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Abstract

The goal of this systematic analysis is to provide a comprehensive review of the current cardiac 

magnetic resonance data on microvascular obstruction (MVO) and intramyocardial hemorrhage 

(IMH). Data related to the association of MVO and IMH in patients with acute myocardial 

infarction (MI) with left ventricular (LV) function, volumes, adverse LV remodeling, and major 

adverse cardiac events (MACE) were critically analyzed. MVO is associated with a lower ejection 

fraction, increased ventricular volumes and infarct size, and a greater risk of MACE. Late MVO is 

shown to be a stronger prognostic marker for MACE and cardiac death, recurrent MI, congestive 

heart failure/heart failure hospitalization, and follow-up LV end-systolic volumes than early 

MVO. IMH is associated with LV remodeling and MACE on pooled analysis, but because of 

limited data and heterogeneity in study methodology, the effects of IMH on remodeling require 

further investigation.
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In the setting of an acute myocardial infarction (MI), persistence of coronary artery 

occlusion for >40 min can lead to irreversible myocardial damage that spreads as a “wave 

front phenomenon” progressing from endocardium to epicardium (1,2). Although timely 

reperfusion is presently the best mechanism to salvage ischemic myocardium and limit 

myocardial necrosis, revascularization also can have detrimental effects by triggering 
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ischemic reperfusion injury that results in microvascular damage and further myocyte 

necrosis (3). Ischemic reperfusion injury can account for up to one-half of the size of the 

final MI (4). Depending on the severity of the ischemic injury, microvascular injury can lead 

to: 1) microvascular obstruction (MVO) only; and 2) MVO with intramyocardial 

hemorrhage (IMH) (4). The National Heart, Lung, and Blood Institute has emphasized 

microvascular damage and reperfusion injury after MI as important targets to improve 

outcomes (5). Although left ventricular ejection fraction (LVEF) traditionally has been used 

as a predictor of major adverse cardiac events (MACE), its use as the sole predictor has 

come under question (6).

Cardiac magnetic resonance (CMR) provides a comprehensive analysis of MI, including the 

assessment of myocardial scar, MVO, and IMH, and there is growing evidence that these 

parameters provide important information for predicting adverse left ventricular (LV) 

remodeling and MACE. This systematic state-of-the-art review will evaluate the literature 

examining the CMR parameters of MVO and IMH as biomarkers of adverse events after 

acute MI.

MICROVASCULAR OBSTRUCTION

MVO or “no reflow” refers to the small vessel changes that prevent adequate tissue 

perfusion despite revascularization and an open epicardial coronary artery (2). MVO is 

thought to be caused by an abrupt release of cytotoxic factors (7) that promote 

vasoconstriction, myocardial cellular edema (2,8), capillary endothelial cells swelling, and 

distal microembolization of atherosclerotic debris leading to plugging of vascular lumen 

with neutrophils, red blood cells, and platelets. MVO begins in the infarcted core and can 

increase in size for up to 48 h (9). MVO is reported to be present in up to 84% of the 

patients after ST-segment elevation myocardial infarction (STEMI) (10–12). The diagnosis 

of MVO can be made using angiography (13,14), echocardiography (15), nuclear 

scintigraphy (16), myocardial contrast echocardiography (17), or CMR. On angiography, 

microvascular blood flow is assessed using Thrombolysis In Myocardial Infarction flow 

grades, myocardial blush grade, and/ or corrected Thrombolysis In Myocardial Infarction 

frame count. The rate of myocardial uptake of microbubbles using contrast 

echocardiography has been used to assess MVO; however, this technique is limited by 

challenges of adequate acoustic windows, injection of microbubble contrast, and operator 

dependency (17). There are limited data using single photon emission computed 

tomography, and this has been used only in research applications (16). Of the available 

modalities, CMR provides the most comprehensive assessment of MVO.

MVO is detected on gadolinium-enhanced CMR as delayed or absent wash-in of contrast 

agent into the infarct zone. MVO as assessed by CMR is defined as “early” or “late” in 

reference to the timing of imaging relative to gadolinium administration (Figure 1). Early 

microvascular obstruction (EMVO) is identified by a prolonged perfusion defect on resting 

first-pass perfusion (FPP) imaging (18) or as a hypointense region in the core of the infarct 

on T1-weighted images obtained 2 to 5 min after contrast administration (19). Although FPP 

images have lower signal-to-noise ratio, spatial coverage, and ventricular coverage, a study 

comparing this technique with early T1-W imaging demonstrated concordance in 92% (20).

