
Most human age-related metabolic diseases and disorders 
are due to oxidative damage, which plays a fundamental role 
in age-related metabolic changes such as cataract. Being an 
avascular organ, the lens is aided by an efficient glutathione 
redox cycle to resist oxidative stress [1]. The versatile regula-
tion of intracellular redox components is the primary factor 
in lens homeostasis. Oxidative stress is a plethora of reactive 
oxygen species (ROS) such as superoxide anion, hydrogen 
peroxide, hydroxyl radical, and inducible nitric oxide species 
that exert a constellation of aberrant changes in the oxidation-
reduction status of the cell. Redox-regulating elements such 
as superoxide dismutase (SOD), catalase (CAT), reduced 
glutathione (GSH), glutathione reductase (GR), glutathione-
S-transferase (GST), and glutathione peroxidase (Gpx) 
dynamically neutralize the reactive free radicals generated 
during the physiological process [2,3].

Crystallins are water soluble and highly stable structural 
proteins synthesized prenatally in the lens epithelial cells 

classified as three major components such as α-, β- and γ- 
[4]. The higher solubility, stability, and chaperone function of 
α-crystallin contribute to the refractive function of this organ 
[5]. Being a member of the small heat shock family proteins, 
α-crystallin protects other native proteins from misfolding 
and aggregation thus ensuring conformational stability of 
the lenticular milieu [6]. One of the most striking changes 
in age-related cataract is the post-translational modifica-
tions such as racemization, phosphorylation, deamidation, 
truncation, methylation, and thiolation [7-9], which impose 
aberrant changes on the conformation and functionality of 
crystallins. β-crystallin occurs as five different polypeptide 
chains (βB1–4) as a heterogeneous partner of γ-crystallins 
[10]; also this apparent heterogeneity has a crucial role in 
maintaining lens transparency [11,12].

Taken at face value, senile cataract is intimately associ-
ated with the increased risk of oxidative stress, which levies 
irrevocable changes in the lenticular proteins that impel 
the lens epithelial cells to the apoptotic phase. Apoptotic 
signaling pathways are triggered by various molecular cues; 
one of the most common is ROS [13,14]. Apoptosis of lens 
epithelial cells initiates a cascade of events in senile cataract 
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formation [15] followed by biochemical changes such as acti-
vation of calpain protease, loss of cytoskeleton integrity, and 
aggregation [16]. Sodium selenite–induced cataractogenesis 
in rodents is a rapid and convenient model for mimicking 
oxidative stress–related cataract and assessing the metabolic 
and molecular changes in the lens epithelium. In rat, selenite 
cataract is induced with a single subcutaneous injection of 
excess sodium selenite (Na2SeO3) in suckling rats on P10 
resulting in severe bilateral, nuclear cataract [17,18] develop-
ment on P16. These models have been applied by researchers 
to evaluate the efficacy of various natural products focused 
on biomedical applications [19].

Evaluating the anticataractogenic role of natural product 
C-Phycocyanin (C-PC) from cyanobacterial origin on gene 
expression is the primary objective that may reveal targets 
for therapeutic interventions and elucidate the molecular 
basis of the disease. In our earlier findings, the putative 
anticataract property of C-PC (200 mg/kg bodyweight) was 
established with biochemical, morphological [20], and histo-
logical analysis [21]. The present study aims to broaden the 
vision on molecular mechanism through which C-PC exerts 
the anticataractogenic potency by quantitative real time PCR 
analysis.

METHODS

Extraction of C-PC from Spirulina platensis: Spirulina 
platensis (Kindly gifted by Dr. R. Sarada, Central Food and 
Technological Research Institute (CFTRI), Mysore, India) 
was cultured in Zarrouk’s media with a 12 h: 12 h light-dark 
photoperiod at pH 9.2 at room temperature (27±2 °C). C-PC 
was extracted by the standard method of freeze thawing and 
purified by two step column purification process as described 
in our previous study [20]. All chemicals used for this anal-
ysis were of analytical grade. For cDNA conversion, MMlv 
reverse transcriptase was purchased from Merck (Darmstadt, 
Germany). Primers specific to the respective full-length 
mRNA were designed with Net Primer and custom synthe-
sized by Sigma-Aldrich (Bengaluru, India). Real-time PCR 
Ready Mix (SYBR Green, Bio-Rad, Hercules, CA) and DNA 
polymerase were purchased from KAPPA, Biosystem (Wilm-
ington, MA).

