fetal well 

being. For ease of experimentation, a shorter length of gestation, such as found in most 

rodents (i.e. ~ 19–22 days) may be desired. However, the rodent fetus is born less developed 

than the human105. Currently, tissue-specific inducible promoters, Cre-recombinase and 

related technology allow for the generation of genetically-based time and tissue-specific 

modulation of gene expression during mouse pregnancy. These changes can be examined in 

the developing fetus and the newborn. However this technology may be difficult to obtain, 

and mice with the desired modifications may not exist. Moreover, the short gestation and 

small fetal size constrain the ability to make specific surgical or physiologic interventions 

and relate these to fetal development. While rats are relatively larger, and more amenable to 

these interventions, the technology to generate targeted gene expression or deletion in rats is 

less-developed or utilized106.

The guinea pig is a rodent used in many studies of maternal environment and fetal 

development, as it has a longer gestation of 68 days2, and its offspring are born highly 

precocious105 with a mature central nervous system at birth105. Another rodent with a longer 

gestation is the “spiny mouse” of the genus Acomys (not Mus as in mice). This small rodent 

has a relatively long gestation (38–42 days) and gives birth to a small litter (2–3 pups) that 

are born highly developed107. These exotic animals however are difficult to manage due to 

their delicate skin108. There is a long and distinguished history using rabbits to understand 

early development16 In rabbits, ovulation is induced by mating, resulting in an exactly 

defined pregnancy and embryonic age assessment. Larger animals, such as sheep, have long 

and lower order gestations (singleton/twin) and produce highly developed offspring and thus 

have been used for studies of pregnancy insult on fetal development109.

Preeclampsia

Preeclampsia is a pregnancy-related syndrome that affects multiple systems and clinically 

presents as hypertension, proteinuria, edema and in its more sever forms evidence of fetal 

compromise, neurologic abnormality, liver and hematologic dysfunction110. The complexity 

of the syndrome defies the development of a panel of genetic screens or biomarkers111. 

While the basic cause of the disease is as yet unknown, multiple hypotheses exist. These 

include failure of placentation112 and thus reduced utero-placental perfusion, intolerance to 
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volume expansion generated by pregnancy113, infection114 and inflammation115. It is hotly 

debated as to whether failed placentation is caused or a by-product of broken maternal 

immune tolerance116, 117. Many agree that a common final pathway to the manifestation of 

the disease is endothelial cell damage occurring in a variety of vascular beds118.

While the disease is thought of as being uniquely human, many recognize the potential 

positive role of integration of research in human and animal models in understanding the 

underlying mechanisms119, 120. The hallmarks of preeclampsia most sought after in animal 

models are hypertension, renal dysfunction (proteinuria), and further, conditions such as 

poor trophoblast invasion and endothelial damage. Current models address some of these 

issues.

There have been rare reports of spontaneous preeclampsia in related non-human primates121. 

These species have also been used to develop models of pregnancy-related hypertension and 

proteinuria based on injection during mid- gestation of inflammatory mediators, such as 

Tumor Necrosis Factor122 or antibodies to interleukin 10123.

There are strains of mice that spontaneously develop hypertension, proteinuria, smaller 

litters and fetal demise and these have been used to model preeclampsia124, 125. There are 

also models of spontaneous pregnancy-associated hypertension with fetal compromise in 

rats126. There also exist genetically manipulated mouse and rat models. In one interesting 

genetic model of hypertension in pregnancy, female mice transgenic for human 

angiotensinogen are mated to males transgenic for human rennin127. The resulting 

pregnancy is marked by distortion of placental anatomy, elevation of circulation Vascular 

Endothelial Growth Factor (VEGF) receptor in mid gestation (12–13 of 19–20 days), 

hypertension, fetal intrauterine growth retardation and systemic maternal disorders including 

proteinuria and convulsion. In the rat version of this model128 the hypertensive disease 

experienced by the pregnant rat is thought related to secretion of rennin from the placenta 

into the maternal circulation129. Interestingly, the extent of trophoblast invasion into the 

spiral arteries in these pregnancies was increased compared with non pregnant animals, and 

the breeding, when done in reverse (dams transgenic for rennin males for angiontensinogen) 

was associated with lower blood pressure. Overall studies in humans, in vitro, and in animal 

models have yielded interesting hypotheses surrounding the placenta as a independent factor 

in the development of preeclampsia. Animal models, in conjunction with genetic studies in 

humans113 will likely elucidate an important underlying mechanism(s) for the disease.