Hamirani et al. Page 2

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2015 January 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Depending on the severity of MVO, the absence of wash-in of gadolinium may persist for 

>10 min (21), resulting in a region of persistent hypoenhancement within the core of the 

infarct on conventional late gadolinium enhancement images, referred to as “late MVO” 

(LMVO). Late gadolinium enhancement imaging used for LMVO assessment has high 

spatial and contrast resolution (22) and enables full coverage of the LV myocardium. 

Because the wash-in of gadolinium into the infarct core is a dynamic process (23,24), it is 

presently unknown whether the rate of fill-in of the MVO area has prognostic importance 

and whether EMVO or LMVO is a better predictor of LV remodeling or MACE.

INTRAMYOCARDIAL HEMORRHAGE

IMH is considered a severe form of MVO and follows MVO development in the core of the 

infarct (25–27) with a tendency to expand for several hours after percutaneous coronary 

intervention (28,29). The cause includes vascular endothelial damage and accumulation of 

red blood cells in the myocardial extracellular space (30–34). It has been debated whether 

IMH is the cause or result of severe ischemic reperfusion injury (35). A high correlation 

between infarct size (IS) and IMH has been identified on histopathologic studies (r = 0.90); 

however, no correlation with the magnitude of early flow after revascularization (32,36,37) 

has been seen. Multiple factors contribute to the presence and severity of IMH, including the 

amount of collateral flow (25,38), ischemic preconditioning, extent of necrosis (25,33), 

distal coronary microembolization, and differences in individual risk factors, such as 

diabetes or smoking. IMH can be assessed with CMR using T2- or T2*-weighted imaging or 

parameter mapping sequences (Figure 2).

Most studies have used T2-weighted short-tau inversion recovery (STIR) or T2*-weighted 

gradient echo pulse sequences to assess for IMH. IMH appears as a hypointense region 

within the infarct on T2-weighted sequences because the hemoglobin breakdown products 

shorten the myocardial T2-relaxation time. Because the paramagnetic effects of hemoglobin 

breakdown products more strongly affect T2* relaxation, T2*-weighted imaging is thought 

to be more sensitive for the detection of IMH (39,40). However, T2*-weighted images have 

lower signal-to-noise compared with T2-weighted images and are more sensitive to off-

resonance artifacts. T2* values are lowest acutely in the IMH core, but gradually normalize 

to that of the rest of the infarct at 4 weeks because of extensive collagen deposition and 

absence of iron with resolution of MVO and IMH (41). IMH detected by both T2 (41,42) 

and T2* images has been correlated with the presence of hemorrhage on histopathologic 

analysis (kappa 0.96, p < 0.01) (43–45) (Figures 3 and 4). A recent study (46) in 14 patients 

with STEMI and 20 canines with acute reperfused MI suggests that T2* may be more 

suitable than T2 imaging techniques for assessing myocardial hemorrhage. The T2* 

decreased on average 54% in hemorrhagic infarctions and was 6% higher in 

nonhemorrhagic infarctions compared with remote myocardium. On the contrary, the T2 

was increased by 17% in hemorrhagic infarcts and by 38% in nonhemorrhagic infarcts in the 

canine model, reflecting the competing effects of hemorrhage, which tends to shorten T2, 

with that of edema, which increases T2 (46). More studies performing direct comparison of 

T2 and T2* techniques will provide a promising approach to differentiate MVO with and 

without IMH. In some cases, it is difficult to adequately differentiate MVO from IMH 

because both may appear as a hypointense region within the infarct (44,47,48). Furthermore, 
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MVO without hemorrhage can result in hypoenhanced regions seen on T2-weighted 

sequences because of low proton density in the infarct core (48). Thus, care must be used 

when distinguishing between MVO and IMH on T2-weighted images.

Pre-contrast T1-weighted inversion recovery images have demonstrated promise for 

detecting IMH in a porcine model of MI (49). As hemorrhage shortens T1, regions of 

hemorrhage appear bright on this sequence. In this study, the diagnostic sensitivity of the 

T1-weighted image was higher than that for T2*-weighted or T2-weighted imaging. This 

technique requires further clinical validation.