Animal experiment regime: Neonatal rat pups of the Wistar 
strain (Procured from Tamil Nadu Veterinary and Animal 
Sciences University (TANUVAS), Chennai, India) initially 
weighing 10–12 g on P8 were used for this study. The study 
protocol was approved by the Institutional Animal Ethical 
Committee (Ref no. BDU/IAEC/33/2013/09.04.2013). All 
ethical guidelines were followed for conducting animal 
experiments in strict adherence with the Institutional Animal 

Ethical Committee and Committee for the Purpose of Control 
and Supervision of Experiments on Animals (CPCSEA), 
Government of India, and the Association for Research in 
Vision and Ophthalmology (ARVO) Statement for the Use 
of Animals in Research. The pups were housed along with 
their mother in polypropylene cages in rooms maintained 
with a constant 12 h:12 h light-dark cycle. They were fed 
rodent-pelleted chow and water ad libitum. The pups were 
randomly grouped into a control group and two experimental 
groups, comprising eight pups each. On P10, Group I (normal) 
received vehicle control saline intraperitoneally, and Groups 
II and III were injected with sodium selenite (19 μmol/kg 
bodyweight) subcutaneously. Group III received 200 mg/
kg bodyweight of C-PC intraperitoneally (dosage was fixed 
based on our previous study) [20]. C-PC was administered 
from P9 (1 day before sodium selenite administration) and 
followed for 6 consecutive days thereafter. Sixteen days after 
birth (after the eyes opened), the rats were examined with 
the naked eye for the development of cataract and graded 
according to the degree of opacity that had developed. The 
animals were euthanized by cervical dislocation, and the eye 
lenses were dissected with the posterior approach.

Quantitative real-time PCR analysis: Total RNA was 
extracted from eye lenses using TRI reagent (Sigma Aldrich) 
[22]. The concentration and purity of total RNA were deter-
mined by absorbance at 260/280 nm in an ultraviolet (UV) 
spectrophotometer [23]. Starting with equal quantities of 
total RNA, first-strand cDNA (cDNA) was synthesized using 
MMlv reverse transcriptase (Merck, Darmstadt, Germany), 
and gene expression was quantitatively determined using 
real-time PCR with SYBR Green Supermix (Bio-Rad).

Ct (threshold cycle) is the cycle at which the fluorescence 
of the reaction mixture exceeds the baseline signal. The 
difference between the Ct value of the target transcripts and 
the internal control transcripts were taken into account for 
calculation. The following thermocycler program was used 
for real-time PCR: 10 min preincubation at 95 °C, followed 
by incubation at 95 °C for 30 s, varied annealing temperatures 
(Table 1) for each gene of interest for 45 s, and 72 °C for 1 
min. The sense and antisense primers used for the study are 
shown in Table 1. Gene expression was normalized to β-actin 
(internal control) as described earlier [24]. The mRNA 
levels are reported as relative fold changes. Real-time PCR 
analysis was performed in triplicate for each gene along with 
the β-actin internal control to minimize inter-experimental 
variations. After amplification, a melt curve analysis was 
performed to confirm whether multiple specific products 
were amplified in these reactions. All products were melted 
at 95 °C, annealed at 55 °C, and subjected to increasing 
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temperature changes. Fluorescent data were collected until 
the reaction reached 95  °C. The results were plotted as 
raw fluorescence data units versus temperature. The pres-
ence of single homogeneous melt peaks confirms specific 
amplification.