To model the presumed decrease in placental perfusion that occurs as part of the mechanism 

proposed to incite preeclampsia130, workers have ligated various levels of the uterine artery. 

The RUPP or reduced uterine perfusion pressure model (reviewed in131) is performed in rats 

and several other animals. In rats the model is performed at around 14 days of gestation by 

placing a clip above the aortic bifurcation and on both sides of the uterine arcade to prevent 

utero-ovarian collateral flow. This results in a 40% or more reduction in flow to the 

developing fetal-placental units, and the resulting disease includes hypertension, renal 

damage (proteniuria), increased vascular reactivity and small pups. In rats an alternative of 

this model is based on increased salt intake and administration of desoxycorticosterone 

acetate132, which generates hypertension, convulsions, proteinuria and renal lesions133.
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Other rodent models of reduced vascular function have utilized injection of inhibitors of 

nitric oxide (i.e. L-NAME (N-omega-nitro-l-arginine methyl ester134), or over expression of 

soluble VEGF receptor (sVEGFRI, sFLT1) or members of the Transforming Growth Factor 

β receptor complex (i.e. endoglin). Adenovirus–driven over expression of sFLT1 in pregnant 

rats leads to hypertension and proteinuria in a dose-dependent manner135, and this is 

enhanced by over expression of soluble endoglin136.

Other animals have also been used to develop models of preeclampsia. In guinea pigs there 

have been reports of a naturally occurring preeclampsia-like syndrome137. In addition, it has 

been observed that banding of the uterine arteries as well as transaction of the ovarian 

arteries before pregnancy results in later pregnancy hypertension, proteinuria and elevated 

creatinine138. Moreover, early observations of constriction of the aorta in pregnant rabbits 

revealed that such manipulation generated hypertension, proteinuria, weight gain, and 

reduced weight of the fetus139. Finally, sheep experience what is call toxemia of pregnancy, 

that appears to be a very different metabolic disorder as compared to preeclampsia140, but 

does include proteinuria and inflammation141.

Intrauterine growth restriction

In humans, intrauterine growth restriction (IUGR) can be an independent outcome of a fetal 

abnormality or related to placental insufficiency due to a number of maternal/environmental 

factors including poor nutrition, smoking and chronic infection, or in the context of 

preeclampsia142. Poor intrauterine growth has been extensively studied in animals143, and 

thus the time is ripe for more extensive integration of the information in humans and 

animals.

In related primates, IUGR has been induced using various levels of maternal nutrient 

restriction144, and surgical manipulation of placental blood supply145 among other 

interventions. In animals with litters, there is evidence that the fetuses placed at a distance 

from the main uterine artery are smaller146. In pigs, a proportion of piglets in a litter is 

naturally small146, 147.

In mice, genetic models of deficiency in key molecules such as eNOS have been generated 

and pups of these pregnancies show IUGR148 while their mothers do not show a 

characteristic mid-gestation drop in systemic blood pressure149. In mice and rats bilateral 

uterine artery ligation late in gestation leads to fetal intrauterine growth retardation, 

neurologic deficiency and metabolic derangement150. Uterine artery ligation at mid 

gestation (~day 30 of 70) in guinea pigs also produces growth restriction151.

Ligation of utero-placental vessels in rabbits on day 25 of a 31 day gestation produces small 

pups that show deficiencies in neurobehavioral development152. Administration of L-NAME 

on day 24–28 of gestation is also used to model IUGR in a rabbits and this model results in 

growth retarded fetuses and decreased flow, as determined by 3D power Doppler 

Angiography, in each utero-placental unit153.