METHODS

We conducted a systematic review by searching PubMed for all published studies evaluating 

the relationship of MVO or IMH with LV remodeling and MACE through January 2014. 

The QUORUM diagram for our search methodology is presented in Figure 5. MACE are 

defined in studies as a composite of various secondary outcomes, including cardiac death, 

death, recurrent MI, congestive heart failure (CHF), CHF-related hospitalizations, unstable 

angina (50), embolic stroke (51), and atrial fibrillation, whichever occurred first. Variation 

in data presentation was identified.

We assessed the association of presence of EMVO or LMVO on clinical outcomes of 

MACE, cardiac death, CHF-related hospitalization, and recurrent MI. Studies were assessed 

by 2 reviewers (Y.H. and A.W.) to determine whether the studies met the specified inclusion 

criteria. A random effects meta-analysis using Mantel-Haenszel weighting was performed to 

calculate pooled odds ratios and 95% confidence intervals (CIs) for these outcomes. In 

studies that performed both EMVO and LMVO in the same subjects, a comparison of the 

difference in odds ratios for each endpoint between EMVO and LMVO was performed 

using an inverse-variance weighted meta-analysis with a variance estimate that took into 

account intra-study correlation between EMVO and LMVO (52).

We evaluated the association between EMVO and LMVO and LV function, volumes, and IS 

at baseline and on follow-up imaging. Because the majority of studies presented indexed LV 

volumes, indexed volumes were included in the analysis of LV volumes. Studies reporting 

only nonindexed volumes were excluded. Studies reporting data as median and interquartile 

range were excluded from the analysis, because the mean and variance could not be 

determined without using a normality assumption, which could not be verified without 

patient-level data. Inverse variance-weighted, random-effects meta-analysis of the mean 

differences in indexed LV volumes, ejection fraction (EF), and IS between patients with or 

without MVO on their initial imaging study after MI was performed for studies assessing 

EMVO or LMVO. To assess LV remodeling as a function of the presence or absence of 

MVO on the initial imaging study, a similar meta-analysis of the mean differences in 

volume EF and IS on follow-up studies obtained more than 4 months after the initial MI was 

performed.

Similar analysis was performed for IMH to assess the relationship between IMH and MACE 

and LV volumes and function. A random-effects meta-analysis with Mantel-Haenszel 
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weights was performed assessing the hazard ratio for endpoints of cardiac death, recurrent 

MI, and CHF/CHF hospitalization.

Meta-analysis was performed using Review Manager (RevMan) 5 version 5.1.7 freeware 

package (The Nordic Cochrane Centre, The Cochrane Collaboration, 2008, Copenhagen, 

Denmark). Heterogeneity was assessed with the I2 statistic, and funnel plots were performed 

to assess for publication bias. No formal meta-regression was performed to explore 

heterogeneity because of the variation in reporting of important covariates and the scope of 

this review.

RESULTS

The pooled mean prevalence of EMVO, LMVO, and IMH in the studies reviewed was 65% 

(95% CI: 63% to 66%), 54% (95% CI: 52% to 56%), and 35% (95% CI: 31% to 38%), 

respectively (Online Table 1). Some of the variability in the prevalence of MVO between 

studies may be due to differences in study populations, contrast doses, pulse sequences, or 

timing of imaging post-contrast. LVEF, IS, and LV volumes were assessed on the baseline 

CMR in 12 of the 33 studies; however, only 7 studies analyzed LV functional information at 

4 months to 1 year of follow-up. All the studies included patients presenting with acute MI 

who underwent thrombolysis or percutaneous coronary intervention between 12 and 72 h 

after symptom onset. One study exclusively included patients with non-STEMI (53).

EFFECT OF EMVO ON LV REMODELING AND MACE

Our review identified 10 studies (n = 698) examining the direct impact of EMVO on LV 

function, volumes, and remodeling, and 5 studies (791 patients) evaluating its impact on 

MACE. EMVO was assessed on 1.5-T CMR scanners in 9 of 10 studies. EMVO was 

assessed 24 h to 1 week after MI using the FPP technique in 6 studies and early post–

gadolinium enhancement T1-weighted imaging in 5 studies (19,20,24,54–56). The study by 

Ørn et al. (55) is unique because it assessed the presence of EMVO at multiple time points 

after MI, but the results were similar to those of the companion studies.