Data analysis: Results from real-time PCR were calculated 
from Ct values, indicating the threshold fluorescence reached 
the exponential phase of amplification. Gene expression was 
normalized to with respect to an invariant housekeeping gene. 
β-actin was used as reference gene, and the normalization 
representation of target gene (Ct1) to reference gene (Ct2) 
was calculated as ΔCt=(Ct1- Ct2). Using the 2-Δ(ΔCt) method, 
the data are presented as the fold change in gene expression 
normalized to the endogenous reference gene and relative to 
the untreated control. From this method, 2-Δ(ΔCt) is directly 
proportional to the ratio of target to the reference initial copy 
number for each sample [25].

Statistical analysis: Results are presented as mean ± stan-
dard error mean (SEM). Data were analyzed using one-way 
ANOVA (ANOVA) followed by Student’s Newman-Keul’s 
test (SNK) with GraphPad Prism Project 6 (GraphPad, San 
Diego, CA). In all cases, p<0.05 was considered statistically 
significant. A p value less than 0.05 were required to reject 
the null hypothesis that the group means were equivalent.

RESULTS

In this study, the expression pattern of three structural genes, 
three redox genes, and 11 apoptotic pathway genes were 
studied with real-time PCR. Total RNA was isolated from 
three different groups and starting with equal quantities of 
total RNA (2 μg) with high purity and integrity. Dynamic 
changes in mRNA levels were expressed in fold changes and 
normalized with internal control β-actin (NM_031144.2). 
(The melt curve analysis for each gene expression is provided 
as supplementary data.)

Real-time expression of the crystallin: The status of expres-
sion of the candidate genes of the crystallin family αA- 
(Figure 1A), βB1- (Figure 1B), and γD-crystallin (Figure 1C) 
were examined. Deleterious downregulation of all crystallin 
gene expression was observed in cataract-induced Group II. 
A 0.5-fold downregulation of αA-crystallin (NM_012534.2), 
0.75-fold downregulation of βB1-crystallin (NM_012936.2), 
and 0.5-fold downregulation of γD-crystallin (NM_033095.1) 
recorded in Group II compared to Groups I and III. However, 
on treatment with C-PC the mRNA transcripts were main-
tained significantly (p<0.05) at normal levels.

Changes in redox enzyme expression: A concomitant 
decrease in the mRNA expression of the redox enzymes such 

as Cat (NM_012520.1; Figure 2A), SOD-1 (NM_017050.1; 
Figure 2B), and Gpx (NM_030826.3; Figure 2C) was ascer-
tained in selenite-induced cataractogenic group (Group II). 
Interestingly, 0.9-fold downregulation of CAT gene, 0.5-fold 
downregulation of SOD-1 gene, and 0.5-fold downregulation 
of Gpx gene were observed in Group II compared to Group 
I. The aberrant change on the redox mechanism was counter-
acted by the C-PC treatment, which may be due to the scav-
enging of free radicals by C-PC, which thus conserved the 
expression of the antioxidant enzymes significantly (p<0.05) 
in Group III.

Regulation of mRNA expression of extrinsic signaling 
molecules: The extrinsic pathway is activated by the death 
domain which further recruits downstream signaling 
molecules such as caspase-8 and caspase-3 that trig-
gers apoptosis. The results confirmed increased mRNA 
expression levels of Fas (NM_139194.2; Figure 3A; 7-fold 
increase), TNFα (NM_012675.2; Figure 3B; 12-fold increase), 
caspase-8 (NM_022277.1; Figure 3C; 0.5-fold increase), 
caspase-3 (NM_012922.2; Figure 3D; 1.5-fold increase), and 
Bid (NM_022684.1; Figure 3E; 2.1-fold increase) genes in 
Group II. However, Group III treated with C-PC strikingly 
conserved the signaling factors at placebo levels.