In sheep, there are several models of fetal growth restriction109. These include maternal 

calorie restriction154 emobilization of the umbilico-placental arteries155, and disruption of 
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the uterine epithelium in close contact with trophoblast in the placenta156. Maternal 

hyperthermia gestation day 35–40/~147 gestation157–159 has been shown to produce 

asymmetrical growth restriction and decreased placental mass, and abnormal umbilical 

arterial and aortic Doppler velocimetry160, while placement of the mother in hypoxic 

conditions also limits fetal growth161. Some breeds of sheep are more amenable to these 

manipulations than others109, suggesting that with advanced technology and genome 

sequencing, these animals may be used to examine gene-gene- and gene-environment 

interaction in the development of this disease.

Recurrent miscarriage

Human pregnancy is less efficient than many other species, as nearly 50% of conceptions 

fail28. In humans, recurrent miscarriage is a complex syndrome that likely incorporates 

several types of defects in genetics, implantation, placentation, metabolism, and hormonal 

support of the conceptus28, 162 or stress163. Thoroughbred horses164 and commercial pork 

breeds165 also have a high rate of spontaneous abortion. One idea that drives the field is that 

disregulation of maternal innate or adaptive immunity initiates or contributes significantly to 

the disease166, 167. Immune modulation as a treatment in human disease has met with 

variable success, and this is still a matter of controversy168. Whether an initial metabolic, 

structural or related defect leads to immune activation and a subsequent deleterious response 

or an initial loss of immune regulation leads directly to tissue disregulation and destruction 

is still a matter of debate in some circles. Thus, the issue of immune-mediated recurrent 

pregnancy loss is one that is likely amenable to iterative studies in animal models and 

humans.

In primates, parental sharing of MHC has been correlated with decreased pregnancy 

success169. Moreover, administration of anti-progestational agents can produce early 

pregnancy loss, as in humans170. Primates have also been used to develop models of 

pregnancy loss related to infections171.

A well-known mouse model of pregnancy loss involves the breeding of a CBA strain female 

mouse with a male DBA strain male. Depending on the source and housing (level of 

pathogens present) of the mice, pregnancies can be affected by high levels of fetal-placental 

degeneration (referred to as “resorption”)172 and infiltration with NK and other immune 

cells173. In this model, resorption of the fetuses occurs at approximately day 9–12 of 

gestation174. Contributors to increased fetal loss in this model include stress175, 

inflammation176, 177 abnormal cytokine milieu within the placenta/decidua178, 179, disrupted 

regulatory immune modulation180, 181 and abnormal placental vascular development182, 183. 

Several methods of immune modulation184–187 have been shown to decrease fetal loss in 

this model, but few if any have been successfully translated to clinical care28. More recent 

models of pregnancy loss in mice involves chemically targeting86 depletion87 or genetic 

deficiency of a subpopulation188 of regulatory T cells in normal C57Bl/6 females mated to 

same strain or allogeneic males. An alternative immune- based models of pregnancy loss 

involved NK T cell activation in certain strains of mice189, and systemic immune activation 

leading to ovarian insufficiency190.

Bonney Page 10

Am J Reprod Immunol. Author manuscript; available in PMC 2015 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Study of the high rate of pregnancy loss in commercial pork breeds has further suggested the 

role of immune cells in supporting successful pregnancy191. Moreover, Guinea pigs (for 

example192) and Sheep193 have been used in models of early pregnancy loss in response to 

infection. Finally, autoimmune related loss, as in the antiphospholipid syndrome has been 

modeled in rabbits194.

Preterm birth/prematurity

The study of premature birth presents at least three major issues that are amenable to studies 

in animal models195. The first is the discovery of mechanisms leading to premature labor. A 

second pertains to delineating consequences of being born premature. Thirdly, animal 

models have been employed to devise ways to better manage the premature neonate. While 

the factors contributing to prematurity in humans are far from understood, emerging data 

suggests that preterm births fall into definable categories196. These categories include 

preterm births in women who have a history of preterm birth197, in women with multiple 

gestations198, women who are undergoing an infectious or inflammatory process199–201, 

women who undergo social and emotional stress202, and women who have medically 

indicated or physician-driven premature births203. While in general, animals are not said to 

experience preterm birth, there is variability in gestation within species. Recent data for 

example, suggests that there is significant variability in mouse gestation related to strain204 

or cytokine expression205.