The majority of the studies identified EMVO to be independently associated with LV 

remodeling and MACE (12,19,20,24,25,50,53,55–62). The pooled analysis is presented in 

Table 1, Figure 6, and Online Table 4. On review of studies that assessed LV remodeling 

both immediately after MI and at follow-up (20,24,50,55), there was a greater difference in 

EF and in particular indexed LV volumes at follow-up compared with baseline indicating 

differences in remodeling between cases with and without EMVO.

The study of 100 patients with acute MI by Weir et al. (12) noted that EMVO was 

associated with significantly more shrinkage of IS (delta IS) at follow-up. In our review of 3 

studies inclusive of 106 patients (20,24,56) with both baseline and follow-up IS, a similar 

trend was identified. Infarct extent and infarct transmurality when studied along with IS 

were noted to be increased in the presence of EMVO (12,20,58).
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Figure 6 shows the impact of EMVO on MACE, cardiac mortality, recurrent MI, and 

CHF/CHF hospitalization. Although there was a trend toward increased cardiac mortality, 

MI, and CHF hospitalization, the pooled odds ratios were not statistically significant.

Because studies used different methods for quantifying the size of EMVO, the effects due to 

the size of the region of MVO could not be assessed. In a study by de Waha et al. (63) in 

438 patients, the extents of EMVO (hazard ratio: 1.03; 95% CI: 1.02 to 1.05) and EMVO/IS 

(hazard ratio: 2.22; 95% CI: 1.60 to 3.08) were identified as independent predictors of 

MACE (62). Bruder et al. (64) identified a cutoff EMVO value of >0.5 (% of LV mass) to 

predict MACE (odds ratio: 3.9; 95% CI: 1.1 to 13.9). A trend toward increased MACE in 

the presence of EMVO with increasing IS (% LV) from 18% to 30% to >30% was 

recognized by Wu et al. (50).

EFFECT OF LMVO ON LV REMODELING AND MACE

We identified 9 studies (n = 631) (12,19,24,53,65–68) looking at the direct impact of LMVO 

on LV remodeling and 7 studies (n = 2,132) (53,56,57,66,69–71) evaluating its impact on 

MACE (Online Tables 5A to 5D). The majority of these studies demonstrate an effect of 

LMVO on both LV remodeling and MACE in multivariate analysis (Table 1, Figure 7). The 

presence of LMVO predicted a greater reduction in LVEF at both baseline and follow-up. 

The point estimates for LV volume were greater at follow-up, which would be consistent 

with increased LV remodeling in the presence of LMVO (Table 1).

LMVO has been independently associated with IS and reduction in IS at follow-up 

(60,65,66). In multiple studies there was a high correlation between LMVO and IS (r = 0.75 

to 0.77) (65,66). However, in a study by Ørn et al. (55), when the presence of LMVO at 2 

days versus 1 week after MI was compared, only its presence at 2 days predicted IS at 1-

year follow-up. Ørn et al. (55) did not identify a correlation between size of LMVO and IS, 

but Cochet et al. (56) detected a significant correlation between them (r = 0.65, p <0.0001). 

Some studies recorded LMVO as present exclusively in the setting of transmural necrosis; 

thus, on multivariate analysis the predictive power of LMVO for LV remodeling was lower 

(72,73). Some studies have seen an independent predictive utility of presence and absence of 

MVO for LV end-diastolic volume (74,75) and LVEF beyond that of IS (76). Most studies 

(65,74,75,77–79) did not find an additional utility of assessing extent of LMVO to predict 

LV volumes or LVEF. In our meta-analysis, the presence of LMVO was significantly 

associated with cardiac death, recurrent MI, and CHF/CHF hospitalization (Figure 7). In 

studies that performed multivariate analysis, 4 (53,56,67) demonstrated an independent 

impact of LMVO on MACE, whereas 3 (69–71) did not.