Expression of Bcl-2 family members: Bcl-2 family proteins 
are intracellular signaling molecules that consist of proapop-
totic factors such as Bad (NM_022698.1; Figure 4A) and 
Bax (NM_017059.2; Figure 4B) and antiapoptotic Bcl-2 
(NM_016993.1; Figure 4C) that regulate mitochondrial 
membrane integrity, cytochrome-C release, and caspase 
activation [26,27]. A dynamic overexpression of the proapop-
totic Bad (24-fold increase) and Bax (1.9-fold increase) genes 
demonstrated in the Group II samples accompanied by 
concerted downregulation of the antiapoptotic gene Bcl-2 was 
addressed in the selenite-induced cataractogenic group. The 
ratio of Bax/Bcl-2 is an important factor that determines the 
fate of a cell entering apoptosis. Pertaining to the results, the 
antiapoptotic Bcl-2 was downregulated 0.9 fold during cata-
ractogenesis pushing the epithelial cells toward death. This 
imbalance in gene expression was counteracted and stabilized 
by C-PC treatment in Group III animals.

Expression of intrinsic apoptotic signaling molecules: To 
deduce the protective role of C-PC on the mitochondria-
driven signals, the expression of intrinsic apoptotic signaling 
genes were examined. The gene expression of caspase-9 
(NM_031632.1; Figure 5A; 0.8-fold increase) and cyto-
chrome-C (JF919282.1; Figure 5B; 1.7-fold increase) were 
upregulated in the selenite-induced cataractogenic Group 
II suggesting the monolithic apoptotic load on the intrinsic 
signals. The mRNA transcripts were conserved significantly 
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Figure 1. Changes in the expression 
pattern of αA- (A), βB1- (B), and 
γD- crystallin (C) mRNA analyzed 
with comparat ive real- t ime 
PCR normalized to β-actin and 
expressed as folds of increases or 
decreases relative to controls. Data 
are the means of three comparative 
real-time PCR experiments, each 
performed in triplicate. Values were 
significantly (p<0.05) decreased 
when the animals were exposed to 
sodium selenite and were signifi-
cantly restored in Group III induced 
with sodium selenite and treated 
with C-Phycocyanin (C-PC) 200 
mg/kg bodyweight. The signifi-
cance was considered at the level of 
p<0.05. a represents the statistical 
significance between the Group I 
and Group II, and b represents the 
statistical significance of Group II 
versus Group III.
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Figure 2. mRNA expression of 
Cat (A), SOD-1 (B), and Gpx (C) 
from Group I, II, and III rat lenses. 
Total RNA was extracted from 
rat lens tissues, and mRNA levels 
were measured using real-time 
PCR normalized to β-actin and 
expressed as folds of increases 
or decreases relative to controls. 
The data are expressed as mean ± 
standard error of the mean (SEM) 
of three independent observations. 
Statistical significance between 
the control group versus the other 
groups was considered at the level 
of p<0.05 using SNK test. a repre-
sents the statistical significance 
Group I versus Group II, and b 
represents the statistical signifi-
cance between Group II and Group 
III.
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Figure 3. mRNA expression of extrinsic apoptotic signaling molecules (A) Fas, (B) TNFα, (C) Caspase-8, (D) Caspase-3, and (E) Bid in 
selenite-induced cataractogenesis. The mRNA expression of apoptotic genes were analyzed with real-time PCR using SYBR Green dye. 
Target gene expression was normalized to β-actin mRNA expression, and the results are expressed as fold change from control. a represents 
statistical significance of Group I versus Group II, and b represents the statistical significance of Group II versus Group III at the the level 
of p<0.05 using SNK test.
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Figure 4. mRNA expression of Bad 
(A), Bax (B), and Bcl-2 (C) in the 
eye lens of sodium selenite induced 
and C-PC treated animals. β-actin 
was used as an internal marker, 
and the fluorescent intensity was 
normalized by the intensity of 
β-actin. Each bar represents mean 
± standard error of the mean (SEM) 
of three independent observations. 
Statistical significance was consid-
ered at p<0.05. a Group I versus 
Group II; b represents Group II 
versus Group III.
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Figure 5. mRNA expression of 
intrinsic apoptotic factors such as 
caspase-9 (A) and cytochrome-C 
(B). β-actin was used as an internal 
marker. Statistical significance 
between the control group versus 
other groups was considered at the 
level of p<0.05 using SNK test. a 
represents the statistical signifi-
cance Group I versus Group II, and 
b represents the statistical signifi-
cance of Group II versus Group III.

http://www.molvis.org/molvis/v21/26


Molecular Vision 2015; 21:26-39 <http://www.molvis.org/molvis/v21/26> © 2015 Molecular Vision 

35

(p<0.05) at nearly normal levels on treatment with 200 mg/
kg bodyweight of C-PC in Group III.