Endocrine disruption

Progesterone has been used in various formats for the prevention of preterm birth206, 207. 

Clearly, there are patients who respond to progesterone, and those who do not. Only a 

proportion of women respond to vaginal progesterone, particularly if the cervix in shortened. 

Even amongst women with a tendency towards preterm birth as evidenced by a previous 

premature delivery, there are those who respond to regular administration of a progestational 

agent while others do not. Finally, with the reinstatement of progesterone and related agents 

in the past decade, there remains a significant incidence of preterm birth208. Use of animal 

models in conjunction with a more careful study of responders versus non responders209 in 

human trials of progesterone and related agents will enhance our understanding and 

management of pregnancy.

Decreased relative progesterone activity can be modeled in mice via oophorectomy or 

administration of agents such as RU486 in primates (see above). Preterm birth can also be 

generated in rabbits using RU486210. Novel models of endocrine disruption in mice211and 

likely other animals are being developed. In several animal models, a signal from the fetus, 

the placenta, or the endometrium leads directly or indirectly through a systemic response 

circuit to decreased relative progesterone activity and increased estrogen activity212, 213. 

This in turn leads to increased prostaglandin (increased production, decreased hydrolysis), 

uterine contractions, cervical ripening and subsequent rupture of membranes and expulsion 

of the fetus. For example, the stress response, thought to be mediated by cortisol is modeled 

in sheep by systemic administration of glucocorticoid214 or in the fetus215. The complexity 

of these models is likely to increase, and bring forth possible means to modify the process of 

disrupted endocrine function in premature birth34.
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Immune/inflammatory In very well studied models in mice (for examples216–218), 

rabbits219220, 221and primates222–224 exposure of the uterus to an inflammatory signal or 

infectious process leads to an increased local presence of inflammatory cells218, 225 and 

feeds into the mechanisms resulting in increased uterine contractions or cervical ripening 

and subsequent preterm birth. An interesting alternative inflammatory model involves 

injection of a major lung surfactant protein which is thought to activate uterine macrophages 

and lead to preterm birth213. Guinea pig uterus is particularly sensitive to mast cell secreted 

mediators, making this a potentially important model for examining the role of allergy an 

preterm birth226227.

A salient example of the iterative nature of successful research in animals and humans is the 

work surrounding Toll-like receptors and preterm birth. In the early 1960s, it was recognized 

that urinary tract infections in women were associated with preterm birth228, 229. The 1970’s 

brought forth reports that lippopysaccharide, a component of the outer membrane of gram 

negative bacteria interrupts early and late pregnancy in mice230 and rats231. In 1985, the Toll 

gene in Drosophila was cloned232. The early 90’s brought studies suggesting that LPS-

induced preterm delivery induced changes in local and systemic cytokines including tumor 

necrosis factor-alpha and interleukins 1,6, and 8233, 234. In the late 90’s, the drosophila Toll 

gene was linked to antifungal immunity and the delineation of the Toll-like receptor (TLR) 

family of proteins began235–237. At this time it was recognized that a certain strain of mice 

was hypo-responsive to LPS238. That these mice possessed mutations in the Tlr4 locus 

generated much excitement that Tlr4 was the innate receptor for LPS and the link between 

infection and LPS-mediated inflammation. The early 2000s brought studies trying to link 

polymorphisms in Tlr4 to LPS responsiveness, preterm labor, and preterm premature rupture 

of membranes in humans239. In the mid-late 2000s, investigators using mouse models 

determined that preterm delivery induced by bacteria expressing LPS is dependent on TLR4 

signaling.240 They delineated several relevant pathway constituents, including Myeloid 

Differentiation primary-response gene 88 (MyD88)241, nuclear factor kappa B(NFκB)242 

cytokines, such as tumor necrosis factor and others243 and prostaglandins244. At about this 

time began studies of expression and regulation of these molecules and their pathways in 

human placenta, uterus and decidua245, 246 and the correlation between Tlr4 expression and 

other adverse pregnancy outcomes in humans115, 247. Recently, a TLR4 antagonist was 

tested in a rhesus model for decreasing LPS-induced inflammation and uterine 

contractions223. Moreover, the role of other TLR molecules in preterm birth248–250 has 

generated experiments linking bacterial and viral co-infection with preterm birth251, 

suggesting synergy in signaling from two TLRs. Finally, data are developing that link 

circulating fetal DNA and yet other TLRS with this process252.