A direct comparison of the studies in regard to LMVO size could not be performed because 

of variation in methods used to quantify the size of the LMVO (i.e., % LV mass to LV 

segments with LMVO [score] and MVO/IS ratio) as with EMVO. However, apart from 4 

studies (69–71,80,81), most have demonstrated increasing LMVO size to correlate with 

MACE (51,57,66,78,82–84) on multivariate analysis. A study by Jensen et al. (82) 

suggested a cutoff of LMVO >3.9% of LV volume to predict MACE. Compared with the 

other measurements of size, the MVO/IS ratio was noted to have the strongest impact on 

MACE in a study by de Waha et al. (63). Of note, LMVO size emerged to be independently 
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associated with MACE and IS in most of the studies. In the study by Hadamitzky et al. (84), 

in which multivariate analysis included GRACE score, IS by both CMR and single photon 

emission computed tomography and LMVO size, only GRACE score and LMVO size were 

independent predictors of MACE. Furthermore, LMVO allowed separation between a high-

risk group (event rate 14%, 35% of patients) and a relatively low-risk group (event rate 

5.5%, 65% of patients).

COMPARISON OF EMVO VERSUS LMVO

We identified 13 studies that assessed both EMVO and LMVO. Some compared the 

predictive value of EMVO versus LMVO for LV remodeling and MACE (53,55–57). A 

decrease in MVO from 70% to 62% to 59% from early, to intermediate, to late imaging has 

been observed in a study by Nijveldt et al. (24). A shrinkage in absolute MVO size, 

MVO:IS, and MVO transmurality between early and late imaging also is seen and is thought 

to be related to diffusion and collateral blood flow (69). Thus, EMVO is generally 

considered more sensitive (60,61), whereas LMVO is more specific for diagnosing 

microvascular damage (57,85). A high correlation is noted between EMVO and LMVO with 

correlation coefficients in the range of 0.52 to 0.78 (56,73).

In our meta-analysis of the data from 3 studies directly comparing EMVO and LMVO in the 

same patients, LMVO had a statistically higher odds ratios for predicting MACE (delta odds 

ratio: 2.56, p < 0.001), CHF death (delta odds ratio: 2.19, p = 0.035), and recurrent MI (delta 

odds ratio: 2.27, p = 0.009), with a trend toward a statistically higher estimate of cardiac 

death (delta odds ratio: 2.07, p = 0.10), assuming a correlation coefficient of 0.7 between 

EMVO and LMVO.

Although various studies have identified both EMVO and LMVO (56) or EMVO only (53) 

to be independently associated with MACE and LV remodeling, the preponderance of data 

favors LMVO to have the strongest relationship (57,76). In a study by Cochet et al. (56), 

LMVO had a greater predictive value for MACE (odds ratio for EMVO: 2.5; 95% CI: 1.0 to 

6.2; p = 0.045 vs. odds ratio for LMVO: 8.7; 95% CI: 3.6 to 21.1; p < 0.001). The 

comparative sensitivity, specificity, and accuracy of EMVO versus LMVO for the prediction 

of MACE were 86%, 36%, and 48% versus 84%, 65%, and 70%, respectively, in this study.

EFFECT OF IMH ON LV REMODELING AND MACE

We identified 9 studies (1,106 patients) that examined the relationship between IMH and LV 

remodeling. The pooled mean differences in indexed volumes, IS, and EF between subjects 

with and without IMH are presented in Table 2 and demonstrate that IMH is associated with 

larger volumes, reduced EF, and increased IS.

There was variability in the imaging techniques used to assess IMH, and most studies have 

used T2-weighted STIR imaging, rather than T2* pulse sequences. Only 1 study (54) used 

both T2 and T2* to assess IMH, which was defined as present only when both T2 and T2* 

were positive. Two other studies (27,86) used T2* only. IMH was seen predominantly in 

anterior infarcts (27) and in infarcts involving >80% of LV thickness (86). O’Regan et al. 

(86) showed significantly reduced LVEF and increased LV volumes in patients with IMH on 

univariate analysis and a strong collinearity of IMH and MVO, whereas Ochiai et al. (27) 
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detected no improvement in 1-month follow-up EF (LVEF 47 ± 9% vs. 51 ± 10%) and 

increased IS at baseline in the presence of IMH; however, multivariate adjusted analysis was 

not performed. Mather et al. (54) found an independent correlation of IMH with LV 

remodeling and a significant improvement of diagnostic area under the curve (from 0.699 to 

0.826) by adding IMH to a multivariate model including LVEF and IS. Decreased EF 

acutely and dilated LV volumes without a significant recovery of EF and increased LV end-

diastolic volume were seen at 3 months follow-up.