Regulation of apoptosis by transcriptional factor NFκB: 
NFκB [NM_001276711.1] is a class of inducible transcrip-
tional factors that directly intervene with and regulate the 
apoptotic factors. Strikingly, the expression of this transcrip-
tional factor was upregulated significantly (p<0.05) in Group 
II (Figure 6; 0.2-fold increase) during cataractogenesis, 
thus eliciting the apoptotic cascade. The results elegantly 
demonstrate that C-PC treatment conserved the expression 
of the transcriptional factor and supported the notion that 
C-PC averts an oxidative stress–induced mimic of cataract 
in rodents by suppressing the activation of NFκB during the 
cataractogenic process in Group III.

DISCUSSION

The entire lens tissue depends on epithelial cells for nutri-
tion and survival; endurance of the epithelium during 
adverse conditions is essential for retaining its integrity and 
proceeding with vital organ functions [28]. Therefore, the 
factors that play a key role in epithelial cell survival must 
be deduced. Classical changes that precede opacification in 
the entire lens are the depletion of lens epithelial cells, modi-
fication in the metabolism of the epithelium probably due 
to DNA damage, inhibition of DNA synthesis, endoplasmic 

stressors inducing the unfolded protein response pathway, 
and the apparent drop in the oxidative defense mechanism 
[29]. It is clear that with the impairment of epithelial cells and 
influx of calcium the cysteine proteinase Calpain is activated, 
which degrades the cytoskeletal compartments resulting in 
lens protein modification. Anomalous changes in the crys-
tallin structure and aggregation state are striking features of 
cortical and nuclear cataractogenesis [4]. With increased age, 
the α-, β-, and γ-crystallins undergo extensive conformational 
changes in the secondary and tertiary structures, including 
loss in the chaperone activity of α-crystallin [30,31]. In addi-
tion, at the onset of cataract, the solubility and stability of 
crystallin proteins are compromised [12]. Comprehensive 
research on crystallins has revealed that these proteins are 
constantly formed throughout an animal’s lifetime; however, 
major modifications during the onset of cataract are imposed 
on the solubility and stability of the protein. In this study, a 
systemic analysis of lens crystallin mRNA was conducted 
that revealed a profound loss of transcripts in the selenite 
cataractous group (Group II), suggesting decreased expres-
sion of these genes. The results were consistent with earlier 
reports that αA-, βB1-, and γD-crystallin transcripts were 
degraded in dexamethasone-induced cataractogenesis [6]. 
Restoration of the mRNA levels in the C-PC-treated group 
may be attributed to the antioxidant mechanism of C-PC that 

Figure 6. The relative mRNA level 
of NFκB was determined with 
real-time PCR and normalized to 
β-actin. Statistical significance 
was considered at p<0.05. a denotes 
the statistical significance of Group 
I versus Group II; b refers to the 
statistical significance of Group II 
versus Group III.
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evidently conserves the crystallin transcripts in selenite-
induced cataract.