Important complications of prematurity in humans that are investigated in animal models 

include white-mater damage and cerebral hemorrhage which is thought to be the basis for 

cerebral palsy and learning disability253. Studies of preterm birth in humans have supported 

the idea that not only infection but also inflammation is a significant underlying cause of 

preterm birth254. In addition, this data has contributed to the idea that the fetus generates a 

significant inflammatory response under these conditions255 and that this response may 

subject the fetal brain to processes leading to cerebral palsy256. Several animal models have 
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been used to examine fetal neurologic insult in the context of maternal systemic infection or 

inflammation and the resulting preterm labor. These studies have included systemic 

injection of LPS in pregnant sheep257 and intrauterine injection in rabbits258 and in 

mice259–261. The mouse model of preterm birth initiated with injection of LPS revealed the 

important role of the cytokine interleukin 10262, 263. In addition, human studies have 

suggested the potential role of this cytokine in modifying preterm birth related brain 

injury264. The study of inflammation-related preterm birth and brain injury offers another 

opportunity for productive iterative study in humans and animals.

Adverse fetal programming

“Programming” is said to occur during “a critical period when the system is plastic and 

sensitive to the environment followed by loss of plasticity and a fixed functional 

capacity”265. “Fetal programming” in humans is said to occur as a result of adaptation to 

undernutrition in an adverse intrauterine environment contributes significantly to obesity, 

metabolic syndrome, and cardiovascular disease266. Increasingly, animal models are being 

used to delineate these mechanisms, and several models utilizing rats, mice, rabbits sheep, 

and nonhuman primates have been utilized (see Fischer16, Seki267, and Vuguin158 for 

reviews)]. Some of these models proceed through well recognized defects in fetal 

development, such as IUGR. This issue is one that is ripe for an iterative process involving 

studies in animals and humans. An area that would be particularly amenable to animal 

experimentation would be the examination of multigenerational effects of exposure during 

pregnancy268.

Is the future now? Bioinformatics and the iterative use of animal models

Although the relevant tissue in humans is sometime hard to access, genetic variability found 

from sampling peripheral blood can be informative in conjunction with specific gene 

manipulation in rodents. For example, technology exists to manipulate embryos by using 

viral constructs to target genes to trophoblast11, 269. It is therefore not difficult to imagine an 

experimental paradigm whereby candidate genes from human genetic studies would be 

considered for over expression or “knock down” in trophoblast using this technology. 

Pregnancies using these manipulated embryos could then be observed or further challenged 

and observed for preterm birth. In this way, and perhaps many others, bioinformatics, 

systems biology and the use of animal models could be woven into and increasingly 

efficient iterative method to understand the complex biology of abnormal pregnancy.

The overwhelming increase in genomic, transcriptomic, proteomic, metabolomic, and now 

microbiomic data in human disease requires continued development of methodologies to 

probe and understand existing data. Once understood, however, specific genes/proteins 

reveal themselves as important and these can then be analyzed in animal models270. 

Similarly, “omic” data from animal models can theoretically be used to query existing 

repositories from human studies271.

Finally, the large amount of data in both humans and animal will further advance our ability 

to mathematically model pregnancy272 and perform in silico experiments and use machine 
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learning273. The time may come when the iterative method I propose between human studies 

and animal models may require this third facet in the quest to understand reproduction.

Post note

This shallow overview was meant to increase curiosity and enhance discussion between 

clinicians and researchers who utilize animal models in the study of adverse reproductive 

outcomes. The solution to these problems will come from an integrative and iterative 

method that starts from clear identification of studies in animals in the literature, an 

enhanced understanding of the available models and the increased willingness to see value 

in what at first may seem obscure.
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