The remainder of the studies (75,81,87–89) used T2 STIR. IMH was more prevalent in 

patients undergoing rescue percutaneous coronary intervention (23% vs. 7%; p < 0.0001) 

compared with primary percutaneous coronary intervention (81). These studies identified 

higher IS in the presence of combined MVO and IMH versus MVO only, with a high 

correlation between IS and IMH (r = 0.53, p < 0.001) (87). One study identified IMH on 

multiple regression analysis (inclusive of IS, MVO, infarct location, and transmurality and 

time to percutaneous coronary intervention) to be strongly associated with adverse LV 

remodeling (87) at 4 months (R2 = 0.17, F-value: 20.19, p < 0.001). This study also showed 

that for all IS quartiles, IMH was associated with larger LV end-systolic volume. However, 

Husser et al. (81) showed that although IMH was univariate predictor of larger LV end-

systolic volume on follow-up (odds ratio: 1.54; 95% CI: 1.15 to 2.07; p = 0.004) (81), it did 

not improve the area under the curve for predicting LV end-systolic volume when late 

gadolinium enhancement and LVEF data were incorporated into the model (OR: 0.914; 95% 

CI: 0.875 to 0.952 vs. OR: 0.913; 95% CI: 0.875 to 0.952; p = 0.9) (81). Likewise, IMH was 

not a predictor of baseline or follow-up LVEF in multivariate analysis in other studies 

(75,88). Thus, it is not entirely clear whether IMH will have significant incremental utility 

for predicting IS, ventricular volumes, and functions in models that include other parameters 

of the infarct or LV structural/functional parameters. Without a larger head-to-head study 

using both T2-W and T2* techniques, it is difficult to determine which technique has 

superior performance for detecting IMH.

Three studies, using T2 STIR (81,89,90), including a total of 991 patients with a follow-up 

of 6 months to 3 years, examined the impact of IMH on adverse cardiovascular outcomes. 

The pooled univariate hazard ratio for of IMH for predicting MACE was 3.88 (95% CI: 2.11 

to 7.13). There are mixed results for the predictive utility of IMH in the presence of other 

infarct characteristics. One study demonstrated a trend toward more MACE in the presence 

of IMH with MVO compared with MVO without IMH (p = 0.09) (90). In the study by Eitel 

et al. (89), inclusion of IMH in the risk model (which included age, infarct location, time to 

treatment, LV function, and IS) increased the C statistic from 0.76 to 0.80 (p = 0.046). 

However, this study did not include MVO as a covariate. In the study by Husser et al. (81), 

although IMH independently predicted MACE, the addition of IMH to a model, which 

included late gadolinium enhancement and cine-functional parameters, did not improve the 

area under the curve for predicting MACE. Thus, although IMH may independently predict 

MACE, its incremental value over other CMR parameters requires further clarification.
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ASSOCIATION BETWEEN IMH AND MVO

In most studies, IMH is identified only in the presence of MVO. The correlation of IMH has 

been reported to be 0.30 for EMVO and between 0.89 and 0.93 for LMVO (86,88). There 

are 2 theories about the association of MVO with IMH: 1) MVO leads to endothelial 

damage with subsequent leakage of red blood cells into the interstitial space, leading to 

IMH; and 2) IMH occurs as part of ischemia–reperfusion injury and hemorrhage, which in 

turn leads to greater myocardial swelling and compression of the microvasculature, thus 

worsening MVO (75,79,88). The study by Eitel et al. (89) that compared the graded impact 

of no MVO, MVO only, and MVO with IMH on LV remodeling or MACE detected a strong 

incremental association. Thus, there is likely a spectrum between MVO and MVO with 

IMH, with the presence of IMH suggesting greater cellular damage resulting in greater 

adverse remodeling and poorer outcomes.

STUDY LIMITATIONS

A principal limitation of the present analysis is that most studies of MVO and IMH are 

single center with small patient populations. In addition, variable imaging techniques and 

timing of imaging after MI have been used, leading to significant heterogeneity of results in 

the literature. MVO and IMH are dynamic processes after MI. Differential timing of 

assessment may lead to over- or underdiagnosis. The populations studied may suffer from 

selection bias because they may represent only the patients stable enough to undergo CMR 

assessment. Further bias may be introduced by the exclusion of patients with prior MI, 

severe heart failure, or cardiac arrhythmias. The estimates of effect sizes presented in this 

review examine only MVO and IMH as univariate factors without correction for other 

important covariates. However, the variation in techniques used and the heterogeneity in 

reporting of the data for these covariates limit the potential of meta-regression to determine 

the true prognostic utility of IMH and MVO in the presence of other factors, such as LV 

function and IS, which have been shown to affect MACE.