Extrapolating epidemiological data revealed that cata-
ractogenesis elicits an unfathomable relationship between the 
loss of antioxidant enzyme activity and the progression of 
opacification [29,32]. A rapid increase in the loss of enzyme 
activity ought to be the foremost impingement on the epithe-
lial cells [33]. The mRNA of the major antioxidant enzymes 
such as Cat, SOD-1, and Gpx were dramatically decreased 
in the cataractogenic group of animals (Group II), which 
compared favorably to the challenged redox machinery. This 
is the significant result of the study because the development 
of cataract in part is bound to the decrease in antioxidant 
enzyme activity [20]. The deleterious oxidative stress burden 
imposed on antioxidant enzymes were thwarted in Group III 
on treatment with C-PC. The positive influence observed on 
treatment with the natural antioxidant underscores the magni-
tude of anticataractogenic potential of C-PC on selenite-
induced cataractogenesis. Earlier, our biochemical studies 
[20] showed that C-PC modulates the antioxidant enzyme 
activity status in selenite-induced cataractogenesis, and thus 
obviated any pertinacious changes that impede the redox state 
of the lens. The results of the current study corroborate the 
earlier findings [20] and suggest that the tetrapyrrole ring, a 
core component of phycobiliproteins (an active constituent), 
is linked to the scavenging of pestilent free radicals generated 
during the cataractogenic process, and conserves the antioxi-
dant status of the lens tissue.

Clinical samples from human cataractous lenses showed 
a steady rate of apoptotic death in the capsular epithelial 
cells, which is one of the striking perturbations of the 
cataractogenic process [34]. Apoptosis is an early event 
in selenite cataract culminating in loss of epithelial cell 
metabolism [35]. Okamura et al. [36] reported a high level 
of Fas mRNA expression, indicating the greater chance of 
epithelial cells heading toward apoptosis induced by the 
death receptor pathway. The external stress stimuli were 
sensitized by the Fas system that reconciles the activation 
of caspase-3 and caspase-8. In the present study, treatment 
with C-PC suppressed the extrinsic signaling molecules 
of mRNA expression (Fas and TNF-α). Further activation 
of caspase-3, caspase-8, and Bid in Group II affirms the 
hypothesis that the cataractogenic process was potentiated in 
the extrinsic and intrinsic pathways of apoptosis. Induction 
with selenite resulted in a significant increase in caspase-3 
expression, and activation was observed in Group II, while 
C-PC treatment significantly (p<0.05) inhibited the change 
in vivo. These results are consistent with previous studies 
on the protective effect of C-PC on D-galactose-induced 

apoptosis in SRA01/04 cells [37]. Although the extrinsic 
apoptotic trigger accounts for majority of the cell death, an 
equal apoptotic load is imposed on the intrinsic pathway. The 
downregulation of mitochondrial genes in Group II suggests 
that mitochondrial integrity is lost after induction with sele-
nite thus contributing to the intrinsic pathway. The relative 
equipoise of proapoptotic (Bax and Bad) and antiapoptotic 
factor (Bcl-2) are crucial determinants of cellular homeostasis 
[38]. Accumulating evidence from real-time PCR results 
shows that C-PC subdues apoptosis in lens epithelial cells 
by tightly regulating intrinsic apoptotic regulators such as 
Bcl-2 family proteins and by preventing the activation of 
caspases. We observed that C-PC suppressed selenite-induced 
upregulation of Bad and Bax and downregulation of Bcl-2 
expression. The findings of the present study substantiate 
the earlier findings of Ou et al. [37,39] and our biochemical 
studies [20] that link to the anticataractogenic attributes of 
C-PC. Consequently, the release of apoptogenic proteins 
such as cytochrome-c from the mitochondria culminates 
in caspase-9 activation and caspase-dependent cell death. 
Treatment with C-PC resulted in suppression of caspase-9 
gene expression, and this may explain, at least in part, that 
C-PC concealed apoptosis and membrane permeabilization 
of cytochrome-c. Belusko [40] reported the loss of integrity 
of lens epithelial cells by selenite caused by preferential 
downregulation of mitochondrial RNAs accompanied by the 
release of cytochrome-c and impaired mitochondrial func-
tion. These findings provide insights into the diverse caveats 
of the molecular mechanism of  C-PC against apoptosis and 
in line, averting cataract. A previous study by Ou et al. [37] 
showed that cotreatment with C-PC markedly diminished the 
activation of D-galactose-triggered unfolded protein response 
(UPR) pathway, a hallmark of age-related cataract.

NFκB is a crucial redox sensitive transcription factor 
that controls the expression of stress inducible genes [41]. 
ROS-induced stimuli can release inhibitor kappa B (IκB) 
and facilitate the translocation of NFκB into the nucleus that 
binds to DNA response elements and manipulates the tran-
scription of specific genes that determine cellular fate [42]. 
Roy et al. [43,44] studied the role of C-PC in ROS-mediated 
activation of NFκB and stated that C-PC treated RAW 264.7 
cells showed reduced translocation of NFκB even after ROS 
were induced with 2-acetylaminofluorene. TNF-α is an 
excitatory cytokine of human lens epithelial cells that acti-
vates NFκB. The biologic response to oxidative stress during 
cataractogenesis upregulates the inflammatory cytokine 
TNF-α in Group II (an approximate 12-fold increase), which 
is paired with the concerted upregulation of NFκB compared 
to the concordant expression in the lens tissue of Group I. 
The observed decrease in NFκB expression in the Group III 
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rat lenses treated with C-PC shows a concrete relationship 
with the earlier findings that NFκB plays a critical role in 
regulating the apoptotic machinery of lens epithelial cells in 
a temporal sequence. Due to diverse mechanism of action 
and its potent antioxidant capacity, C-PC is a more effective 
anticataractogenic agent of cyanobacterial origin.

Hayashi et al. [24] investigated the effects of antioxidant 
supplementation on the mRNA expression of antioxidative 
enzymes in the lens. The authors also reported that assessing 
the synthesis of antioxidant enzymes are important criterion 
in verifying the effectiveness of antioxidant supplementa-
tion in preventing cataract. Since the first stage of protein 
synthesis is initiated by mRNA transcription, evaluating 
changes in mRNA expression may point toward changes in 
the synthesis of proteins, such as antioxidant enzymes. There-
fore, measuring changes in the mRNA expression levels of 
antioxidant enzymes in the lens tissue may be important for 
substantiating the effects of antioxidant supplementation on 
preventing cataracts.

The current study was designed to evaluate the effective-
ness of C-PC in preventing changes in the gene expression 
pattern of vital antioxidant enzymes such as SOD-1, Cat, 
and Gpx. Real-time quantification of mRNA transcripts 
confirmed that the synthesis of the transcripts were challenged 
on selenite-induced cataractogenesis. Owing to free radical 
scavenging property, C-PC acts directly on the transcriptional 
modification process and might subsequently modulate other 
cellular proteins and thus slow cataractogenesis. Previously, 
Ontawong et al. [45] showed that Spirogyra neglecta extract 
modulated NFκB activation and the subsequent translocation 
that is directly reflected in mRNA expression of phase II 
antioxidant enzymes genes such as Cat, SOD, and Gpx. Our 
results also corroborate with the earlier findings of Ontawong 
et al. [45], which is directly reflected in the mRNA expression 
of the antioxidant enzymes.

Pathogenic stimuli causes the release of IκB facilitating 
the translocation of NFκB into the nucleus that binds to the 
DNA control elements and thus influences the transcrip-
tion of specific genes. In our study, NFκB expression was 
upregulated in Group II thus indirectly contributing to the 
suppression of gene expression of antioxidant enzymes. Gene 
expression was stabilized in Group III on treatment with 200 
mg/kg bodyweight of C-PC. C-PC, an effective antioxidant, 
manipulates the expression of NFκB, maintains full control 
of oxidative stress apoptosis, and provides indirect protec-
tion against free radical injury by stimulating antioxidant 
enzymes.

This study shows C-PC can withstand oxidative stress 
and apoptotic negotiator that can be applied in future drug 

discovery approaches against cataractogenesis. The tight 
regulation of extrinsic and intrinsic cascade signaling that 
subsequently decreases lens epithelial cell death by the 
ensuing changes in NFκB dynamics poses an encouraging 
and reasonable target against cataractogenesis. Since apop-
tosis of lens epithelial cells is closely tied to cataract inci-
dence, C-PC may be a promising candidate for preventing 
age-related cataract.
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