CONCLUSIONS

In overall pooled analysis, both EMVO and LMVO were associated with lower EF, larger 

ventricular volumes and infarct at baseline, and worse adverse LV remodeling at later time 

points after MI. LMVO was demonstrated to have a stronger relationship with MACE and 

the individual outcomes of cardiac mortality, recurrent MI, and CHF/CHF hospitalization 

compared with EMVO. IMH also predicted MACE; however, there is a smaller body of 

literature for IMH and limited direct comparisons of IMH and MVO. The current literature 

is limited by the preponderance of single-center studies using a variety of techniques with 

imaging at different time points after infarction. A multicenter study or registry with 

controlled inclusion criteria, standardized methodology, and timing relative to infarction is 

clearly needed to better assess the independent impact of both MVO and IMH on LV 

remodeling and MACE. Future advances in CMR pulse sequences will enable improved 

quantification of the extent and severity of MVO and IMH. CMR is well poised to study 

novel therapies to predict and reduce ischemic reperfusion injury, and provides a 

comprehensive multiparametric assessment of MI including MVO and IMH.
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ABBREVIATIONS AND ACRONYMS

CHF congestive heart failure

CI confidence interval

CMR cardiac magnetic resonance

EF ejection fraction

EMVO early microvascular obstruction

FPP first-pass perfusion

IMH intramyocardial hemorrhage

IS infarct size

LMVO late microvascular obstruction

LV left ventricular

LVEF left ventricular ejection fraction

MACE major adverse cardiac events

MI myocardial infarction

MVO microvascular obstruction

PSIR phase-sensitive inversion recovery

STEMI ST-segment elevation myocardial infarction

STIR short-tau inversion recovery
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FIGURE 1. Cardiac Magnetic Resonance (CMR) Images From a 46-Year-Old Man With 
Diabetes and Chest Pain
(A) First-pass perfusion (FPP) image shows a region of hypoperfusion in the anteroseptum 

(early microvascular obstruction [EMVO]). (B) Phase-sensitive inversion recovery (PSIR) 

sequence reveals presence of myocardial infarction (MI) with large area of late 

microvascular obstruction (LMVO). These findings were consistent with an acute MI in a 

diagonal branch that was originally missed on (C) cardiac catheterization (arrow shows 

proximal diagonal branch obstruction).
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FIGURE 2. Example Images From a Study of Reperfused Acute MI in a Porcine Model
The images from the first animal (top) show (A) decreased perfusion in the mid-anteroseptal 

wall on FPP imaging, (B) an area of intramyocardial hemorrhage on T2* mapping, and (C) a 

corresponding hypointense area on phase-sensitive late gadolinium enhancement imaging, 

consistent with microvascular obstruction (MVO) with IMH. Images from the second 

animal (bottom) (D) demonstrate an area of reduced perfusion on FPP imaging, (E) T2* 

maps do not demonstrate any IMH, and (F) late gadolinium enhancement images 

demonstrate the absence of MVO or IMH.
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FIGURE 3. Transmural Anteroseptal and Lateral Hemorrhagic MI in a Patient Who Died of 
Cardiogenic Shock After Acute MI and Who Had Undergone Coronary Recanalization
Gross anatomic image obtained at the time of autopsy (A), histology image after staining 

with Heidenhain trichrome stain (B), and ex vivo T2 CMR image from the short-axis slice 

(C) show the changes. Adapted with permission from Basso et al. (43).
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FIGURE 4. Images From a Mongrel Dog in Which MI Was Experimentally Induced
CMR was performed day 3 after reperfusion in which T2*-weighted gradient echo imaging 

was performed. Ex vivo, thioflavin S imaging, and triphenyl tetrazolium chloride staining 

were performed to assess for MVO, hemorrhage, and myocardial necrosis. Adapted with 

permission from Kumar et al. (45). CMR = cardiac magnetic resonance; LGE = late 

gadolinium enhancement; TTC = triphenyl tetrazolium chloride.
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FIGURE 5. QUORUM Diagram Showing Details of the PubMed Search Conducted Through 
January 2014 on 3 Topics
1) MVO and left ventricular (LV) remodeling; 2) MVO and major adverse cardiac events 

(MACE); and 3) IMH and LV remodeling. IMH = intramyocardial hemorrhage; IS = infarct 

size; LGE = late gadolinium enhancement; LV = left ventricular; LVEDD = left ventricular 

end-diastolic diameter; LVEF = left ventricular ejection fraction; LVESD = left ventricular 

end-systolic diameter; MACE = major adverse cardiac events; MVO = microvascular 

obstruction.
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FIGURE 6. Pooled Odds Ratios for the Association of EMVO and Adverse Cardiac Outcomes
(A) MACE, (B) cardiac death, (C) recurrent MI, and (D) congestive heart failure (CHF) or 

CHF-related hospitalizations. CI = confidence interval; MVO = microvascular obstruction.
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FIGURE 7. Pooled Odds Ratios for the Association of LMVO and Adverse Cardiac Outcomes
(A) MACE, (B) cardiac death, (C) recurrent MI, and (D) CHF or CHF-related 

hospitalizations. Abbreviations as in Figure 6.
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TABLE 1

Mean Difference (IV and 95% CI) From Studies of Impact of EMVO and LMVO on Baseline and Follow-Up 

(4 Months to 1 Year) LVEF, LVEDV, LVESV, and IS

Mean Difference (IV, Random, 95% CI) From Pooled 
Analysis
(EMVO)

Mean Difference (IV, Random, 95% CI) From Pooled 
Analysis
(LMVO)

Baseline

EF (%) −5.21 (−7.13 to −3.30)* −5.82 (−8.21 to −3.43)*

IS (% LV) 10.71 (8.49 to 12.92)*  13.01 (9.95 to 16.07)*  

LVEDVi (ml/m2) 6.73 (3.32 to 10.14)†    5.26 (−1.08 to 11.60)‡

LVESVi (ml/m2) 6.73 (6.10 to 7.37)*  9.06 (1.76 to 16.3)§ 

Follow-Up (4 Months to 1 Yr)

EF (%) −7.44 (−9.07 to −5.80)   −7.76 (−9.63 to −5.90)*

IS (% LV) 6.85 (3.65 to 10.06)†   6.91 (0.35 to 13.47)‖

LVEDVi (ml/m2) 16.44 (13.10 to 19.77)* 17.14 (7.20 to 27.08)  

LVESVi (ml/m2) 13.08 (10.26 to 15.90)* 19.59 (6.76 to 32.42)#

*
p < 0.00001.

†
p < 0.0001.

‡
p = 0.10.

§
p = 0.02.

‖
p = 0.04.

¶
p = 0.0007.

#
p = 0.003.

CI = confidence interval; EDV = end-diastolic volume; EF = ejection fraction; EMVO = early microvascular obstruction; ESV = end-systolic 
volume; IS = infarct size; IV = inverse variance; LMVO = late microvascular obstruction; LV = left ventricular; LVEDVi = left ventricular end-
diastolic volume index; LVESVi = left ventricular end-systolic volume index; MVO = microvascular obstruction.
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TABLE 2

Mean Difference (IV and 95% CI) From Studies Assessing the Impact of IMH on Baseline LVEF, LVEDV, 

LVESV, and IS

Mean Difference (IV, Random, 95% CI)
From Pooled Analysis

(Baseline)

Mean Difference (IV, Random, 95% CI)
From Pooled Analysis

(11 Days to 6 Months Follow-Up)

EF (%) −8.81 (−11.13 to −6.49) −10.86 (−13.08 to −8.64)*

IS (% LV) 14.96 (11.54 to 18.37)* 11.55 (8.25 to 14.85)*  

LVEDVi (ml/m2) 13.24 (9.32 to 17.16)*  17.44 (10.91 to 23.97)*

LVESVi (ml/m2) 14.62 (11.80 to 17.43)* 17.33 (13.67 to 20.99)*

*
p < 0.00001.

IMH = intramyocardial hemorrhage; LVEDV = left ventricular end-diastolic volume; LVEF = left ventricular ejection fraction; LVESV = left 
ventricular end-systolic volume; other abbreviations as in Table 1.
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